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Abstract. Real-time target detection algorithms play a crucial role in the field of 

UAV air-to-ground detection. The operational environment of UAVs necessitates 

the rapid response capabilities of object detection algorithms. In response to the 

issues of slow processing speed and high latency encountered by traditional ob-

ject detection algorithms in rapid response scenarios, this paper introduces an 

efficient air-to-ground real-time detection algorithm based on YOLOv8. Firstly, 

to improve the detection speed of the YOLOv8 model, this paper uses a partial 

convolution technique to improve the C2F module of the model. In order to 

achieve fast arithmetic while improving accuracy, the SimAM parameter-free at-

tention module is introduced, realizing a lightweight design and high precision 

for the module. The model is trained and tested using the VisDrone dataset to 

validate the efficiency and accuracy of the model for the UAV air-to-ground tar-

get detection task. The improved YOLOv8 model reduces the number of param-

eters by 30.56%, GFLOPs by 20.65%, and air-to-ground target detection accu-

racy by 2.1% compared to the YOLOv8 model, which greatly reduces the com-

putational complexity of the model on the basis of improving the detection accu-

racy, and realizes a fast and efficient lightweight neural network for air-to-ground 

target detection task. 
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1 Introduction 

In recent years, significant progress has been made in the field of air-to-ground real-

time surveillance research. The development of UAV air-to-ground real-time monitor-

ing technology stems from the need for fast, efficient and low-cost monitoring means. 

With the maturation of UAV technology and the reduction of costs, the application of 

UAVs in various fields has gradually increased. UAVs have the advantages of flexibil-

ity, rapid deployment and cost-effectiveness, and therefore have a wide range of poten-

tial applications in areas such as agricultural monitoring, disaster response, environ-

mental monitoring, wildlife protection and security monitoring. However, the compu-

tational resources on drone platforms are limited, which places high demands on the 

speed and accuracy of object detection algorithms. Traditional object detection 
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algorithms often have high computational complexity, making it difficult to meet the 

real-time processing requirements of drones [1-3]. 

In order to improve detection speed and accuracy for rapid object detection in real-

time scenarios, many optimization strategies have been proposed. Tan et al. (2020) pro-

posed the EfficientDet model, which uses EfficientNet as the backbone network and 

integrates BiFPN (Bi-directional Feature Pyramid Network) to enhance feature fusion 

efficiency. While maintaining high accuracy, EfficientDet also excels in terms of speed 

and model size. This approach optimizes the network architecture and improves the 

model's efficiency [4]. A significant limitation of EfficientDet is its performance in 

detecting small objects. Due to the downsampling operation and the focus on reducing 

the size of the model, the model may struggle to accurately detect small objects in high-

resolution images. This is a significant drawback in applications such as aerial surveil-

lance and autonomous driving. For object detection algorithms running on drone termi-

nals, Howard et al. proposed MobileNet. By introducing depthwise separable convolu-

tions, which decompose standard convolutions into depthwise and pointwise convolu-

tions, the model's parameters and computations are significantly reduced. This makes 

the model more lightweight and suitable for mobile and embedded devices such as 

drones [5-7]. A significant limitation of MobileNet is its reduced accuracy compared 

to larger, more complex models. While lightweight architectures greatly improve speed 

and efficiency, the cost is often reduced accuracy, especially in complex scenes with 

many overlapping objects or changing lighting conditions. 

In air-to-ground target detection, to improve detection accuracy. Fu et al. proposed 

DANet, which combines spatial attention and channel attention. By using parallel spa-

tial attention and channel attention modules, DANet captures more useful feature in-

formation, thereby improving detection accuracy. This network has demonstrated su-

perior performance in both semantic segmentation and object detection tasks [8].  

One notable limitation of DANet is its impact on processing speed. The parallel at-

tention modules introduce significant computational overhead, which slows down in-

ference speed. The increased complexity and resource consumption make DANet less 

suitable for real-time applications and deployment on resource-constrained devices, 

such as drones, where rapid processing and efficiency are crucial. Woo et al. proposed 

CBAM [9]. CBAM is a lightweight attention module that combines channel attention 

and spatial attention. It first selects features through the channel attention module, and 

then refines the feature map through the spatial attention module, thereby enhancing 

detection accuracy. A notable limitation of CBAM is its impact on processing speed. 

Although CBAM is considered lightweight compared to other attention mechanisms, 

the additional computation introduced by the channel and spatial attention modules still 

reduces the overall inference speed. This is a significant drawback in real-time UAV 

target detection applications where fast processing is critical. YOLOv8 is an efficient 

real-time object detection model that predicts multiple bounding boxes and class prob-

abilities in images using a single neural network. It balances high speed and accuracy, 

making it ideal for applications needing quick responses. However, prioritizing speed 

and efficiency may lead to reduced accuracy compared to more complex models like 

Faster R-CNN or SSD. YOLOv8's network architecture and feature pyramid structure 
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may limit its ability to detect and localize small objects accurately, impacting tasks such 

as aerial surveillance of small targets like individuals or small vehicles [10]. 

On the basis of these advances and in view of its limitations, this paper proposes an 

improved YOLOv8 network for real-time air-to-ground object detection. Firstly, partial 

convolution is introduced into the C2F module of YOLOv8 network for optimization, 

which can simultaneously reduce the computational redundancy and memory access of 

the original model. It selects the characteristics of some channels for regular convolu-

tion, and keeps the characteristics of the remaining channels unchanged, which reduces 

the computational complexity, thus realizing a fast and efficient neural network. At the 

same time, in order to improve the accuracy of air-to-ground target detection and at the 

same time ensure the running speed of the algorithm, this paper introduces the SimAM 

parameter-free attention module, which derives 3D attention weights for the feature 

maps on the basis of not adding additional parameters. This reduces the computational 

complexity of the model while improving the detection accuracy, thus providing a fast 

and efficient lightweight neural network for air-to-ground target detection tasks. 

2 Related work 

A. Optimization models for convolutional neural networks 

Convolutional Neural Networks (CNNs) are the mainstream architecture in the field 

of computer vision, especially when practical deployment requires a balance between 

speed and accuracy. Many studies aim to improve the efficiency of CNNs. Popular 

methods include group convolutions and depthwise separable convolutions, which split 

standard convolutions into depthwise and pointwise convolutions to reduce the number 

of parameters and FLOPs [11].  

Group convolution has been widely used to improve the efficiency of convolutional 

neural networks. In AlexNet's architecture, group convolution is used to distribute 

model parameters across two GPUs, allowing for parallel processing and reducing com-

putational burden.The ResNeXt model utilizes group convolution to build a highly 

modular architecture that effectively balances model complexity and performance. By 

dividing the convolution into smaller groups, ResNeXt can capture multiple features 

without significantly increasing computational cost, making it suitable for scalable and 

efficient deep learning applications. Similarly, MobileNets uses deeply separable con-

volutions to achieve a lightweight model architecture that is well suited for mobile and 

embedded applications. This approach decomposes the convolution operation into two 

steps: deep convolution and pointwise convolution. This separation greatly reduces 

computational complexity and helps achieve efficient inference on resource-limited de-

vices [12].  

While these methods reduce filter redundancy, they increase memory access require-

ments when expanding the network width to maintain accuracy. In contrast, partial con-

volution applies convolution operations to some of the channels of the input feature 

map while leaving the other channels unchanged, while reducing computational redun-

dancy and memory accesses, improving overall efficiency. 
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B. Attention mechanisms in object detection 

Attention mechanisms have been widely integrated into object detection networks 

to enhance feature representation and improve detection accuracy. Two prominent ex-

amples are the Dual Attention Network (DANet) and the Convolutional Block Atten-

tion Module (CBAM).  

DANet combines spatial attention and channel attention through parallel modules, 

enhancing feature information and improving detection accuracy. Despite its strong 

performance in semantic segmentation and object detection, the parallel modules in 

DANet introduce significant computational overhead, reducing inference speed and 

making it less suitable for real-time applications and resource-constrained devices like 

drones. 

CBAM is a lightweight module that combines channel and spatial attention to refine 

feature maps and improve detection accuracy. However, CBAM still introduces addi-

tional computations, reducing overall inference speed. This drawback is particularly 

significant for real-time UAV target detection applications that require rapid pro-

cessing. 

Compared to the attention mechanisms of DANet and CBAM, SimAM offers several 

distinct advantages. Firstly, SimAM features a parameter-free design, eliminating the 

need for additional parameters that increase complexity and computational load, unlike 

the parameter-heavy DANet and CBAM. Secondly, SimAM is more computationally 

efficient, optimizing the calculation process to reduce computational complexity and 

memory access, thereby improving processing speed. This contrasts with the significant 

computational overhead introduced by DANet’s parallel modules and the additional 

computations required by CBAM’s channel and spatial attention modules. Finally, 

SimAM strikes a better balance between accuracy and efficiency, enhancing target de-

tection precision without compromising speed, making it ideal for real-time applica-

tions such as UAV air-to-ground surveillance. 

3 Method 

A. Implementation of partial convolution  

Partial Convolution (PConv) is designed to optimize the computational cost of con-

volutional operations by leveraging the redundancy in feature maps [13], [14]. The ap-

proach involves applying convolution operations to only a portion of the input channels 

while keeping the remaining channels unchanged. This method reduces computational 

redundancy and improves efficiency without compromising the integrity of the feature 

extraction process. Select a subset of the input channels for the convolution operation. 

For efficient memory access, the first or last continuous channels are typically chosen 

as representatives of the entire feature map. Apply standard convolution (Conv) to the 

selected subset of channels to extract spatial features. For the remaining channels, by-

pass the convolution operation, and keep them unchanged. Combine the convolved 

channels with the unchanged channels to form the output feature map. This ensures that 
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critical spatial information is captured while reducing the computational load. Fig. 1 

illustrates the implementation of partial convolution. 

 
Fig 1. The process of partial convolution.  

Let ℎ and 𝑤 represent the height and width of the input feature map, determining the 

spatial extent over which convolution is applied. The parameter 𝑘 denotes the kernel 

size, influencing the receptive field size and affecting feature extraction. Additionally, 

𝑐𝑝 signifies the number of channels selected for convolution. In general, assuming the 

input and output feature maps have the same number of channels, the FLOPs of PConv 

are: 

ℎ × 𝑤 × 𝑘2 × 𝑐𝑝
2 (1) 

and for a typical case where r = 
1

4
, PConv's FLOPs are only 

1

16
 of those of regular Conv. 

Similarly, for the memory access of PCConv, which are computed as follows: 

ℎ × 𝑤 × 2𝑐𝑝 + 𝑘2 × 𝑐𝑝
2 (2) 

Under typical conditions where r = 
1

4
, PConv is only 

1

4
 of the regular case. PConv greatly 

reduces the need for reduced computational redundancy and memory access, ad-

vantages that make PConv particularly suitable for application scenarios with limited 

computational resources, such as real-time applications on UAV devices. 

B. Architecture of PCnet module 

This paper introduces PCnet to optimize the C2f module in the original YOLOv8. 

The PCnet module structure consists of a PConv layer and two PWConv layers (1×1 

Conv). Together, they form an inverted residual block, with the middle layer having an 

expanded number of channels, and a Shortcut set to reuse input features. Normalization 

and activation layers are placed after each intermediate PWConv to maintain feature 

diversity and achieve lower latency. Additionally, batch normalization (BN) is used, 

which has the advantage of integrating into adjacent Conv layers to speed up inference 

while maintaining the same efficiency as other layers. For activation layers, GELU is 

chosen for smaller PCnet variants based on experience, while ReLU is used for larger 

PCnet variants, considering both runtime and effectiveness. The last three layers, 

namely global average pooling, 1×1 convolution, and fully connected layers, are used 
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together for feature transformation and classification. The specific structure of PCnet 

is shown in Fig. 2. 

 
Fig 2. Structure of the PCnet module. 

C. SimAM attention mechanism 

In UAV (Unmanned Aerial Vehicle) air-to-ground recognition, maintaining high-

speed processing and computational efficiency is crucial due to the limited resources 

available on drone platforms. The need for rapid and accurate detection of ground tar-

gets, such as vehicles or individuals, necessitates the use of lightweight and efficient 

neural network modules. SimAM computes 3D attention weights that capture spatial 

and channel-wise dependencies, enhancing feature representation and improving the 

detection accuracy of ground objects. This is particularly beneficial for distinguishing 

between similar-looking objects or detecting small and distant targets. SimAM is a pa-

rameter-free attention mechanism, meaning it does not introduce additional parameters 

that would increase the model's computational complexity. This is advantageous for 

applications where computational resources and battery life are limited, such as in 

UAVs. The simplicity of SimAM allows for the fast computation of attention weights, 

reducing the latency associated with more complex attention mechanisms like CBAM 

and DANet. This ensures that UAVs can process data in real-time, which is essential 

for timely decision-making and actions. The structure of SimAM attention is shown in 

Fig 3. 

SimAM's core idea is based on the local self-similarity of images. In images, adja-

cent pixels typically exhibit strong similarity, while pixels that are further apart show 

weaker similarity. SimAM leverages this property by using Euclidean distance to cal-

culate the similarity between each pixel and its neighboring pixels in the feature map, 

thereby generating attention weights. The similarity  𝑠(𝑓𝑖, 𝑓𝑗) between the 𝑖𝑡ℎ pixel 𝑓𝑖 

and the 𝑗𝑡ℎ  pixel 𝑓𝑗 is calculated as follows: 

𝑠(𝑓𝑖 , 𝑓𝑗) = −||𝑓𝑖 − 𝑓𝑗||2
2 (3) 

In the SimAM attention mechanism, each pixel is assigned an independent weight, 

and the attention weight 𝑤𝑖  for the ith pixel is calculated as follows: 

𝑤𝑖 =
1

𝑘
∑ 𝑠(𝑓𝑖, 𝑓𝑗)

𝑗∈𝑁𝑖

(4) 
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Fig 3. Structure of the SimAM attention. 

D. Improvements to the YOLOv8 network 

The YOLOv8 network structure is composed of three main parts: the backbone, 

neck, and head. The backbone is responsible for feature extraction from ground images. 

At the end of the backbone network, the SimAM attention mechanism is employed. 

This allows the attention mechanism to observe the entire feature map produced by the 

backbone, providing a global perspective. SimAM is a parameter-free model, which 

means that performing attention mechanism calculations at the end of the backbone 

module has minimal impact on processing speed. Secondly, the original C2f module in 

the model is replaced with the PCnetC2f module. This replacement reduces computa-

tional redundancy and improves processing efficiency by selectively applying convo-

lution operations to a subset of channels while keeping others unchanged. This results 

in faster and more efficient spatial feature extraction, making the network more suitable 

for real-time applications. Additionally, the integration of the SimAM attention mech-

anism ensures that the optimized YOLOv8 network maintains or even improves accu-

racy while achieving faster real-time air-to-ground target detection. This balance of 

speed and precision makes it well-suited for high-speed UAV operations. The improved 

YOLOv8 network structure is shown in Fig 4. 

 
Fig 4. Improved YOLOv8 network architecture.  
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4 Experiments 

A. Benchmarks 

In this paper's experiments, the VisDrone Dataset was the primary dataset [15]. 

Widely used in image processing, it includes 288 video clips (261,908 frames) and 

10,209 still images, captured by UAV-mounted cameras across diverse locations and 

scenes. Data collection occurred under varied scenarios, weather conditions, and light-

ing with multiple drone platforms. Each frame is annotated with bounding boxes for 

over 2.6 million targets, including pedestrians, cars, bicycles, and tricycles, with addi-

tional attributes like scene visibility, object class, and occlusion to enhance its utility 

for air-to-ground object detection tasks. A sample Visdrone dataset is shown in Fig 5. 

 
Fig 5. Example of data from the visdrone dataset. 

B. Experiment setup 

To establish a benchmark for comparison, this paper first used the original 

YOLOv8n weights as a starting point. The network was then trained on the Visdrone 

dataset, a dataset specialized for air-to-ground object detection tasks. The results of the 

training are shown in Fig 6. 

 
Fig 6. The results of the training. 
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The model performs extremely well for cars and trucks, achieving high average ac-

curacies of 0.756 and 0.928, respectively. The detection of pedestrians, buses and mo-

torbikes also has good results with 0.347, 0.469 and 0.353 respectively. the detection 

of small targets such as bicycles and pushchairs is weak, suggesting that further opti-

misation is required for the detection of these categories. 

C. Comparison with YOLOv8 model 

This paper compared the Improved YOLOv8 network with the YOLOv8 model 

across metrics including precision, recall, mAP50, mAP50-95, and total processing 

time, as shown in Table 1. The Improved YOLOv8 model outperforms the YOLOv8 

model in precision and mAP50 metrics, with particularly significant improvements in 

mAP50-95. In terms of processing speed, the Improved YOLOv8 model demonstrates 

a noticeable increase over the YOLOv8 model. These metric improvements demon-

strate the Improved YOLOv8 model's leadership in both detection accuracy and oper-

ational speed for UAV air-to-ground visual target detection tasks. 

The experimental results indicate that the proposed Improved YOLOv8 model not 

only enhances processing speed but also improves detection accuracy, leading in most 

metrics. This underscores the Improved YOLOv8 model's superiority in both speed and 

accuracy for visual target detection tasks, particularly suitable for efficient handling of 

UAV air-to-ground target detection tasks.  

Table 1. Comparison with YOLOv8 model 

Model Improved YOLOv8 YOLOv8 

Metric Mean Median Mean Mean 

Precision 0.422 0.423 0.420 0.421 

Recall 0.320 0.337 0.322 0.334 

mAP50 0.319 0.331 0.317 0.333 

mAP50-95 0.185 0.198 0.183 0.194 

Total Time 8280s 8560s  

This paper conducted a comparison of the parameters, gradients, and GFLOPs be-

tween the Improved YOLOv8 model and its YOLOv8 counterpart, as illustrated in Fig 

7. The Improved YOLOv8 model demonstrates a significant reduction in parameters, 

gradients, and GFLOPs, achieving a reduction of 30.56% in parameters and 20.65% in 

GFLOPs compared to the YOLOv8 model. This optimization results in a more light-

weight network architecture, facilitating faster training and inference times due to re-

duced parameter and gradient overheads. Moreover, the reduction in GFLOPs contrib-

utes to lower computational requirements and energy consumption. 

In the context of UAV air-to-ground target detection, these improvements are par-

ticularly advantageous. The streamlined architecture of the Improved YOLOv8 model 

enhances computational efficiency without compromising detection accuracy. This 

makes it well-suited for real-time applications on UAV platforms, where efficient 
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utilization of computational resources and energy conservation are crucial for pro-

longed operation and effective mission execution. 

 
Fig 7. Comparative Analysis of Parameter Count Between Two Models (Blue: Im-

proved YOLOv8, Green: YOLOv8). 

D. Results 

This paper conducted multifaceted experiments on the Visdrone test set to examine 

the performance of the model in different environments. For UAV air-to-ground target 

detection, the ability to recognize and locate small targets greatly affects the accuracy 

of target detection. This paper selected small target data samples of street pedestrians 

to test the improved YOLOv8 model, examining its capability in small target recogni-

tion. The improved YOLOv8 model accurately identified street pedestrians and other 

small target objects, demonstrating its capability in recognizing small targets com-

monly encountered in air-to-ground recognition tasks. The detection results of the 

model are shown in Fig 8. 

 
Fig 8. Improved YOLOv8's small target recognition detection results. 
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Specifically, the model exhibited remarkable efficacy in identifying targets with var-

ying heights, angles, and amidst various environmental conditions, including both ur-

ban and rural settings. The results of the validation experiments for the Improved 

YOLOv8 model are presented in Fig 9. The outcomes of these experiments showcased 

the robustness and adaptability of the model in accurately detecting objects across a 

diverse spectrum of scenarios.  

 
Fig 9. The results of Improved YOLOv8 on the different test sets. 

5 Conclusion and future work  

In the context of air-to-ground target detection tasks using unmanned aerial vehicles 

(UAVs), computational resources are paramount. The demands on computational re-

sources for target detection algorithms are high. This paper introduces an improved 

YOLOv8 algorithm that optimizes the C2F module using partial convolution. This op-

timization reduces the model's parameter count by 30.56% and GFLOPs by 20.65%, 

significantly reducing memory usage and enhancing detection speed. These advance-

ments enable the model to operate efficiently on UAV terminals requiring high-speed 

processing. Furthermore, this paper incorporates the SimAM attention module into the 

backbone of the model, allowing the attention mechanism to encompass the entire fea-

ture map generated by the backbone. This integration provides a global perspective, 

thereby enhancing the accuracy of object detection tasks. SimAM operates as a param-

eter-free model, meaning that computing the attention mechanism at the end of the 

backbone module has minimal impact on processing speed and requires no additional 

memory space. This aspect is particularly advantageous for UAV terminal devices with 

limited computational resources. On the VisDrone aerial dataset, the Improved 

YOLOv8 model demonstrates significantly faster processing speeds and higher detec-

tion accuracy compared to the YOLOv8 model. It also shows remarkable effectiveness 

in identifying targets at different heights, angles and environmental conditions, proving 

the generalization ability and robustness of the model. There are still some problems in 

this research. The accuracy of small target detection is not satisfactory enough, and in 
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the future, targeted optimisation for small target detection can be carried out, such as 

increasing the small target detection head and strengthening the feature extraction ca-

pability. So that the model can achieve better results in air-to-ground target detection. 
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