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Abstract. To determine the quality level of copper scrap granules, existing 

methods have to manually identify all kinds of impurities mixed in copper scrap 

granules relying on technicians’ experience. In this paper, we pioneer a com-

puter vision-based approach called Content-Aware Network (CANet) to esti-

mate the quality of copper scrap granules. Specifically, CANet consists of a 

visual transformer-based backbone that extracts the semantic features from 

copper scrap granule images, a multi-layer perception-based neck that explicitly 

estimates the volume proportion of copper to copper scrap granules and implic-

itly estimates the counterparts of varieties of impurities and a well-designed 

head that directly outputs the quality result. Benefiting from our novel architec-

ture and loss functions, CANet can be trained in an end-to-end manner to accu-

rately estimate the quality of copper scrap granules only with the binary anno-

tated images (copper area and non-copper area) without identifying these un-

known impurities and their densities in advance. Experiments on real copper 

scrap granule datasets demonstrate the effectiveness and superiority of our pro-

posed method. 

Keywords: Copper scrap granules, Quality level, Visual transformer, Content-

Aware. 

1 Introduction 

Copper is a kind of valuable non-renewable resource on earth, with the rise in demand 

for copper, copper scrap recycling which could reduce the cost and environmental 

pollution caused by mining and smelting new copper becomes more and more im-

portant in industry [1,2]. Copper scrap granule is an important source of copper scrap, 

which often contains different kinds of impurities. Fig. 1 shows some copper scrap 

granule images. 

To determine the value and price of copper scrap granules before recycling them, it 

is necessary to estimate their quality. For convenience, we define the quality estima-

tion of copper scrap granules as the task of predicting the "copper content", i.e., the 

mass proportion of copper to the whole copper scrap granules. 
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Fig. 1.   Three images of copper scrap granules (first row) and their local enlarged view (second 

row), some impurities are marked with green rectangles. Copper scrap granules contain a varie-

ty of unknown impurities with irregular shapes in different proportions besides copper. 

In the existing quality estimation method, technicians have to sample many times 

from the copper scrap granules, then stir over and over again and identify all kinds of 

impurities mixed in copper scrap granule samples relying on their experience [3]. This 

inefficient manual method usually results in a heavy financial loss for either the seller 

or purchaser due to technicians' subjectivity.  

Thanks to the great progress in deep learning and computer vision [4,5,6,7], it 

seems possible to realize automatic quality estimation of copper scrap granules using 

deep learning and computer vision techniques, as long as you can enumerate all varie-

ties of different impurities and accurately determine their densities, and then estimate 

the respective volume proportion of all impurities to the whole copper scrap granules 

using image recognition techniques. However, in the actual setting, when developing 

a recognition algorithm, it is quite impossible for the engineers, even the professionals 

to enumerate all varieties of unknown impurities in a large number of copper scrap 

granules, needless to say, to determine the densities of all various unknown impuri-

ties. Therefore, it is challenging but valuable to design an effective vision-based 

quality estimation method for copper scrap granules. 

2 Related work 

Because of its great economic value and environmental benefits, scrap metal recy-

cling attracts more and more attention from the computer vision community. The 

method in [8] proposes a combined architecture to classify the scrap metals and esti-

mate their masses simultaneously from 3D images. Methods in [9,10,11,12,13,14,15] 

automatically classify scrap metals using classification [4], detection [16] and seg-
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mentation [17,18,19] networks. However, the above studies focus on recognizing 

several limited types of scrap metal pieces which are scattered and much bigger than 

copper scrap granules, could be discerned relatively easily. What is more, these stud-

ies do not care about the contents of impurities, which is very important in our copper 

content predicting task. These methods of industrial scrap metal classification cannot 

solve our problem very well, and to our best knowledge, our work is the first to use 

computer vision and deep learning to estimate the quality of copper scrap granules so 

far. 

Intuitively, two naive methods might be able to complete the quality estimation 

task. The first method employs a well-trained supervised semantic segmentation mod-

el to accurately segment the copper scrap granule images into different impurity areas 

and copper areas. With the assumption that the area proportion of some stuff to the 

whole copper scrap granules in the image is equivalent to its volume proportion [20], 

then the copper content can be calculated as follows: 
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Here m

cp  is the copper content, v

cp  is the volume proportion of copper to the whole 

copper scrap granules, and 
c  is the density of copper. v

ip  represents the volume 

proportion of impurity to the whole copper scrap granules, 
i  is the density of corre-

sponding impurity, and the subscript I which ranges from 1 to I corresponds to I kinds 

of impurities in copper scrap granules. However, it is quite difficult for the engineers, 

even the professionals to enumerate all varieties of unknown impurities in a large 

amount of copper scrap granules in advance, needless to say, to determine the densi-

ties of all various unknown impurities. It makes it impossible to label all types of 

impurities and train a supervised semantic segmentation model to calculate v

ip . 

The other method estimates the copper content using Eq. (2). Simplifying the mul-

ti-class segmentation task into a binary segmentation task (copper area and non-

copper area) greatly reduces the workload of labelling without classifying various 

unknown impurities. With the same assumption in the first method, the copper con-

tent can be calculated as follows: 
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V and M respectively are the volume and mass of the whole copper scrap granules. 

To calculate the copper content, V and M need to be known in advance. In the actual 

setting, M is relatively easy to acquire. However, measuring the volume of the whole 

copper scrap granules is quite cumbersome because it needs extra equipment and a lot 

of labor.  
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Fig. 2. Two original images (left column) and corresponding binary labeled images (right col-

umn). In binary-labeled images, the red areas represent various kinds of impurities with irregu-

lar shapes (non-copper), and the yellow areas represent copper. 

To address issues of the existing manual methods and naive methods, we pioneer a 

novel network called Content-Aware Network (CANet) which takes a sequence of 

copper scrap granule images as input to directly estimate the quality of copper scrap 

granules. CANet is trained only with the binary annotated images (copper area and 

non-copper area, as shown in Fig. 2) and does not rely on any other prior information, 

such as densities of impurities, total mass, and total volume of granules. Our research 

opens the possibility of realizing accurate and automatic quality estimation of copper 

scrap granules.  

3 Method 

3.1 CANet Architecture 

As shown in Fig. 3, CANet, which consists of a visual transformer-based backbone, a 

multi-layer perception-based neck, and a well-designed copper content calculating 

head, estimates the copper content using input images of copper scrap granules sam-

ple. 

Firstly, CANet uses the backbone of an unsupervised semantic segmentation net-

work (STEGO [21]) to extract pixel-level semantic features of N images belonging to 

each sample. This solves the pain point that supervised segmentation networks have 

to enumerate and label all types of impurities in advance. We discard the cluster mod-

ule and the CRF module of STEGO and fine-tune the backbone to yield ViT features 

for the estimation of copper content. 

Secondly, CANet uses a simple multi-layer perception and a softmax layer to gen-

erate the area proportion vector for each image, the softmax operation constrains the 

sum of the area proportion vector to be 1 and then computes the integrated area pro-

portion vector for the input sample using a row-wise average pooling layer connected 

with a concat-layer. The integrated area proportion vector explicitly describes the area 
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proportions of copper and various impurities in the copper scrap granule sample. The 

length of each vector is I+1, and the first element (the yellow box in Fig. 3) in the 

vector represents the area proportion of copper and the others (the green boxes) indi-

cate the area proportions of various impurities. This novel design of explicit area pro-

portion vector facilitates the network to learn features and distributions of various 

impurities from a large amount of data. Here, the same assumption in naive methods 

is also adopted.  

 

 

Fig. 3. Content-Aware network architecture. The area proportion vector describes the area 

proportions of copper and various impurities in each image and the integrated area proportion 

vector describes the respective average area proportions of copper and various impurities in the 

copper scrap granules sample. 

Finally, CANet uses a well-designed head to implicitly learn the densities of vari-

ous impurities and explicitly calculate the copper content. Our head consists of a sim-

ple fully connected layer with one output and some basic mathematical operations. In 

Fig. 3, we extract the first element of the integrated area proportion vector and multi-

ply it by the density of copper 
c  to get the relative mass of copper and feed the 

remaining elements of the vector into a single-layer fully connected network to obtain 

the sum of the relative mass of all impurities. Then, the relative mass of copper is 

divided by the total relative mass of copper scrap granules sample to get the final 

copper content. It should be noted that this single fully connected layer is responsible 

for learning the densities of various impurities from a large amount of data, which 

implicitly solves the problem that it is difficult to accurately determine the densities of 

various impurities in the naive method. 

When training the network, we only need to label the copper content of each sam-

ple and the area proportion of copper which can be easily computed using annotated 

binary images (copper area and non-copper area), without struggling to label the dis-

tributions and contents of various impurities. During model inference, for each copper 

scrap granule sample, N input images are captured after stirring the sample N times. 

These images are then processed by the CANet, and the copper content is calculated. 

CANet estimates the copper content only using input images and does not rely on any 

other prior information, such as densities of impurities, total mass, and total volume 

of the sample. 
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3.2 Multi-task Loss 

With the limited annotation work, we propose a multi-task loss to jointly learn the 

copper content. Separating the first element of the area proportion vector from other 

elements,
1Loss  (Eq. (3)) and 

2Loss
 

(Eq. (4)) are used to optimize the backbone 

and the neck by learning the area proportion of copper and the sum of the area propor-

tions of all impurities. 
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Where, ˆ
j

a

cp  is the prediction of copper area proportion in 
thj  image, and  

j

a

cp  is  

the labelled copper area proportion for 
thj  image. ˆ

j

a

ip  is the prediction of area pro-

portion of 
thi  impurity in 

thj  image. It is clear that 
1Loss  and 

2Loss  are the same, 

this is because of the softmax used before outputting the area proportion vectors. 

Then, for the copper content, 
3Loss  is used to optimize the entire network. 
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Where ˆ m

cp  is the prediction of copper content. Finally, the sum of 
1Loss , 

2Loss  

and 
3Loss  jointly optimize the parameters of the CANet, as shown in Eq. (6). 
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Where 
a  and 

m  control the balance of the learning signals, and in practice, we 

find that 0.2a =  and 0.8m =  work well. The copper content guides the network 

to learn the area proportion vectors, which in turn helps the calculation of copper 

content. After training, our CANet can directly calculate the copper content only us-

ing images of the input copper scrap granules sample. 
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4 Experiments 

In this section, we evaluate the proposed CANet on real copper scrap granule data. 

We build a copper scrap granule dataset using real copper scrap granules and conduct 

extensive experiments on the dataset to verify the effectiveness of  the CANet. 

4.1 Datasets 

Based on recycled copper scrap granules of different quality, we get 1100 samples 

using simple sampling without replacement. For each copper scrap granule sample, 

we stir it 64 times and collect corresponding images, which means 64N =  in Fig. 

3. We do not limit the specific implementation method of stirring as long as most of 

the copper granules and impurities have the same opportunity to appear on the top 

surface and can be captured by the camera.  

When generating ground truth for each sample, we only label a copper content sca-

lar and 64 binary semantic segmentation images. The copper content of each sample 

is labelled and checked by 10 professional technicians. The copper area proportion of 

each image is automatically calculated by the computer based on its corresponding 

binary segmentation image. Finally, We split the entire dataset into 800 samples as 

the training set and 300 samples as the test set. The copper scrap granules dataset 

contains 51200 training images and 19200 test images. 

4.2 Experimental Results 

To verify the effectiveness of our proposed method, we compare the copper area pro-

portion and copper content estimation results with ground truth. Furthermore, we 

discuss the hyperparameter search process and analyze the impacts of the backbone 

and decoder through ablation studies. 

 

Fig. 4. Copper area proportion results of 100 images. Without directly predicting segmentation 

results, CANet can accurately calculate the area proportion of copper. For convenience, we sort 

images in descending order according to the real area proportion. 
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Copper Area Proportion Estimation. To verify the effectiveness of the backbone 

and neck in CANet, we first analyze the accuracy of copper area proportion in the 

area proportion vector. On random 100 images belonging to different test samples, we 

calculate the area proportion of copper using the output of the Content-Aware neck 

and compare it with ground truth. The comparison results are shown in Fig. 4. It 

demonstrates that the neck of CANet is reliable, and the ViT-based backbone can 

extract effective features to distinguish copper and non-copper. 

 

Fig. 5. Copper content results predicted by our best CANet and corresponding ground truth of 

random 10 test samples. 

Copper Content Estimation. Our best CANet achieves a 2.87% mean absolute error 

(MAE) of copper content on test samples, and we randomly select 10 test samples to 

demonstrate the copper content results predicted by our best CANet and correspond-

ing ground truth in Fig. 5. The predicted copper content on test samples is fairly close 

to ground truth, demonstrating the utility of our CANet on the copper granules da-

taset. 

The experimental results show that even if we do not know the prior information 

such as types of impurities, contents of impurities, total mass, and total volume of 

samples, CANet can still accurately predict the copper content scrap granules by 

learning and perceiving in real dataset. 

Hyperparameters Analysis. To analyze the impacts of 
a  and 

m  in the loss func-

tion (Eq. (6)), we first set both N and I+1 at their maximum values: N=64, I+1=14. 

Then, by adjusting 
a  ( 1m a = − ), we train CANet and calculate the MAE of 

copper content on the test set. The corresponding results are presented in Table 1. It is 

evident that  
1Loss  plays an important role in model convergence, and the intermedi-
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ate supervision signal helps model learning. The smallest MAE is achieved when 

0.2a =  and 0.8m = . 

Table 1.  Copper content errors of different 
a  and 

m  when N=64, I+1=14. 

a
 

0 0.1 0.18 0.2 0.22 0.25 0.3 0.5 1 

MAE 

(%) 
13.1 3.55 2.93 2.87 2.92 3.3 4.01 4.36 48.2 

 

Secondly, fixing 0.2a =  and setting N to its maximum value (N = 64), we train 

different variants of CANet as we adjust the length of the area proportion vector to 

search the optimal value for I+1. The test results are presented in Table 2. When 

I+1=4, the copper content error reaches 14.3%, and it gradually decreases as the 

length increases. At I+1=10, CANet achieves the minimum error rate of 2.87%. How-

ever, there is no improvement in the estimation accuracy of copper content if 

1 10I +  , suggesting that our dataset contains about 9 different impurities. When 

the length of the area proportion vector is less than the number of impurity types, 

CANet can not represent the distribution of all types of impurities very well, resulting 

in less accurate copper content prediction.  

Table 2. Copper content errors of different I+1 when  0.2a = , N = 64. 

I+1 4 8 9 10 11 14 

MAE(

%) 
14.3 6.26 4.33 2.87 2.87 2.87 

 

Finally, with 0.2a =  and I+1 = 10, we train different variants of CANet as we 

adjust the number of input images for each sample. The test results are shown in Ta-

ble 3. If 32N  , the model fails to extract sufficient information and features from 

input samples, resulting in a sharp decline in accuracy. The proposed minimum num-

ber of input images is 32. 

Table 3. Copper content errors of different N when 0.2a = , I+1 = 10. 

N 
6

4 

4

0 

3

2 

2

8 
16 8 

MAE(

%) 

2.

87 

2.

87 

2.

87 

3.

1 

10

.21 

3

6 

 

Ablation Study on Backbone. To better understand the influence of CANet's back-

bone, we use several SOTA backbones to extract the features of input images (replac-
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ing only the STEGO-Backbone module in Fig. 3). The final MAE results for copper 

content on the test set are presented in Table 4. 

Table 4. Copper content errors of different backbone. 

Back-

bone 
STEGO-ViT-Base STEGO-ViT-Small ResNet50 ResNet101 

MAE(

%) 
2.87 3.41 13.32 11.57 

 

Both ViT-based backbones and CNN-based backbones listed in Table 4 are pre-

trained on ImageNet and fine-tuned on our training data. STEGO-ViT-B/8 and 

STEGO-ViT-S/8 respectively refer to the STEGO backbone with ViT-Base and ViT-

Small (8×8 patches) in [21]. The results indicate that the ViT-based STEGO back-

bone significantly outperforms ResNet in our copper content estimation task.  

Ablation Study on Decoder. At the beginning of our research, we designed a simple 

and intuitive network as a baseline. Following the same backbone in Fig. 3, this base-

line network uses a fully convolution-based decoder to directly predict the copper 

content from concatenated features of the input images. The decoder integrates N ViT 

features using five ResNet50 blocks (each block consists of 1×1 conv, 3×3 conv, 

and 1×1 conv) and outputs the final copper content using a single convolution ker-

nel. The size of the input features is 256×256×1024, the output size of the five 

ResNet50 blocks is respectively 128×128×2048, 64×64×2048, 32×32×2048, 16

×16×1024, and 8×8×512 and the size of the single convolution kernel is 8×8×

512. This baseline network yields an MAE of 20.63% on our dataset, indicating that 

directly using the CNN network to predict copper content is unreliable. 

5 Conclusions 

In the field of copper scrap granules recycling, we pioneer a ViT-based network that 

can accurately estimate the copper content only with the binary labelled images with-

out identifying these unknown impurities and their densities. Experiments on real 

copper scrap granule datasets verify the effectiveness and superiority of the proposed 

network. Our method makes it possible to realize automatic quality estimation of 

copper scrap granules and exhibits a big potential to apply to the quality estimation of 

other scrap metals. 
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