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Abstract. Modern displays nowadays possess the capability to render video 

content with a high dynamic range (HDR) and an extensive color gam-

ut .However, the majority of available resources are still in standard dynamic 

range (SDR). Therefore, we need to identify an effective methodology for this 

objective.The existing deep neural networks (DNN) based SDR  to HDR con-

version methods outperforms conventional methods, but they are either too 

large to implement or generate some terrible artifacts. We propose a neural 

network for SDR to HDR conversion, termed "FastHDRNet". This network 

includes two parts, Adaptive Universal Color Transformation (AUCT) and Lo-

cal Enhancement (LE). The architecture is designed as a lightweight network 

that utilizes global statistics and local information with super high efficiency. 

After the experiment, we find that our proposed method achieves state-of-the-

art performance in both quantitative comparisons and visual quality with a 

lightweight structure and a  enhanced infer speed. 

Keywords:Inverse Tonemapping,Channel Selection Normalization,Image Pro-

cessing 

1 Introduction   

In recent years, the transition towards High Dynamic Range (HDR) technology has 

significantly enhanced the visual quality of television and film content, evolving from  

Standard Definition through Full High Definition to Ultra-High Definition. With its 

expansive color gamut and superior dynamic range, HDR technology surpasses 

Standard Dynamic Range (SDR) capabilities, presenting visuals that mirror real-life 

more closely. Standards such as DCI-P3 [1] and BT.2020 [2] have been crucial in 

establishing HDR display qualities, facilitating displays to reach over 2000 nits of 

peak brightness, in contrast to SDR's limitations. 

Despite display technology advancements, HDR content production and accessibil-

ity lags behind, creating a need for proficient SDR-to-HDR conversion methods. Ear-

lier conversion techniques, which relied on inverse tone mapping based on image 

statistics, have been largely replaced by sophisticated deep neural networks (DNNs) 
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strategies [3, 4, 5, 6, 7], including convolutional neural networks (CNNs). These 

methods excel by learning the correlation between SDR and HDR through paired 

dataset training, although the large-scale DNN deployment faces integration challeng-

es in consumer devices due to computational complexity. 

Newer research has directed efforts towards crafting algorithms that offer SDR to 

HDR conversion with less computational demand. This includes developing lighter 

networks, which retains quality conversion while being more suited for integration 

into daily use devices like TVs and AR/VR equipment. Furthermore, recognizing that 

SDR and HDR content are processed differently despite originating from identical 

raw files, conversion tasks now also consider dynamic range, color gamuts, and bit 

depths. Among these innovations, Efficient-HDRTV [8] promises to deliver quality 

HDRTV content with significantly less computational overhead. 

Additionally, applying transformers in low-level vision tasks suggests a method for 

enhancing SDR-to-HDR conversion, particularly for translating both low and high-

frequency detail information. Despite direct application challenges, adjusting atten-

tion mechanisms to selectively enhance specific frequency features can refine the 

conversion process. 

The rapid evolution of display technologies and escalating HDR content demand 

call for continued  research and development in SDR-to-HDR conversion. Progress in 

DNNs and the introduction of more efficient algorithms signifys notable advances, 

offering viable solutions to close the gap between HDR display capabilities and con-

tent availability. Expectedly, these innovations will not only improve consumer visual 

experiences but also promote HDR technology's broader adoption in media and enter-

tainment. 

In summary, our contributions are three-fold: 

⚫ We propose a lightweight and efficient SDR-HDR method that achieves state-of-

the-art performance. 

⚫ We experiment with new normalization method to make this network more robust-

ly. 

⚫ Our method has the fastest reference time in all the algorithms mentioned. 

As you can see from Fig. 1, our model achieves high quantitative performance with 

a very low parameter numbers. 
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Fig. 2. Comparison of number of parameters among models. 

2 Related Work 

The adoption of HDR in television content, as per the specifications of the Rec.2100 

standard [9], marks a crucial development beyond the earlier Rec.709 standard [10] 

that established the framework for SDR displays. Distinguished by an enhanced color 

depth (10 or 12 bits per pixel compared to the 8 bits per pixel of SDR), an expanded 

color gamut, and the employment of sophisticated optical-electronic transfer functions 

(OETF) [9], HDR technology significantly augments the encoding of media content. 

It provides a richer palette of colors and a more lifelike viewing experience by captur-

ing intricate details in both bright and dark areas. This study introduces a pioneering 

deep learning model for converting SDR content into HDR, aiming at capitalize on 

the benefits of HDR technology to improve television production quality. 

2.1 Background  

The Rec.2100 standard [9] defines HDR imagery in the pixel domain, facilitating a 

more precise representation of physical brightness via a luminance map in the linear 

domain [5]. This represents a substantial leap from SDR processing, which involves 

dynamic range clipping, non-linear mapping with a camera response function, and 

quantization [11, 12]. These processes contribute significantly to creating a more 

engaging viewing experience. 

2.2 SDR-to-HDR Translation 

The translation from SDR to HDR is necessitated by the inherent loss of information 

in SDR media when compared to HDR. Initial methodologies focused on multi-

purpose CNN [13] for HDR reconstruction. Further developments introduced tech-

niques such as Deep SRITM [14] for decomposing SDR images into detailed compo-

nents for contrast enhancement, and the JSIGAN [15] for learning pixel-wise filters 

for local contrast enhancement using an adversarial framework. Chen et al. [5] devel-



4 

oped the HDRTVNet, designed to reconstruct HDR through adaptive global color 

mapping, local enhancement, and highlight generation, further supported by the 

HDRTV1K benchmark dataset. Additional innovations include the frequency-aware 

modulation network by Xu et al. [16] and a two-stage scheme by He et al. [17] for 

improving local region reconstruction quality. 

Despite these advances, earlier CNN-based approaches [5, 14, 15] overlooked the 

significance of non-local dependencies among pixels. This research introduces an 

advanced attention mechanism to model long-range feature correlations, enhancing 

the quality of SDR-to-HDR translation by leveraging the capabilities of DNNs [18-

22] and the Vision Transformer [23]. 

2.3 Vision Transformer 

The advent of attention-based Transformer models [23], initially prominent within the 

realm of natural language processing (NLP), has progressively infiltrated various 

domains of computer vision, such as image recognition [24], semantic segmentation 

[25], and object detection [26]. Recent research has ventured into the application of 

Transformers for low-level vision tasks [5-7], heralding models like SwinIR [26] that 

leverages local attention mechanisms, and Restormer [22], which employs attention 

across channel dimensions to facilitate efficient image restoration. 

In light of the shortcomings associated with traditional SDR-to-HDR conversion 

methodologies [5, 8], this study introduces a comprehensive strategy that synergizes 

the precision of DNNs with the broad analysis capabilities of Vision Transformers. 

This strategy encompasses mastering complex non-linear mappings, utilizing U-Net 

[41] architectures for meticulous detail enhancement [18], and adopting sophisticated 

attention mechanisms to grasp long-range dependencies, thereby crafting an encom-

passing SDR-to-HDR translation solution. 

However, it's noteworthy that these Transformer-based approaches may exhibit 

slower inference speeds compared to CNN-based alternatives, incurring higher com-

putational demands. Such attributes potentially limit their practical utility in real-

world applications. 

3 Method 

The transition of television content from SDR to HDR marks a pivotal enhancement 

in visual quality. In response to the complexities of this transition, we present FastH-

DRNet, a novel framework consisting of two deep neural networks designed for spe-

cific stages of the SDR-to-HDR conversion. Initially, a pixel-independent operation 

addresses both average and peak brightness, followed by a region-independent re-

finement crucial for accurate HDR transformation. This strategy notably reduces arti-

fact occurrences, offering a more seamless conversion. An indepth overview of 

FastHDRNet's core components, as illustrated in Fig. 2, will elucidate the advanced 

mechanisms underpinning this conversion method. 
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Fig. 2. The architecture of the proposed FastHDRNet method. 

3.1 Adaptive Universal Color Transformation (AUCT) 

The AUCT framework is engineered to adeptly execute image-specific color map-

ping, seamlessly converting the color profile of an SDR image into its HDR equiva-

lent. Structurally, AUCT is composed of two pivotal components: a foundational 

network and a conditioning network. These components collaboratively underpin the 

process of global color adjustment, ensuring a nuanced translation of color spaces 

from SDR to HDR contexts. 

Base Network 

At the heart of the AUCT framework lies the base network, tasked with implementing 

global operations at the pixel level throughout the image. This operation is formally 

described as: 

 𝑀𝐵(𝑥, 𝑦) = 𝑓(𝑀𝑆(𝑥, 𝑦)), ∀(𝑥, 𝑦) ∈ 𝑀𝑆 (1) 

where 𝑀𝑆 denotes the input SDR image, (𝑥, 𝑦) specifies the pixel coordinates, and 

𝑀𝐵  symbolizes the output generated by the base network. Inspired by the CSRNet 

[19], our base network is structured as a fully convolutional network, leveraging 1×1 



6 

convolutions paired with Rectified Linear Unit (ReLU) activation functions to ac-

complish global mapping. This setup is succinctly represented as: 

 𝑀𝐵 = 𝐶𝑜𝑛𝑣1×1 ∘ (𝑅𝑒𝐿𝑈 ∘ 𝐶𝑜𝑛𝑣1×1)
𝑁𝑙−1(𝑀𝑆) (2) 

where 𝑁𝑙 denotes the number of convolutional layers, each equipped with 1×1 fil-

ters, followed by 𝑁𝑙 − 1 ReLU activations. This configuration enables the base net-

work to process an 8-bit SDR image and output an HDR representation with a depth 

ranging from 10 to 16 bits. Remarkably, the base network's ability to emulate a 3D 

lookup table (3D LUT) functionality with a reduced parameter set, as opposed to 

direct 3D LUT learning, showcases its efficacy in color mapping. For additional re-

sults and a more detailed exposition of the base network's performance, readers are 

directed to the supplementary material. 

Condition Network 

Global Priors are definitely important in modulation of the base network. In this part, 

we only care about the global luminance and structure of the whole picture. So we 

devise two kinds of blocks, Color Harmony Module (CHM) and Feature Consistency 

Module (FCM). We would like to take color conformity and structural similarity into 

consideration. Different images have different holistic colors, specific structures, and 

global image statistics. To fully extract priors, we propose a Condition Network CHM 

and FCM. CSRNet [12] extracts the global priors using Nk × Nk(Nk > 1) filters for 

image retouching. Furthermore, AGCM [5] uses 1×1 filters to focus on extracting 

global color priors for the SDR-to-HDR task. Thus, inspired by these methods, we 

introduce the condition network branch for SDR-to-HDR. Unlike AGCM, we perform 

a guided filtering [27] of the low-resolution frame before feeding it to the convolution 

layers. This condition network can simultaneously extract high-frequency and low-

frequency information. Finally, we concatenate the output of these two branches and 

broadcast it to the base network for modulation. 

 

Color Harmony Module (CHM) 

Within the FastHDRNet architecture, a pivotal element named the CHM significantly 

contributes to the enhancement of the adaptive global color mapping procedure. This 

module incorporates a meticulously arranged series of layers, each playing a part in a 

tailored pipeline aimed at refining the color transition from SDR to HDR formats. The 

functionality of the CHM is articulated through a mathematical framework as follows: 

 𝐶𝐻𝑀(⋅) = 𝐶𝑆𝑁𝑜𝑟𝑚 ∘ 𝐿𝑅𝑒𝐿𝑈 ∘ 𝑎𝑣𝑔𝑝𝑜𝑜𝑙 ∘ 𝐶𝑜𝑛𝑣1×1(⋅) (3) 

CSNorm, delineated in Fig. 3, represents a sophisticated approach to lightness ad-

aptation, employing channel-selective normalization [28]. This methodology has 

demonstrated remarkable efficiency and resilience across various lighting scenarios. It 

incorporates the Leaky ReLU as its activation function, utilizes an average pooling 

operation, and employs a convolution layer equipped with 1×1 filters. Through this 

structured sequence, the CSNorm processes the input via the CHM to finely tune 

color harmony, ensuring an optimal adjustment tailored to the input's characteristics. 

https://www.sciencedirect.com/science/article/pii/S0925231223007130?fr=RR-2&ref=pdf_download&rr=85245e777860cf7a#b38
https://www.sciencedirect.com/science/article/pii/S0925231223007130?fr=RR-2&ref=pdf_download&rr=85245e777860cf7a#b38
https://www.sciencedirect.com/science/article/pii/S0925231223007130?fr=RR-2&ref=pdf_download&rr=85245e777860cf7a#b35
https://www.sciencedirect.com/science/article/pii/S0925231223007130?fr=RR-2&ref=pdf_download&rr=85245e777860cf7a#b35
https://www.sciencedirect.com/science/article/pii/S0925231223007130?fr=RR-2&ref=pdf_download&rr=85245e777860cf7a#b40
https://www.sciencedirect.com/science/article/pii/S0925231223007130?fr=RR-2&ref=pdf_download&rr=85245e777860cf7a#b40
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Fig. 3. CSNorm selectively normalizes brightness-related channels to enhance generalization, 

while leaving other channels unchanged for precise reconstruction. 

Feature Consistency Module (FCM) 

Feature Consistency module contains a convolution layer with 3 × 3 filters, a ReLU 

activation and a Batch Normalization, which can be denoted as follows: 

 𝐹𝐶𝑀(⋅) = 𝐵𝑁 ∘ 𝐿𝑅𝑒𝐿𝑈 ∘ 𝐶𝑜𝑛𝑣3×3(⋅) (4) 

Further elaborating on the system's architecture, the condition network is tasked 

with generating a condition vector 𝑉, critical for the adaptive mapping process. The 

network's structure is adeptly designed to accommodate a down-sampled SDR image 

as its input, subsequently producing the condition vector through the following for-

mulation: 

 𝑉 = 𝐺𝐴𝑃 ∘ 𝐶𝑜𝑛𝑣1×1 ∘ 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 ∘ 𝐶𝑜𝑛𝑣1×1 ∘ 𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝐻𝑀
𝑁𝑐(𝑀𝑆), 𝐹𝐶𝑀

𝑁𝑐(𝑀𝑆)) (5) 

where 𝐺𝐴𝑃 denotes global average pooling, and 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 is applied as a regular-

ization technique to mitigate overfitting risks by introducing multiplicative Bernoulli 

noise to the features, akin to the effect of data augmentation. 

A distinctive characteristic of the condition network, facilitated by the exclusive 

use of 1×1 convolutional filters, is its focus on global rather than local feature extrac-

tion. This is complemented by pooling layers that enable the extraction of global pri-

ors grounded on image statistics, emphasizing the network's capacity to discern and 

leverage overarching color patterns and trends within the image. Intriguingly, the 

network's design allows for robust performance even under conditions of pixel shuf-

fling, underscoring the notion that the pivotal priors for global color mapping are 

largely independent of spatial arrangements within the image. This insight further 

elucidates the network's adeptness at abstracting essential color mapping cues from a 

global perspective, reinforcing the efficacy of the proposed FastHDRNet in achieving 

high-fidelity SDR-to-HDR translation. 

Global Feature Modulation (GFM)  

To further enrich the feature modulation within the base network, we adopt the GFM 

strategy [8], a technique heralded for its efficacy in photo retouching applications. 
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GFM modulates the intermediate feature maps via scaling and shifting operations, 

mathematically described as: 

 𝐺𝐹𝑀(𝑥𝑖) = 𝛼1 ∗ 𝑥𝑖 + 𝛼2 (6) 

where 𝑥𝑖 denotes the intermediate feature map, and 𝛼1,𝛼2 are the modulation para-

meters for scaling and shifting, respectively. 

The aggregate operation of the AUCT network is thus formalized as: 

 𝑀𝐴𝑈𝐶𝑇 = 𝐺𝐹𝑀 ∘ 𝐶𝑜𝑛𝑣1×1 ∘ (𝑅𝑒𝐿𝑈 ∘ 𝐺𝐹𝑀 ∘ 𝐶𝑜𝑛𝑣1×1)
𝑁𝑙−1(𝑀𝑆) (7) 

where 𝑀𝐴𝑈𝐶𝑇  represents the resultant output image. To ensure the fidelity of the 

AUCT output to the target HDR image, an optimization objective is employed, mini-

mizing the L2 norm between the AUCT output and the ground truth HDR image, 

thereby guiding the network towards a precise emulation of HDR imagery. 

 

3.2 Local Enhancement (LE) 

Following the AUCT phase in our SDR-to-HDR conversion pipeline, we implement a 

LE stage to refine the visual quality further. Despite the significant improvements 

rendered by AUCT, the incorporation of LE is critical for augmenting the fidelity of 

the resultant HDR images. It has been empirically observed that applying local opera-

tions directly for end-to-end mapping, prior to AUCT, frequently results in pro-

nounced artifacts in the output, underscoring the necessity of a sequential approach. 

Detailed insights into these observations are provided in the supplementary material. 

For the LE stage, we employ a U-Net architecture [41] due to its proven efficacy in 

feature refinement. While the exploration of more sophisticated architectures remains 

within the scope of future work, the current focus is on demonstrating the utility of U-

Net within our proposed framework. The LE process is divided into the main branch 

and condition branch.The main branch is a U-shape structure and the condition branch 

generates the condition vector to modulate the intermediate features of the main 

branch. We take the output of 𝑀𝐴𝑈𝐶𝑇 ∈ 𝑅3×𝐻×𝑊 as input for the local enhancement 

network. In the main branch , the input is transformed to a high-dimensional feature 

F ∈ RC×H×W, where C is the number of channels. Then this feature goes through a U-

Net which is a three-level encoder-decoder structure. In real-world scenarios, SDR 

content is typically in the range of 1K to 4K resolution. The use of a U shape structure 

can significantly reduce the computational cost and fasten the inference time. As for 

the condition branch, we use three convolutions to produce three different -size fea-

tures, which can be used to modulate the intermediate feature of the main branch.In 

the part of LE, we aim to implement the region-dependent operation and further ad-

dress the spatially variant mapping for SDR-to-HDR. Thus, we employ the SFT layer 

[29] and leverage its ability of spatial feature modulation to build the network. The 

SFT layer is denoted as: 

 𝑆𝐹𝑇(𝑥𝑖) = 𝑚 ∘ 𝑥𝑖 + 𝑛 (8) 
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where ∘ denotes the element-wise multiplication. 𝑥𝑖 ∈ 𝑅𝐶×𝐻×𝑊 is the intermediate 

features to be modulated. 𝑅 ∈ 𝑅𝐶×𝐻×𝑊 and. 𝑛 ∈ 𝑅𝐶×𝐻×𝑊 are two condition maps pre 

dicted by the condition branch. 

This methodology underscores our commitment to improving the quality of SDR-

to-HDR conversion, leveraging both global and local processing strategies to achieve 

an output that closely mirrors the realism and detail of high dynamic range content. 

And the whole pipeline is as followed: 

 𝑀𝐻 = 𝐿𝐸(𝐴𝑈𝐶𝑇(𝑀𝑠)) (9) 

As for the loss function we use here is: 

 𝐿𝐻𝑅 = 𝛼𝐿1 (10) 

where 𝛼 is the loss weight and we set it to 0.00001. 

4 Experiments 

4.1 Experimental Setup 

HDRTV1K Dataset Construction 

Addressing the challenge of the limited availability of paired SDR/HDR datasets for 

training and validation, we developed the HDRTV1K dataset, adhering to the HDR10 

standard [5]. This dataset encompasses 22 HDR video sequences and their corre-

sponding SDR versions, encoded in PQ-OETF within the Rec.2020 color space. For 

experimental validation, 18 pairs were designated for training, with the remaining 4 

pairs set aside for testing. By extracting one frame every two seconds from each vid-

eo, we compiled a training set of 1235 images and a test set of 117 images, ensuring 

content diversity and minimizing scene repetition. 

Training Protocol 

For the proposed AUCT, the base network consists of 3 convolution layers with 1×1 

kernel size and 128 channels, and the condition network contains 4 CHMS and 4 

FCMS. Before training, we crop images by 480 × 480. During training, patches of 

size 480 × 480 are input into the base network, while full images downsampled by a 

factor of 4 are input into the condition network.We set the mini-batch size to 16 and 

use the L1 loss function and Adam optimizer for training, with a total of 1 × 106 

iterations. The initial learning rate is set to 4 × 10−6, and is decayed by a factor of 4 

at the 5 × 105iterations . And we train the AUCT and LE networks together to 

achieve better effects. 

Evaluation Metrics 

To rigorously evaluate our SDR-to-HDR conversion method, we utilize five key met-

rics for a thorough comparison: Peak Signal-to-Noise Ratio (PSNR), Structural Simi-
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larity Index Measure (SSIM), Spectral Residual-Based Similarity (SR-SIM) [38], 

High Dynamic Range Visual Difference Predictor version 3 (HDR-VDP3) [40], and 

∆E_ITP [39]. PSNR assesses image fidelity, while SSIM and SR-SIM, with SR-SIM's 

effectiveness in HDR proven by measure image similarity. ∆E_ITP, tailored for HDR, 

quantifies color differences accurately. HDR-VDP3, updated for Rec.2020 color 

space, provides a detailed image quality analysis, with settings that include a "side-

by-side" comparison, "rgb-bt.2020" encoding, 50 pixels per degree visual acuity, and 

"led-lcd-wcg" display, aligning perfectly with our evaluation framework. 

Visualization Approach 

Our approach to displaying HDR images in 16-bit PNG format, rendered on SDR 

screens via gamma EOTF, might lead to perceived brightness differences. However, 

our methodology preserves clear visual distinctions. Contrary to prior methods [14], 

[15] that employed media players for HDR visualization—potentially introducing 

biases due to player-specific enhancements—our technique aligns more closely with 

natural visual perception. By circumventing error map visualizations that fail to accu-

rately convey perceptual differences and maintaining detail in highlighted areas, our 

approach ensures visual contrasts are in close alignment with human observational 

capabilities, as demonstrated in Fig. 4. 

 

4.2 Comparison with Existing Methods 

In assessing our method's effectiveness, we benchmarked it against various tech-

niques, including joint Super-Resolution (SR) and SDR-to-HDR conversion, as well 

as image-to-image translation, photo retouching, and LDR-to-HDR conversion, with 

results consolidated in Table 1. 

Quantitative Evaluation 

Our framework excelled in all metrics, showcasing the LE network's integration into 

our AUCT as a superior approach, as documented in Table 1. The PSNR metric nota-

bly achieved 37.67dB, reducing parameter complexity. 

Visual Comparison Analysis 

After conducting a detailed analysis of visual results across various methodologies, as 

illustrated in Fig. 4, it has been observed that LDR-to-HDR conversion and image-to-

image translation methods generally produces images with reduced contrast. Addi-

tionally, apart from HuoPhyEO [36], these methods often yield images with unnatural 

colors and evident artifacts. Although photo retouching techniques show slight im-

provements, they still suffer from color bias issues. 

Contrarily, our approach stands out by producing images with authentic color fidel-

ity and improved contrast, accurately reflecting the ground truth without introducing 

unnecessary artifacts. By methodically applying AUCT followed by LE, our frame-

work enhances the visual quality of outputs. This stepwise improvement demonstrates 
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the effectiveness of our comprehensive approach in navigating the complexities of 

SDR-to-HDR conversion. 

Efficiency Analysis 

In Table 2, we provide the comparison of computational complexity: Multiply–

Accumulate Operations (MACs) and the average inference time between our DFT and 

the previous state-of-the-art method HDRTVNet [5]. Each input image in the 

HDRTV1K has a spatial size of 3840 × 2160. It can be seen that our FastHDRNet 

significantly reduces the computational cost and runs much faster compared to 

HDRTVNet while achieving better performance.  

Table 1. Quantitative comparisons with existing methods. 

Method Params↓ PSNR↑ SSIM↑ SR-SIM↑ ∆EITP ↓ HDR-VDP3↑ 

Photo Retouching 

HDRNet[30] 482K 35.73 0.9664 0.9957 11.52 8.462 

CSRNet[31] 36K 35.04 0.9625 0.9955 14.28 8.400 

Ada-3DLUT[32] 594K 36.22 0.9658 0.9967 10.89 8.423 

Image-to-image 

translation 

ResNet[33] 1.37M 37.32 0.9720 0.9950 9.02 8.391 

Pixel2Pixel[34] 11.38M 25.80 0.8777 0.9871 44.25 7.136 

CycleGAN[35] 11.38M 21.33 0.8496 0.9595 77.74 6.941 

SDR-to-HDR 
JSI-GAN[15] 1.06M 37.01 0.9694 0.9928 9.36 8.169 

Deep SR-ITM[14] 2.87M 37.10 0.9686 0.9950 9.24 8.233 

HDRTVNet[5] 

Base Network 5K 36.14 0.9643 0.9961 10.43 8.305 

AGCM 35K 36.88 0.9655 0.9964 9.78 8.464 

AGCM-LE 1.41M 37.61 0.9726 0.9967 8.89 8.613 

AGCM-LE-HG 37.20M 37.21 0.9699 0.9968 9.11 8.569 

LDR-to-HDR 
HuoPhyEO[36] - 25.90 0.9296 0.9881 38.06 7.893 

KovaleskiEO[37] - 27.89 0.9273 0.9809 28.00 7.431 

FastHDRNet 

(ours) 
AUCT-LE 514K 37.67 0.9710 0.9968 8.60 8.620 

1 Red, blue and green texts indicate the best, second best and third best results.  
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Fig. 4. Visual comparison on real dataset. 

Table 2. Comparisons of MACs, inference time and PSNR between HDRTVNET and our 

FastHDRNet 

Method MACs(G)↓ Time(s)↓ PSNR↑ 

HDRTVNET[5] 3112.99 0.24 37.61 

FastHDRNet(ours) 502.78 0.1 37.67 

 

4.3 User Study 

To subjectively assess the visual quality of HDRTVNet, a user study was conduct-

ed with 40 participants, comparing it against the top-performing methods across vari-

ous categories. For this purpose, 30 images were randomly selected from the test set 

and showcased on a HDR television (LG 32GQ950, with peak brightness of 1000 

nits) within a controlled darkroom setting. Prior to the commencement of the study, 

participants were briefed on evaluating the images based on three criteria: the pres-

ence of obvious artifacts and unnatural colors, the naturalness and comfort of color, 

brightness, and contrast, and the delineation of contrast between light and dark areas, 

including the rendering of highlight details. Participants were then asked to rank the 

results of each method according to these criteria. The television was calibrated to the 

Rec.2020 color gamut and HDR10 standard for displaying the results. 

The methods under comparison included Ada-3DLUT[32], JSI-GAN[15], CSRNet 

[31], HDRTVNet[5], and FastHDRNet, juxtaposed with the ground truth. FastH-
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DRNet was respectively considered to provide the best visual quality in 42.8% (513 

counts) of instances, with FastHDRNet also securing 30.9% (371 counts) for the sec-

ond-best visual quality ranking. 

4.4 Ablation Study 

As you can see from Table 3, the integration of LE part into AUCT shows great ef-

fects, which elevate the PSNR from 36.95 to 37.62. The improvement demonstrates 

the significant role that the LE component plays in enhancing the performance of 

AUCT algorithm. This increase is not only statistically significant but also visually 

apparent in the improved quality of the color-transformed images. 

Table 3. Ablation Study 

Method PSNR↑ 

AUCT 36.95 

AUCT-LE 37.62 

5 Conclusion 

This research delves into the transformative journey from SDR to HDR television, 

highlighting a significant advancement in visual quality enhancement within the tele-

vision production sphere. We introduced FastHDRNet, a novel cascaded framework 

employing two specialized deep neural networks tailored for the SDR-to-HDR con-

version process. Our method, incorporating pixel-independent operations that account 

for both average and peak brightness and region-dependent refinements via region-

independent operations, effectively minimizes the introduction of artifacts compared 

to conventional methods. 

Our work offers a substantial contribution by providing a lightweight and efficient 

SDR-to-HDR conversion solution with leading performance. Through a new normali-

zation method, our network's robustness is improved, positioning our approach as 

pivotal in HDR technology advancement. Our method stands out for its swift refer-

ence time among evaluated algorithms, demonstrating our contributions' potential to 

redefine standards in HDR content production and display quality. The advancement 

of such research is expected to enhance consumer visual experience and facilitate the 

wider adoption of HDR technology in the media and entertainment industries. 
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