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Abstract. Due to the limitation of the camera's photoreceptor, the stereo images 

obtained from stereo cameras can only be presented in the form of pixel blocks, 

which cannot show the more minute object information in sub-pixel units be-

tween the pixel blocks, which may restricts the breakthrough of stereo matching 

in sub-pixel accuracy. For this reason, we innovatively use a blind super-resolu-

tion network to simulate the sub-pixel effect and improve the accuracy of stereo 

matching. We combine the super-resolution network with the stereo matching 

and design a new stereo matching process: the stereo image is first zoomed in by 

the blind super-resolution network to supplement the local information, and then 

the high-resolution image is inputted into the stereo matching algorithm to gen-

erate a dense and fine disparity map. Through experiments, we find that the blind 

super-resolution network BSRGAN can effectively improve the stereo matching 

accuracy in most scenarios. However, when facing repetitive and dense texture 

regions, the limitation of blind super-resolution network leads to a degradation 

of the matching accuracy. Nevertheless, our study provides a new idea and 

method for improving stereo matching accuracy. 
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1 Introduction 

Stereo matching is an important research direction in the field of computer vision, 

which aims to recover the depth information of a scene from two or more images with 

different viewpoints. This technique has a wide range of applications and importance 

in many fields such as 3D reconstruction, autonomous driving, and robot navigation. 

Given a pair of rectified stereo images, the goal of stereo matching is to compute the 

disparity d for each pixel in the reference image. Disparity refers to the horizontal dis-

placement between a pair of corresponding pixels on the left and right images. For the 

pixel (x, y) in the left image, if its corresponding point is found at (x－d, y) in the right 

image, then the depth of this pixel is calculated by 
𝑓𝐵

𝑑
, where f is the camera's focal 

length and B is the distance between two camera centers. 

A typical stereo matching algorithm consists of four steps: matching cost calculation, 

cost aggregation, disparity calculation, and disparity optimization. In order to compute 

a more accurate disparity, many algorithms are designed and improved on these steps. 
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The SGM [1] improves the accuracy of the disparity by using sub-pixel optimization 

because the disparity maps obtained from disparity computation are integer pixels, 

which cannot meet the accuracy requirements in many applications, SGM uses quad-

ratic curve interpolation to obtain sub-pixel accuracy, which fits a quadratic curve to 

the surrogate value of the optimal disparity and the possible values of the two disparities 

before and after it, and the disparity value corresponding to the extreme value point of 

the curve is the new sub-pixel disparity value. With the rapid development of deep 

learning, deep learning has been applied to stereo matching, deep learning stereo match-

ing algorithm will build a parametric number of huge cost volume to help the network 

to find the possible disparity. Several aggregation-based methods [2-5] have shown 

significant progress in the domain of stereo matching in recent years. Gc-Net [6] firstly 

proposes an end-to-end supervised learning method to learn disparity maps from stere-

oscopic images directly. PSMNet [7] proposes a pyramidal stereo matching network 

consisting of spatial pyramid pooling and 3D CNN. The spatial pyramid pooling mod-

ule uses global contextual information to create a cost volume through contextual ag-

gregation at different scales and locations. IGEV-Stereo [8] uses an extremely light-

weight 3D regularisation network to aggregate and regularise the cost volume, to obtain 

a Geometric Encoder Voxel (GEV), and ultimately combining the GEV with the all-

pairs correlations in RAFT-Stereo [9].  However, these methods are all based on integer 

pixels for disparity calculation, which undoubtedly increases the difficulty of calculat-

ing more accurate disparities and makes the sub-pixel accuracy of stereo matching chal-

lenging. In view of this, we have to further explore other methods to assist stereo match-

ing to compute disparity more accurately, thus breaking through the existing accuracy 

bottleneck. 

Image super-resolution networks has very important application value in the field of 

computer vision, the essence of image super-resolution is essentially a more detailed 

and dense representation of the original object. Dong et al. [10] propose SRCNN to 

learn the mapping from LR to HR images in an end-to-end manner, achieving superior 

performance against previous works. With the proposal of ResNet [11], RCAN [12] got 

good results in PSNR metrics by designing very deep residual structures. In order to 

improve visually, ESRGAN [13] borrowed the idea of GAN [14], and these networks 

do not use PSNR value as the main metric. Due to the many and complex degradations 

in the real world, it is not enough to just use bicubic to simulate high resolution to low 

resolution images, so in order to better simulate the degradations in the real world, so 

that the algorithm can work better in real world images, SRMD [15] proposes the idea 

of blind super-resolution, where SRMD splices the input image with degradation infor-

mation and feeds it into a super-resolution model, which is the first blind image super-

resolution method using deep learning. With the development of blind super-resolution 

networks, Real-ESRGAN [16] and BSRGAN [17] generate low-resolution blurred im-

ages from high-resolution images through multiple steps such as blurring, downsam-

pling, and adding noise, and ultimately use these synthetic datasets for training. In ad-

dition, there are other blind super-resolution networks[18-19] that have contributed to 

blind super-resolution work. 

In recent years, super-resolution networks have been widely used in other fields of 

computer vision. SSSR [20] combines image super-resolution algorithms with semantic 
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segmentation algorithms to improve segmentation performance. Noh et al. [21] pro-

poses new feature-level super-resolution methods for improving small object detection 

performance. However, no scholars have yet directly combined super-resolution net-

works with stereo matching. 

Due to the limitation of the camera's sensor, the stereo images we get can only be 

shown in the form of pixel blocks, which cannot show the more tiny object information 

in sub-pixel units between the pixel blocks, which limits the breakthrough of stereo 

matching in sub-pixel accuracy. In this paper, we improve disparity by combining su-

per-resolution network and stereo matching algorithm, and enhance the sub-pixel accu-

racy and visual effect of disparity by simulating sub-pixel effect through blind super-

resolution network.  

Our main contributions are listed below: 

⚫ We are the first to combine blind super-resolution network with stereo matching, 

and theoretically analyze the influence and significance of blind super-resolution 

networks on stereo matching. 

⚫ We have designed a new process to assist stereo matching in calculating more 

accurate disparities, and provided practical application methods. 

⚫ Through experiments, we found that using blind super-resolution network 

BSRGAN can improve the accuracy of stereo matching in most scenarios. How-

ever, in some specific scenarios, BSRGAN can lead to worse stereo matching re-

sults. Through further research, we discovered that this is due to the poor perfor-

mance of the super-resolution network in areas with highly repetitive and dense 

textures. 

2 Theoretical Analysis 

In this section we discuss the effect of super-resolution networks on stereo matching 

and analyse and conclude that effective super-resolution networks will have a positive 

impact on stereo matching to improve sub-pixel accuracy. 

In the process of camera imaging, the image data obtained is a discretisation of the 

image, and due to the limitations of the capabilities of the sensory elements themselves, 

to the imaging surface each pixel represents only a nearby colour. For example, there 

is a 4.5 um spacing between the pixels on two sensory originals, macroscopically they 

are connected, microscopically there are countless tiny things that exist between them, 

these pixels that exist between the two actual physical pixels are known as sub-pixels, 

as shown in Fig. 1. Sub-pixels are actually supposed to exist, but there is just a lack of 

smaller sensors to detect them, so they can only be approximated in software. Maybe 

the super-resolution network can help the camera with additional information. 
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Fig. 1. The red block pixels represent the pixel blocks of the image, and the black circles represent 

tiny sub-pixel information that cannot be detected by the optical sensor. 

To demonstrate the impact of super-resolution on stereo matching, let's consider an 

example as shown in Fig. 2. Before super-resolution, theoretically, when the red pixel 

is correctly matched, the disparity corresponding to that point is 1 pixel. However, after 

super-resolution, since the image is enlarged by a factor of 2, the step length required 

for correct pixel matching also needs to be doubled. Therefore, in theory, when the red 

pixel is correctly matched after super-resolution, the disparity corresponding to these 

four red pixels should be 2 pixels each. In other words, the disparity doubles after super-

resolution. Consequently, after matching, we need to divide the obtained disparity by 2 

to accurately represent the original scene. 

However, in actual matching, the effect of the blind super-resolution network can 

result in closely similar pixel values among the newly generated four pixels. This can 

lead to the possibility of the stereo matching algorithm incorrectly matching a pixel 

point to another pixel point on the same row. For instance, point a might match to point 

c, or it might match to point d. In such cases, the disparity calculated for point a could 

be 2 pixels or 3 pixels. Similarly, point b might also match to point c or d, resulting in 

a disparity for point b that could be 1 pixel or 2 pixels. To accurately represent the 

original scene, we ultimately need to divide the calculated disparity by 2. Therefore, 

the disparity of the red pixel, which was originally 1 pixel, could potentially become 

0.5 pixels, 1 pixel, or 1.5 pixels after super-resolution. By this reasoning, we can deduce 

a pattern: when the disparity of a certain pixel in the original image is i pixels, the 

disparity of these four pixels after super-resolution could potentially be i-0.5 pixels, i 

pixels, or i+0.5 pixels. 
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Fig. 2. The left and right show local regions located at the same coordinate positions in the left 

and right images, respectively, while the left-SR and right-SR represent the right image as well 

as the right image enlarged in twice by the blind super-resolution network, respectively. 

Due to the design of deep learning stereo matching algorithms in terms of disparity 

cost calculation and disparity estimation, these algorithms will ultimately weight some 

possible disparities for summing or fitting, but the principle is to choose the best possi-

ble disparities to represent the disparity of the pixel as much as possible, if we apply 

the super-resolution mechanism to deep learning algorithms, the possible disparities the 

algorithms can choose from will be more fine-tuned in the range of the original possi-

bilities. For example, as shown in Fig. 3, in the original disparity options may be 17, 18, 

or 19 pixels, but with the addition of the super-resolution algorithm, the disparity of the 

first pixel diffused by the super-resolution algorithm may be 15.5, 16, 16.5, 17, 17.5, 

or 18 pixels, and the disparity of the second pixel diffused may be 16, 16.5, 17, 17.5, 

18, or 18.5 pixels. Then overall the diffused new pixels their disparity options might be 

16.5, 17, 17.5, 18, 18.5, 19, or 19.5 pixels, which would calculate a finer disparity, and 

also open up the possibility of a breakthrough in stereo matching sub-precision. 

 

Fig. 3. (a) represents the situation of stereo matching fitting the disparity of a certain pixel. (b) 

and (c) depict the stereo matching fitting of disparities for two newly diffused pixels on the same 

row after applying the blind super-resolution network. 
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3 Method 

We design a new process to improve the accuracy of stereo matching by enlarging the 

left and right maps through the blind super-resolution network BSRGAN, and calculat-

ing more accurate and denser disparity maps with the help of larger and clearer left and 

right images, so as to better represent the real world, as shown in Fig. 4. 

 

Fig. 4. Architecture overview of proposed method. Low-resolution left and right images are in-

putted into the Blind Super-Resolution Generative Adversarial Network (BSRGAN), obtaining 

high-resolution left and right images that are enlarged twice in size. At this point, the obtained 

high-resolution left and right images are inputted into the Stereo Matching Algorithm (SMA) to 

generate a disparity map for the scene. Finally, the disparity map is divided by 2 to obtain a dense 

disparity map that accurately represents the original scene. 

In practical applications, using the aforementioned method, we obtain a new, denser, 

and more accurate disparity map that better represents the real-world scene. 

4 Experiment 

4.1  Experiment Details 

Experimental Data. The experiment adopts the Middlebury 2014, which contains left 

and right images of different resolutions for the same scenes, along with corresponding 

disparity maps. In this experiment, the low-resolution left and right images and their 

corresponding ground truth of disparity are sourced from scenes with a resolution of 

750×500, while the ground truth of disparity for the super-resolution images are derived 

from scenes with a resolution of 1500×1000.Due to the fact that the maximum disparity 

trained by the current stereo matching algorithm model is set to 192 by default, when the 

maximum disparity of low-resolution exceeds 96, the disparity of high-resolution will be 

greater than 192. Therefore, in the experimental process, the scenes from jadeplant (original 
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image maximum disparity of 160) and Vintage (original image maximum disparity of 190) 

will be excluded, while the remaining 13 scenes will be retained as experimental data. 

Stereo Matching Algorithm. The stereo matching algorithm used for the experiments 

is the IGEV-Stereo which has excellent performance on public datasets, due to the pow-

erful memory capability of deep learning, it is not appropriate to make comparisons on 

trained datasets, in order to make comparisons in a fairer way, The weights of the 

IGEV-Stereo trained on Scene Flow were chosen to be tested on the Middlebury 2014. 

Blind Super-resolution Networks. We selected four blind super-resolution networks 

to participate in this experiment. The model used in the experiment is the blind super-

resolution network BSRGAN trained on the produced multiple types of degraded data 

with ESRGAN as the baseline model, it can adapt to more stereo scenes with good 

generalisation ability and visual effect, since the maximum search range of the stereo 

matching algorithm is 192, we only use the weights of BSRGAN to enlarge the image by 2 

times. We use other visually effective blind super-resolution network Real-ESRGAN, 

BSRMD and SRResCGAN as comparison networks. 

4.2  Evaluation Metrics 

Relative Error Rate(RER). we generally choose the mean absolute error to measure 

disparity: 

 
1

𝑁
∑(𝑥,𝑦)∈𝑁|𝑑𝑒𝑠𝑡(𝑥, 𝑦) − 𝑑𝑔𝑡(𝑥, 𝑦)| (1) 

Where N represents that the image has a total of N pixel points, (𝑥, 𝑦) denotes a certain 

pixel point, 𝑑𝑒𝑠𝑡(𝑥, 𝑦) is the predicted disparity of the pixel point (𝑥, 𝑦), and the true 

disparity of the pixel point (𝑥, 𝑦) is 𝑑𝑔𝑡(𝑥, 𝑦). 

However, when the left and right images are processed with blind super-resolution 

network, the computed disparity is twice the original disparity, and the corresponding 

disparity error also increases to twice the original disparity. In this situation, if we still 

adopt the mean absolute error as the evaluation criterion, it is obviously not appropriate 

enough. In order to reflect more intuitively the changes in disparity before and after 

super-resolution and to facilitate comparison, we decided to use the relative error rate 

to judge the disparity advantages and disadvantages before and after blind super-reso-

lution. 

 
1

𝑁
∑(𝑥,𝑦)∈𝑁 |

𝑑𝑒𝑠𝑡(𝑥,𝑦)−𝑑𝑔𝑡(𝑥,𝑦)

𝑑𝑔𝑡(𝑥,𝑦)
|  (2) 

Match Error Rate(MER). For the original image we specify that the pixel error is 

within 1pixel for correct matching. When the image is processed by the blind super-

resolution network, the step size of stereo matching will be enlarged by a factor of 2, 
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and the corresponding error will be enlarged by a factor of 2. At the same time, we will 

divide the final computed disparity by 2 as a practical application, and therefore we 

stipulate that the pixel error after super-resolution is within 2pixels as a correct match. 

 
1

𝑁
∑(𝑥,𝑦)∈𝑁{|𝑑𝑒𝑠𝑡(𝑥, 𝑦) − 𝑑𝑔𝑡(𝑥, 𝑦)| > 𝛿𝐷} (3) 

Where 𝛿𝐷 is taken as 1.0 and 2.0 respectively. 

Distance Relative Error Rate(DER). To measure the accuracy of ranging, similar to 

the relative error rate, we calculate the distance relative error rate： 

 
1

𝑁
∑(𝑥,𝑦)∈𝑁 |

𝐷𝑒𝑠𝑡(𝑥,𝑦)−𝐷𝑔𝑡(𝑥,𝑦)

𝐷𝑔𝑡(𝑥,𝑦)
| (4) 

Where 𝐷𝑒𝑠𝑡(𝑥, 𝑦) is the predicted depth of the pixel point (𝑥, 𝑦), and the ground truth of 

depth of the pixel point (𝑥, 𝑦) is 𝐷𝑔𝑡(𝑥, 𝑦). 

The conversion between disparity(d) and depth(D) is expressed as: 

 
𝐵𝑓

𝑑
= 𝐷  (5) 

Where  f is the camera's focal length and B is the distance between two camera center. 

To facilitate the calculation of the relative error of distance, we can simplify (4) ac-

cording to (5)：  

 
1

𝑁
∑(𝑥,𝑦)∈𝑁 |

𝐷𝑒𝑠𝑡(𝑥,𝑦)−𝐷𝑔𝑡(𝑥,𝑦)

𝐷𝑔𝑡(𝑥,𝑦)
| =

1

𝑁
∑(𝑥,𝑦)∈𝑁 |

𝑑𝑒𝑠𝑡(𝑥,𝑦)−𝑑𝑔𝑡(𝑥,𝑦)

𝑑𝑒𝑠𝑡(𝑥,𝑦)
| (6) 

4.3  Results 

Based on the results on Middlebury2014, we found that combining real-ESRGAN and 

BSRGAN with the stereo matching algorithm IGEV-Stereo can reduce both the relative 

error rate and the match error rate. Notably, the best performance was achieved when 

BSRGAN was combined with IGEV-Stereo, However, we found that when BSRGAN 

is combined with IGEV-Stereo the distance relative error rate does not get smaller, but 

rather it becomes larger, as shown in Table 1. RER and MER are used as the main indi-

cators, DER is susceptible to extreme values, so it is an auxiliary indicator. 
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Table 1. Experimental Results on Middlebury 2014. 

Method RER(%) MER(%) DER(%) 

IGEV-Stereo 3.17 12.82 4.62 

BSRDM+IGEV-Stereo 3.98 18.18 4.09 

SRResCGAN+IGEV-Stereo 3.40 12.56 5.44 

Real-ESRGAN+IGEV-Stereo 3.11 12.59 6.88 

BSRGAN+IGEV-Stereo 2.85 12.17 4.87 

According to Fig. 5, BSRGAN improves the visual effect of disparity maps computed 

by stereo matching algorithm and improves the ability of stereo matching algorithm to 

capture details. Specifically, we can look at the error map of the disparity map, the bluer 

the error map indicates that the error in the region is smaller, and the disparity error 

obtained by processing IGEV-Stereo through BSRGAN is smaller. 

 
(a)IGEV-Stereo     (c)Real-ESRGAN+IGEV-Stereo (c)BSRGAN+IGEV-Stereo   

Fig. 5. Results of disparity estimation for Middlebury 2014.The first and third rows represent the 

scene and the corresponding disparity map. The second and fourth rows correspond to the error 

maps of the disparity. 

4.4 Cause Analysis 

In order to figure out why DER has become larger on the premise that RER and MER 

have decreased, we list the experimental results for each scene. As shown in Table 2，
take the best-performing combination BSRGAN+IGEV-Stereo as an example, com-

pared with IGEV-Stereo alone, it is noteworthy that after being processed by BSRGAN, 

both the piano and playtable experienced a decrease in accuracy. For convenience, we 

will refer to IGEV-Stereo simply as IGEV. 

https://drive.google.com/open?id=15tt3qNAHs9_iJzyXcCFnQnqaD7RQZNDW
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Table 2. The experimental results for each scene in Middlebury 2014. 

Scenes 
RER (%) MER (%) DER (%) 

IGEV 
BSRGAN 

+IGEV 
IGEV 

BSRGAN 

+IGEV 
IGEV 

BSRGAN 

+IGEV 

Adirondack 1.77 1.17 4.41 1.71 4.13 0.92 

ArtL 3.10 2.81 16.32 13.12 10.32 15.85 

Motorcycle 2.90 2.01 10.02 7.19 2.62 2.05 

MotorcycleE 2.92 2.09 10.31 7.51 2.64 2.06 

Piano★ 2.32 2.77 9.13 13.09 2.09 5.02 

PianoL 7.24 7.07 28.84 29.40 12.23 16.87 

Pipes 6.23 5.45 16.81 13.99 6.01 4.64 

Playroom 2.74 2.07 17.20 12.69 4.91 2.55 

Playtable★ 1.71 2.09 8.90 10.68 1.68 2.35 

PlaytableP★ 1.63 2.08 8.44 10.77 1.58 2.51 

Recycle 1.87 1.83 7.96 9.09 2.48 1.57 

Shelves 3.32 3.62 18.38 21.49 5.89 4.85 

Teddy 3.43 1.95 9.92 7.48 3.49 2.09 

 

After our careful comparison and analysis, we found that the super-resolution net-

work has some limitations in some regions, which leads to poor super-resolution effect 

and indirectly to worse stereo matching. According to Fig. 6. BSRAGN and Real-

ESRGAN are both obtained by using ESRGAN model as the baseline training, these 

models improve the image resolution and visual effect, but also accompanied by arti-

facts and excessive smoothing problems, these problems are also the current research 

of super-resolution network faces the problem. The most important thing in stereo 

matching is to find the points corresponding to the left and right images, after which 

the disparity value is calculated through the positional relationship, when the above 

situation occurs, it will probably lead to the inconsistency of the super-resolution effect 

of the corresponding pixels of the left and right images, which will lead to the incon-

sistency of the left and right images, and thus the matching error occurs in the process 

of stereo matching. Nevertheless, blind super-resolution can improve disparity calcula-

tion in most scenarios. 

 

Fig. 6. Image texture and disparity map of certain regions of the image before and after super-

resolution networks processing. 
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5 Conclusion 

We propose an innovative approach to improving stereo matching accuracy using blind 

super-resolution networks. Due to limitations of camera photoreceptors, stereo images 

are presented in pixel blocks, lacking sub-pixel details which restrict stereo matching 

accuracy. We discuss and conclude that effective super-resolution networks positively 

impact stereo matching and enhancing sub-pixel accuracy. 

Our method uses a blind super-resolution network to simulate sub-pixel effects and 

improve stereo matching accuracy. The process involves upscaling stereo images with 

a super-resolution network to enhance local details, then inputting the high-resolution 

images into a stereo matching algorithm to generate detailed disparity maps. Experi-

ments show that the BSRGAN significantly improves stereo matching accuracy, par-

ticularly when combined with IGEV-Stereo, reducing both relative error and matching 

error rates. However, in regions with repetitive and dense textures, the limitations of 

blind super-resolution networks can degrade accuracy. Specifically, BSRGAN and 

Real-ESRGAN, based on ESRGAN models, improve image resolution and visual qual-

ity but can introduce artifacts and excessive smoothing. These issues can cause incon-

sistencies between the left and right images, leading to matching errors. 

In summary, improving stereo matching accuracy with the help of blind super-reso-

lution networks is a promising research direction. By continuously optimising the blind 

super-resolution networks, we are expected to achieve more accurate and efficient ste-

reo matching. 
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