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Abstract. Tactility provides crucial support and enhancement for the perception 

and interaction capabilities of both humans and robots. Nevertheless, the multi-

modal research related to touch primarily focuses on visual and tactile modalities, 

with limited exploration in the domain of language. Beyond vocabulary, sen-

tence-level descriptions contain richer semantics. Based on this, we construct a 

touch-language-vision dataset named TLV (Touch-Language-Vision) by human-

machine cascade collaboration, featuring sentence-level descriptions for multi-

mode alignment. The new dataset is used to fine-tune our proposed lightweight 

training framework, STLV-Align (Synergistic Touch-Language-Vision Align-

ment), achieving effective semantic alignment with minimal parameter adjust-

ments (1%). Project Page: https://xiaoen0.github.io/touch.page/. 

Keywords: Tactile-related multimodal perception, Tactile dataset, Modal 

Alignment. 

1 Introduction 

Tactile perception occupies a distinctive and pivotal role within the human sensory sys-

tem, constituting a fundamental basis for our cognitive comprehension of the environ-

ment, coexisting harmoniously with other sensory modalities, such as vision and audi-

tion. Tactility allows us to perceive the texture, temperature, and hardness of objects 

etc., and enables us to explore environments and perform intricate tasks, such as grasp-

ing and manipulating. The significance of touch is evident not only in humans [1, 2] 

but also in robotic applications [3, 4], where the acquisition and processing of tactile 

information are crucial for enhancing the perceptual capabilities and interaction effi-

ciency of these applications. 

Despite the undeniable significance of touch, tactile-related multimodel research 

predominantly focuses on the visual and tactile [5-7], with limited exploration in the 
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domain of language. While there are some works related to language, they remain pri-

marily at the lexical level, serving as labels for classification purposes [8-10]. This 

arises from the heightened challenges associated with annotating lengthier texts, in-

cluding intricate narratives and elevated expenses. 

Continuous innovation in image-to-text models [11, 12] enables the generation of 

fluent text from prompts and images, thereby offering opportunities for tactile annota-

tion with longer texts. In this work, we introduce a tactile-related multimodel dataset, 

named TLV (Touch-Language-Vision), through human-machine cascade collaborative 

annotation. TLV incorporates three modalities: touch, language, and vision, with pair-

wise correspondence between any two modalities, aiming to strengthen alignment be-

tween touch and language. Compared to a set of vocabularies (i.e., lexical-level de-

scriptions), the descriptions in TLV are at the sentence level, capable of conveying 

more rich and more complete semantic information. 

To assess TLV 's efficacy, we employ it as the training dataset and present a light-

weight unsupervised training method, STLV-Align (Synergistic Touch-Language-Vi-

sion Alignment). This method maps all modalities to a shared embedding space, ena-

bling effective semantic alignment. To improve training efficiency, we employ Low-

Rank Adaptation (LoRA) [13] for fine-tuning and only 1% of the parameters are ad-

justed. Subsequently, we evaluate the performance of STLV-Align on various tactile 

classification tasks using a cross-domain dataset. Experimental results demonstrate the 

potential of the TLV dataset. This paper presents the following contributions: 

• Introducing TLV, a new touch-language-vision dataset with sentence-level descrip-

tions annotated by human-machine cascade collaboration, Addressing the challenge 

of tactile annotation for longer texts. 

• Proposing STLV-Align, a lightweight joint pretraining framework characterized by 

independence from labeled data, the utilization of a smaller dataset, the adjustment 

of model parameters, and acceptable performance.  

• Validating the effectiveness of our dataset and method and providing direction for 

further optimization on tactile-related tasks. 

 

2 Related Work 

2.1 Tactile Perception 

Extracting and leveraging tactile information, encompassing surface texture, elasticity, 

and temperature, holds substantial promise for advancements in both robotics and AI 

research [14-16]. Current tactile sensors primarily rely on vision, employing a camera 

and illumination system to record deformations in a curved elastomeric gel. This struc-

ture has given rise to diverse perception systems, including GelSight [8, 17-23], DIGIT 

[7, 24, 25], and GelSlim [26, 27]. These systems aim to comprehensively record high-

resolution, detailed tactile information. Among them, GelSight stands out as one of the 

most widely used tactile perception systems, offering elaborate capture of depth, shear, 
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and surface orientation. This work leverages tactile observations primarily from Gel-

Sight. 

2.2 Tactile Datasets 

A significant challenge in learning from the tactile modality lies in the substantial hu-

man effort and time required to construct high-quality datasets. Despite this hurdle, the 

research community's continuous efforts have yielded several publicly available da-

tasets:  Objectfolder 2.0 [28] (featuring 1,000 implicitly represented objects generated 

through simulation), SSVTP [7] (containing 4.5K spatially aligned image-tactile pairs 

acquired using DIGIT), the Feeling of Success [20] (employing a two-finger gripper 

and GelSight sensor), Touch and Go [8] (a high-quality, in-the-wild dataset encompass-

ing diverse categories and quantitative visuo-tactile pairs) and VisGel [17] (a dataset 

comprising over 12K touch instances and 3 million vision-touch frames). However, 

these datasets are in the absence of rich textual descriptions, hindering their potential 

for realizing higher-level cross-modal alignment. This work addresses this limitation 

by incorporating detailed and qualitative captions, fostering a more comprehensive and 

advanced cross-modal understanding. 

2.3 Multimodal Alignment 

Effectively aligning semantics from diverse modalities is fundamental and crucial in 

multimodal research, yet it had been challenging to construct a high-dimensional joint 

embedding space incorporating features of different modalities. CLIP [29] achieved 

remarkable performance and generalization ability through self-supervised contrastive 

pretraining on a massive dataset of 400 million image-text pairs scraped from the inter-

net. Subsequent works such as ALIGN [30], Flamingo [31], OpenCLIP [32] have fur-

ther advanced the field towards more robust and accurate alignment. Beyond vision and 

language modalities, significant research efforts aim to bridge the gap between even 

more diverse modalities, including 3D points [33, 34] and audio [35, 36]. ImageBind 

[37] significantly extended the joint embedding space to encompass six distinct modal-

ities through image-centered contrastive learning, further promoting comprehensive 

cross-modal understanding. Along this line, LanguageBind [38] proposed a language-

centered alignment strategy to fully leverage the rich semantic information within the 

text, achieving significant performance improvements. This work builds upon these ad-

vancements by further expanding cross-modal alignment to concurrently include touch 

alongside other modalities. 

3 TLV Dataset 

The TLV dataset aims to associate tactile and visual perceptions with sentence-level 

descriptions for multimodal alignment. As shown in Fig. 1, the construction process of 

TLV consists of three stages: touch and vision collection (Sec. 3.1), touch localization 

(Sec. 3.2), and tactile labeling (Sec. 3.3). 
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Fig. 1. Construction process of the TLV dataset. 

3.1 Stage I: Touch and Vision Collection 

We collect paired tactile and visual observations from VisGel, a large vision-touch da-

taset collected by a video camera, and a tactile sensor called GelSight. VisGel captured 

synchronized videos of the scenes where the robotic arm touched the objects and rec-

orded timestamps to synchronize visual and tactile images. Among the synchronized 

videos captured, 10,000 videos were used to construct the training dataset. We utilize 

the synchronized visual and tactile images from these 10,000 synchronized videos for 

touch and vision collection. 

From the visual videos, we observe that the first frame depicts the starting state of 

the robotic arm when it is away from objects. As time progresses, the arm gradually 

approaches an object until it makes contact, remains in contact for a period, and then 

slowly withdraws. Based on the above observations, for each pair of synchronized vid-

eos, we select two sets of synchronized visual and tactile frames: one set depicting an 

object being touched, and the other set showing no object being touched. To obtain 

frames where an object is being touched, we use the first frame as the background and 
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apply frame differencing [39]. The frame with the maximum difference from the back-

ground is selected as the frame where the object is being touched. Through observation, 

we uniformly select the 40th frame as the frame where no object is being touched. 

3.2 Stage II: Touch Localization 

The two modalities of touch and vision can be regarded as different views containing 

the same semantics. From this standpoint, we recruit participants to label the object 

being touched in visual images from Stage I. For visual images where no object is 

touched, we do not consider them. This serves as preliminary touch localization, pre-

paring for the next step of tactile labeling using GPT-4V [11]. touch localization com-

prises two parts: highlighting the touched object with a red box in visual images and 

providing a name for the enclosed object. The labeling of object name is open-ended, 

and we do not provide a predefined set of candidate object names. In the process of 

object labeling, we found that due to issues during the collection of the original dataset 

(i.e., VisGel), certain data could not be annotated. For example, instances where the 

touched object is occluded or the entire video does not involve interaction with any 

object. We have filtered out such data. 

3.3 Stage III: Tactile Labeling 

From the perspective of containing identical semantics in both touch and vision, we 

utilize GPT-4V for the annotation of texts. For each visual image with the highlighted 

box from Stage II, we employ a thoughtfully designed, data-specific prompt. This 

prompt instructs GPT-4V to generate detailed descriptions, taking into account factors 

such as the name of the touched object, the specific location of the contact, the material 

composition at the point of contact, and the texture characteristics and softness/hard-

ness of the touched area. For visual images where no object is touched, we refrain from 

using GPT-4V for annotation and instead provide a uniform description: No object is 

being touched. 

3.4 Dataset Statistics 

We have annotated text-based descriptions for 20,000 pairs of synchronized tactile and 

visual observations collected from VisGel, including 10,000 pairs with an object being 

touched and 10,000 pairs without an object being touched. For the cases where an object 

is touched, we filtered out data that cannot be annotated as mentioned in Stage II, re-

sulting in the annotation of 9,843 instances. For the cases without an object being 

touched, we annotated all 10,000 instances. Thus, we ultimately obtained a total of 

19,834 annotated data entries. To our knowledge, this is the first touch-language-vision 

dataset with sentence-level descriptions. 
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4 Method 

We propose STLV-Align (Synergistic Touch-Language-Vision Alignment), an unsu-

pervised and lightweight joint training method designed to leverage the TLV dataset 

we constructed. The visual observations in TLV can be considered as auxiliary infor-

mation, assisting in learning the alignment between touch and language and enhancing 

the zero-shot classification ability of touch. The method primarily consists of three 

components: multi-modal encoder, LoRA fine-tuning, and joint training, as illustrated 

in Fig. 2. 

 

 

Fig. 2. Overview of our lightweight joint training method. 

4.1 Multi-modal Encoders 

STLV-Align involves three modalities: touch, language, and vision. We treat the touch 

modality as RGB images for processing. Therefore, for both touch and vision modali-

ties, we use the Vision Transformer (i.e., ViT) [40] for encoding. The touch and vision 

encoders are instantiated as OpenCLIP vision encoders. For the text encoder, we in-

stantiate it as an OpenCLIP text encoder. 

4.2 LoRA Fine-tuning 

Differing from the prior approach [41], we do not utilize large-scale datasets for pre-

training. Instead, we employ LoRA for lightweight fine-tuning on the TLV dataset.  For 

a modality-agnostic encoder 𝑓(·) with a weight matrix 𝑊0 ∈ 𝑅𝑑×𝑘 , we maintain the 
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weight matrix 𝑊0 frozen while learning a new weight matrix 𝐵𝐴. The forward pass can 

be formalized as follows: 

 𝑓(𝑥) = 𝑊0𝑥 + 𝐵𝐴𝑥 (1) 

where 𝐵 ∈ 𝑅𝑑×𝑟, 𝐴 ∈ 𝑅𝑟×𝑘, with 𝑟 being the minimum of 𝑑 and 𝑘. 

4.3 Joint Training 

Joint learning aims to align touch and language better. While learning the alignment 

between touch and language, we also acquire knowledge about the alignment between 

vision and language, as well as the alignment between touch and vision. The text en-

coder from OpenCLIP has demonstrated good generalization in text, so during the joint 

learning process, we freeze the text encoder and only update the touch encoder and 

vision encoder. The update to the vision encoder is made to assist the update to the 

touch encoder. To ensure alignment across different modalities, we perform contrastive 

learning principles [29] for joint learning. 

 𝐿𝑇,𝐿 = −
1

𝐾
∑ 𝑙𝑜𝑔

exp⁡(𝑥𝑖
𝑇𝑦𝑖/𝜏)

∑ exp⁡(𝑥𝑖
𝑇𝑦𝑗/𝜏)

𝐾
𝑗=1

𝐾
𝑖=1  (2) 

 𝐿𝑉,𝐿 = −
1

𝐾
∑ 𝑙𝑜𝑔

exp⁡(𝑧𝑖
𝑇𝑦𝑖/𝜏)

∑ exp⁡(𝑧𝑖
𝑇𝑦𝑗/𝜏)

𝐾
𝑗=1

𝐾
𝑖=1  (3) 

 𝐿𝑇,𝑉 = −
1

𝐾
∑ 𝑙𝑜𝑔

exp⁡(𝑥𝑖
𝑇𝑧𝑖/𝜏)

∑ exp⁡(𝑥𝑖
𝑇𝑧𝑗/𝜏)

𝐾
𝑗=1

𝐾
𝑖=1  (4) 

where 𝑥, 𝑦, 𝑧 represent the observations of tactile, language, and visual modalities, re-

spectively, and 𝜏 and 𝐾 are the scalar temperature and batch size. In practice, we use a 

symmetric joint loss (𝐿𝑇,𝐿 + 𝐿𝐿,𝑇) + 𝛼(𝐿𝑉,𝐿 + 𝐿𝐿,𝑉) + 𝛽(𝐿𝑇,𝑉 + 𝐿𝑉,𝑇). 

5 Experiments 

5.1 Setup 

We evaluate our model and dataset on various tactile classification tasks, including ma-

terial, hard/soft, and rough/smooth classification, using the Touch and Go dataset [8]. 

This means that zero-shot evaluation is conducted on a cross-domain dataset. STLV-

Align is extended based on OpenCLIP-large and fine-tuned on our TLV dataset in an 

unsupervised and lightweight manner. Because the visual modality is considered as 

auxiliary information, both $\alpha$ and $\beta$ are set to 0.1 in the symmetric joint 

loss. We use accuracy as the metric. 
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5.2 Results and Analysis 

We contrast our model with ViT-LENS-2 [41], a state-of-the-art multi-model that ex-

cels in zero-shot performance on tactile tasks. The comparative results of different mod-

els can be found in Table 1. While the accuracy of \model may be not optimal, exhibits 

an 8.3% improvement in material classification compared to our foundation, Open-

CLIP. Especially significant is the marked improvement in both hard/soft and 

rough/smooth classifications, with \model's performance advancing by more than 30%. 

Nevertheless, VIT-LENS-2 (I) demonstrated an improvement ranging from 7% to 9% 

compared to their foundation, ImageBind. Despite VIT-LENS-2 (I+T) displaying a no-

table 41.6% boost in material classification, there was a 6% decline in rough/smooth 

classification. This reflects the effectiveness of the TLV dataset and the efficiency of 

STLV-Align in utilizing data. Certainly, we recognize certain performance limitations 

of STLV-Align, thus prompting us to analyze distinctions in training paradigm, #train-

ing data, parameter tuning ratio, and cross-domain evaluation between STLV-Align 

and ViT-LENS-2, as illustrated in Table 2. It can be observed that \model is character-

ized by independence from labeled data, the utilization of a smaller dataset, a light-

weight training approach, and evaluation across various data domains. This could make 

it more attractive for specific application scenarios. 

Table 1. Accuracy of different models on various tactile classifications. Those with performance 

improvement compared with their respective foundation within 30% are marked as green and 

above 30% are marked as red. V-L-2: VIT-LENS-2; (I): Anchored by images; (I+T): Anchored 

by images and texts. 

Model Size 
Touch and Go 

Material Hard/Soft Rough/Smooth 

ImageBind Base 24.2 65.7 69.8 

V-L-2 (I) Base 29.9 (+5.7%) 72.4 (+6.7%) 77.9 (+8.1%) 

V-L-2 (I) Large 31.2 (+7.0%) 74.3 (+8.6%) 78.2 (+8.4%) 

V-L-2 (I+T) Large 65.8 (+41.6%) 74.7 (+9.0%) 63.8 (-6.0%) 

OpenCLIP Large 17.7 32.2 42.7 

STLV-Align Large 26.0 (+8.3%) 65.1 (+32.9%) 75.6 (+31.9%) 

Table 2. Comparison of Ours and VIT-LENS-2 in training paradigm (TP), #training data (#TD), 

parameter tuning ratio (PTR), cross-domain evaluation (CDE).  

Model TP #TD PTR CDE 

VIT-LENS-2 Supervised 91,982 100% ✗ 

STLV-Align Unsupervised 19,843 1% ✓ 

5.3 Ablation Study 

We conduct the ablation study in Table 3 to illustrate the impact of vision information. 

Simultaneously aligning both touch and text with visual information enhances tactile 

classification, yielding a positive overall effect. Conversely, aligning either touch or 

text with visual information has a detrimental effect. 
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Table 3. Impact of vision information at different levels. -TV: Do not align touch with vision; -

VL: Do not align language with vision; -(TV&VL): Do not involve visual information. 

Model 
Touch and Go 

Material Hard/Soft Rough/Smooth 

STLV-Align 26.0 65.1 74.6 

-TV 27.8 52.8 52.7 

-VL 26.5 55.3 49.1 

-(TV&VL) 32.5 56.5 56.6 

 

6 Conclusion 

In this work, we construct the first touch-language-vision dataset, TLV, featuring sen-

tence-level descriptions for multimodal alignment. To demonstrate the effectiveness of 

the TLV dataset, we extended OpenCLIP and proposed STLV-Align, an unsupervised 

lightweight training approach. Preliminary experiments validate that the TLV dataset 

facilitates better alignment between touch and language. The proposed method may 

apply to specific scenarios, but there is room for improvement in terms of performance, 

and further enhancements are needed. Additionally, we intend to extend the application 

of TLV to more tasks to fully exploit its potential. 
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