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Abstract. At present, recommendation systems have become an essential tool 

for users to retrieve information in the Internet of Things (IoT) scenario. Con-

ventional sequential recommendation techniques frequently depend on explicit 

item identifiers, leading to limitations in data sparsity and domain transfer. Re-

cent research has utilized item modal features as inputs to the model, enabling 

the transfer of knowledge learned between different modal datasets, thus address-

ing the issue of data scarcity. In order to achieve this objective, we introduce a 

pre-training method for modeling multiple modalities, which can effectively in-

tegrate information from different modalities. We also propose a new loss calcu-

lation to measure the performance of this method. Finally, in order to enhance 

the model's retrieval performance, we provide a novel sequential recommenda-

tion strategy. This strategy utilizes a sequence encoder to record the sequences of 

user interactions, and uses item encoder to encode information about the items. 

These two encoders share parameters in order to improve the quality of the en-

coded information. We evaluate our proposed methods on three public datasets 

and conduct experiments, the results of which demonstrate an improvement in 

performance. 

Keywords: Sequential Recommendation, Multi-Modal, Multimodal Pretrain-

ing. 

1 INTRODUCTION 

With the rapid development of the Internet and digital technologies, individuals are 

increasingly overwhelmed with information and choices. Personalized recommenda-

tion systems have become essential tools for helping users quickly find content of in-

terest amid this information overload. Collaborative filtering algorithms are commonly 

used in traditional recommendation systems. These algorithms propose items to a spe-

cific user by analyzing the preferences of other users who have similar interests. How-

ever, the lack of user reviews for many items leads to data sparsity, which in turn re-

duces the accuracy of models based on collaborative filtering algorithms [1]. 
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To address this issue of data sparsity, Berkovsky proposed cross-domain recommen-

dation algorithms that leverage abundant information in a source domain (e.g., observed 

rating data) to enhance recommendation accuracy in a target domain. Furthermore, with 

increasing computational power, Multi-Target Collaborative Domain Regression 

(CDR) [2] has emerged, aiming to improve accuracy further. However, cross-domain 

recommendations are not without limitations, such as the continuous high computa-

tional demands and the added complexity and cost from data collection, transformation, 

and processing. These limitations are particularly acute when it comes to personalized 

recommendations that require dynamic user behavior modeling. 

Another approach to solving the data sparsity issue is the use of multi-modal data. 

In the multimedia era, users often have abundant information in a particular domain, 

presented in various modalities like images and text [3]. Multi-modal recommendation 

systems [3] can utilize this rich information to enhance algorithmic performance. How-

ever, the introduction of multiple sources of information, such as users' social networks, 

textual descriptions, and images or videos, can also lead to increased noise compared 

to single-modal data. 

The fusion of modal algorithms and sequential recommendation methods [5] can be 

applied to scenarios requiring both user behavior sequences and multi-modal infor-

mation. For instance, in video recommendation, combining users' viewing history with 

the videos' textual descriptions and cover images can offer a more comprehensive un-

derstanding of user preferences, thereby providing more accurate recommendations. 

Although the integration of multi-modal and sequential algorithms shows promise, ex-

isting methods for transferring item-related patterns across domains still face signifi-

cant challenges [6]. One such challenge is the inconsistency at the feature level between 

model outputs and item embeddings. Directly calculating their similarities would force 

the alignment of inputs and outputs [7], affecting the effectiveness of model outputs. 

In order to tackle these difficulties, we provide a groundbreaking multimodal se-

quential recommendation model that is founded on the principles of sequential recom-

mendation and the integration of multimodal features. This model enhances the fine-

grained discrimination capability of items by conducting contrastive learning between 

different modalities, aligning features in the latent space across these modalities. The 

paper's contributions can be succinctly described as follows: 

• We present a pre-training technique for modeling multi-modal data that efficiently 

combines information from many modalities acquired in the Internet of Things (IoT) 

context. 

• We provide a new way for calculating loss to assess the performance of this ap-

proach. This method effectively deals with the bias resulting from variations in data 

modalities between pre-training and real-world application. 

• The model we propose is a cross-modal sequential recommendation model that uti-

lizes dual retrieval, which integrates the ideas of sequential recommendation and 

multi-modal features. This model can encode items while extracting user interaction 

sequences, addressing the issue of inconsistency between the model's outputs and 

the features of the items at the feature level. 



• • In order to verify the efficiency of our approach, we do experiments on three actual 

datasets. The results show that FMMS-Rec outperforms the latest benchmark models 

based on RNN, CNN, and GNN architectures. 

2 RELATED WORK  

2.1 Multimodal Learning 

The area of multimodal learning has become increasingly important in  recent decades. 

Initially, multimodal techniques were mainly used for voice recognition [8]. Neverthe-

less, as the internet has become more widespread and advanced gadgets have been de-

veloped, a wider range of multimodal data types has been introduced. When applied to 

recommendation tasks, these diverse data types offer the prospect of enriching the fea-

ture sets of recommendation systems, thus alleviating the issue of domain-specific data 

sparsity in large-scale datasets. Specifically, video datasets are frequently employed in 

the context of multimodal learning, as they amalgamate multiple data modalities, in-

cluding images, text, and audio [9]. A critical challenge in this domain lies in the en-

coding of these various modalities, their projection into a common representational 

space, and the alignment of features across different modalities. 

2.2 Sequential Recommendation 

In the early stages of sequential recommendation tasks, Markov Chains (MC) [10] were 

commonly employed to observe short-term user behaviors. These chains use generated 

state transition matrices to predict user actions at future time points. Researchers like 

Rendle and colleagues [11] proposed a hybrid approach combining first-order Markov 

Chains with matrix factorization, and further explored higher-order Markov Chains 

[12]. These higher-order variants take into account a greater number of previous items 

and extract more intricate patterns. However, such methods exhibit considerable limi-

tations in their ability to handle contextual information.  

To overcome these shortcomings, Recurrent Neural Networks(RNNs) [13] are an 

example of deep learning models. were introduced for capturing and processing tem-

poral sequences of user interactions. Variants of RNNs like Long Short-Term Memory 

(LSTM) [14] networks and Gated Recurrent Units (GRU) [15] are employed to deal 

with sequences of medium and long lengths. The advent of Transformers, such as 

BERT (Bidirectional Encoder Representations from Transformers) [16], further ele-

vates the capabilities of recommendation systems by learning richer semantic represen-

tations of text, thereby improving the understanding of user interests. Despite the sig-

nificant improvements these sequential recommendation models have brought about in 

terms of recommendation efficacy, they predominantly rely on contextual information 

and largely neglect the relationships between items and users. 
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3 METHOD 

3.1 Pretraining Objectives 

In this section, we propose a pre-training method for the Video-Image-Sentence Multi-

Modality Sequential Recommendation model, which effectively explores the correla-

tions between different modalities of data, thereby learning aligned representations of 

data from multiple modalities. The input of this method consists of two single-modality 

encoders, which enhance the model's ability to differentiate items at a fine granularity 

through contrastive learning between modalities. This alignment of different modal fea-

tures in the latent space is illustrated in Figure 1. In this experiment, we use visual and 

textual data as examples. 

3.1.1  Feature Embedding. In early recommendation algorithms [19], the ability of 

the models to transfer general knowledge across different domains was limited. To ad-

dress this issue, we propose the use of multimodal information to connect various do-

mains. We employ pretrained modality models [20,21, 22] to extract modality features  

 

Fig. 1. The overview of our Video-Image-Sentence Multi-Modality Sequential Recommenda-

tion model. Different modal data undergo feature extraction through different encoders. Specif-

ically, when the item is a video, it is first transformed into a collection of image frames to ob-

tain the representative set of the video. 

from items across different domains and map them into a shared semantic space, over-

coming the previous models' dependency on explicit item IDs. 

Firstly, for data in the visual modality, the input data can be broadly categorized into 

two types: images and videos. For image processing, pre-trained visual models (PVM) 

[23] can be utilized for feature extraction. Videos are composed of a sequence of con-

tinuous image frames; we can adopt methods used for image processing for video fea-

ture extraction as well. We initially sample at a fixed frequency from the image frames 



to get a representative set for the video, denoted as  𝐼𝑗 = 𝑖𝑗
1, 𝑖𝑗

2, … , 𝑖𝑗
𝑛. Subsequently, we 

employ PVM to extract features from this set and take their mean to obtain the video's 

feature representation. Finally, the sequence representation for the visual data,  𝐸𝑗
𝐼,is 

computed through a single-layer neural network: 

 𝐸𝑗
𝐼 = 𝑓𝑁𝑁 (

1

|𝑛|
∑ 𝑓𝑃𝑉𝑀(𝐼𝑗

𝑘)
|𝑛|
𝑘=1 ) (1) 

Where 𝑓𝑁𝑁 refers to the neural network function, while𝑓𝑃𝑉𝑀 denotes the feature extrac-

tion functional. 

Secondly, for data in the textual modality, pre-trained language models (PLM) can 

be employed for feature extraction. For item 𝑗, its text token sequence can be repre-

sented as𝑆𝑗 = 𝑠𝑗
1, 𝑠𝑗

2, … , 𝑠𝑗
𝑛. A special token [CLS] [24] is prepended to the token se-

quence, and the resulting concatenated sequence is fed into the PLM. Ultimately, the 

token located at the [CLS] position in the hidden layer serves as the textual representa-

tion, and this representation is then inputted into a single-layer neural network to gen-

erate the sequence representation for the text data, 𝐸𝑗
𝑠： 

 𝐸𝑗
𝑆 = 𝑓𝑁𝑁 (𝑓𝑃𝐿𝑀([𝐶𝐿𝑆], 𝑠𝑗

1, 𝑠𝑗
2, … , 𝑠𝑗

𝑛)) (2) 

Where 𝑓𝑃𝐿𝑀 denotes the feature extraction function. 

After feature extraction, the input item data 𝑗 ∈ 𝐽  is transformed into(𝐸𝑗
𝐼，𝐸𝑗

𝑆) . 

Since this input contains two modalities, we enhance its discriminative power by em-

ploying both feature extraction and modality embedding methods, and summing both 

as the input to the model. 

3.1.2   Multimodal Alignment and Fusion. In each item, the input data may exist in 

single-modal form or in a combination of two or even three modalities, such as visual 

and textual forms, denoted as (p, c). Our goal is to design a method that allows items to 

be input and mapped to a common space regardless of their modality combination, and 

to use a specific function to ensure that data from different modalities have similar 

representations, thus achieving cross-modal fusion of heterogeneous data. 

Therefore, inspired by the advantages of the transformer in modeling different mo-

dalities (e.g., visual, language, and audio) in various multimodal tasks, we designed a 

multimodal encoder based on transformer modules, which includes multi-head self-at-

tention layers and feedforward layers. Prior to inputting the feature embeddings of 

items into the model, we incorporate modality embeddings into them. When specific 

modalities are missing, we substitute the corresponding feature embeddings with a 

[mask] token. Thanks to the transformer's attention mechanism, it can handle the cor-

relation between different modalities well, thus enabling information sharing and filling 

in missing modality information. Subsequently, in order to facilitate the model's under-

standing of the connections between various modules, we project the encoded feature 

embeddings into a shared hidden space and normalize them. Finally, by the utilization 

of a max-pooling layer, we are able to preserve crucial feature information from all 
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modalities. This results in a consolidated representation of the item, thus mitigating the 

model's tendency to excessively fit the training set: 

 ℎ𝑖 = 𝑚𝑎𝑥(ℎ𝑗
𝑖 , ℎ𝑗

𝑠) (3) 

 Here, ℎ𝑗
𝑖 , ℎ𝑗

𝑠. denote a set containing two values, ℎ𝑗
𝑝

 and ℎ𝑗
𝑐.The MaxPooling operation 

selects the maximum value from this set as the output. 

3.1.3  Contrastive Loss. VAST establishes multimodal video-caption correspond-

ence during pre-training. However, it is crucial to address the issue of missing modali-

ties in downstream benchmarks and real-world applications, as inconsistencies between 

modalities used in pre-training and adaptation may have a negative impact. The total 

loss ℒ consists of several components: 

 ℒ = ℒ𝑀𝑀 + ℒ𝐼−𝑆 + ℒ𝐼 + ℒ𝑆 (3) 

Where ℒ𝐼、ℒ𝑆 are inspired by the modality grouping strategy proposed by VALOR, 

designed for modeling visual and textual information, respectively. The calculation of 

ℒ𝑀𝑀 is as follows: 

 ℒ𝑀𝑀 = ℒ𝑃𝑊𝐶 + ℒ𝑃𝑊𝑀  (3) 

ℒ𝑃𝑊𝐶 : Contrastive loss is used to regularize the feature distance between visual and 

textual modalities. The contrastive loss is defined as follows: 

 ℒ𝑃𝑊𝐶 = −
1

2
∑ −𝑙𝑜𝑔

𝑒𝑥𝑝(𝜏·𝑠𝑖𝑚(𝑖𝑗,𝑠𝑗))

∑ 𝑒𝑥𝑝(𝜏·𝑠𝑖𝑚(𝑖𝑗,𝑠𝑗))𝐵
𝑗=1

𝐵
𝑗 −

1

2
∑ −𝑙𝑜𝑔

𝑒𝑥𝑝(𝜏·𝑠𝑖𝑚(𝑖𝑖,𝑠𝑖))

∑ 𝑒𝑥𝑝(𝜏·𝑠𝑖𝑚(𝑖𝑖,𝑠𝑖))𝐵
𝑖=1

𝐵
𝑖    (4) 

where sim(·) denotes the dot product, B and τ are the batch size and a learnable param-

eter, respectively. 

ℒ𝑃𝑊𝑀: This loss is used to infer whether the visual and textual modalities match. If 

OMV and OMC match, y = 1; otherwise, y = 0. The loss function is formulated as: 

ℒ𝑃𝑊𝑀 = 𝔼(𝐼𝑖,𝑆𝑖)∼(𝐼,𝑊)[𝑦log 𝑝𝐼𝑆𝑀 + (1 − 𝑦)log (1 − 𝑝𝐼𝑆𝑀)]     (5) 

Our model is able to represent objects in a universal way by modeling different types 

of data in a unified manner. This allows us to overcome the restrictions of the quantity 

of pre-training datasets in the recommendation sector. Thus, our model demonstrates 

strong generalization skills by efficiently encoding inputs with various combinations of 

modalities and aligning items with comparable semantics in a shared undetectable layer 

space. 

3.2 Sequential Representation Learning 

Publicly available large-scale pre-training datasets are scarce in the recommendation 

sector due to the sensitivity of user interactions and tight privacy regulations. Addition-

ally, previous sequence-based recommendation methods relied on single-modal 



datasets for pretraining, resulting in limited generalization and performance degrada-

tion when transferred across domains. Therefore, to address these issues, we propose a 

model that can extract effective information from multiple modal datasets to overcome 

the limitation of limited datasets. Our objective is to prevent the inclusion of domain-

specific biases in the model, considering the intricate nature of user behavior patterns 

across various recommendation domains. Therefore, our objective is to get precise 

knowledge about sequence interaction patterns pertaining to each area. 

 

Fig. 2. The sequential recommendation system employs a dual-tower retrieval design. 

3.2.1  Input Representation. During the pretraining retrieve task, the model does 

not consider the relative positional relationships between input items. However, in 

downstream sequential recommendation tasks, the model must utilize the user's prior 

interactions sequence given input. The components are organized based on their inter-

action times, resulting in clear positional correlations. In order to represent the temporal 

order connection, we incorporate positional embeddings as an extra element of the 

model input. The input embedding of a particular item i is obtained by adding together 

the feature embedding, modality embedding, and positional embedding. 

In this study, we enhance the model's performance by replacing fixed sinusoidal em-

beddings with a learnable position-al embeddings matrix. The positional embeddings 

matrix allows our framework to capture the contextual connections and interaction or-

der between each item in the input sequence, thus enhancing the representation of the 

user sequence. Furthermore, when the length of the input sequence 𝑂 =
{𝑜1, 𝑜2, . . . , 𝑜|𝐿 |} exceeds the maximum length N that the model can accommodate, we 

truncate the sequence and keep only the last N items, denoted as 𝑂𝑟𝑒𝑡𝑎𝑖𝑛 =

{𝑂|𝐿|−𝑁+1, . . . , 𝑖|𝐿 ||. 

3.2.2   Multimodal Sequence Encoder. The primary goals of the sequence encoder 

are twofold: firstly, to encode objects by considering their multimodal information, and 

secondly, to improve the contextual representation of each item by integrating the in-

teraction links between items in the sequence. Given that the item encoder has already 
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acquired a generalized representation of the items during the pretraining phase, the se-

quence encoder directly utilizes the model parameters of the item encoder to specifi-

cally learn the interaction relationships inside the sequence. The architecture of the se-

quence encoder closely resembles that of the item encoder, employing transformer 

blocks that are extensively utilized in diverse applications. The mechanism of attention 

is crucial for the model's impressive performance as it enables each item in the sequence 

to concentrate on contextual information. This, in turn, helps the model deduce the rep-

resentation of each item by considering contextual hints inside the sequence. 

3.2.3   Masked Item Prediction. The temporal encoder integrates contextual infor-

mation, predicts future items, infers user preferences based on historical interaction 

data, and predicts the next item. To achieve this goal, we introduce a task called 

"masked item prediction," inspired by the concept of masked language models[26].  

In this task, given an input sequence 𝐼 = i1, i2, … , i|S|, at the testing stage, as the ob-

jective is to predict the next potential item, we append a special token [mask] to the end 

of the user's historical interaction sequence.  

In the testing phase, in order to forecast the next probable interaction item, it is nec-

essary to add a token [mask] at the conclusion of the user's historical interaction se-

quence. This enables the model to anticipate the subsequent element in the sequence 

that the user might engage with. 

In order to maintain uniformity between the inputs used for training and testing, we 

implement a particular method during training where the [mask] token is only placed 

at the final position during testing. During the training process, the final position of the 

input sequence sample is consistently substituted with the [mask] token. For positions 

in the sequence where the [mask] token appears, we employ three different algorithms 

for replacement: (1) in 80% of cases, we replace the item with a [mask] token, (2) in 

10% of cases, we replace the item with a randomly selected item, and (3) in the remain-

ing 10% of cases, we keep the item unchanged. This strategy resolves the discrepancy 

between the inputs used for training and testing. It guarantees that the model, once 

trained, can accurately predict the masked items in the test sequence. 

4 EXPERIMENT 

4.1 Datasets 

We would like to introduce the datasets employed for our experimental evaluation. 

1. Meituan [27]: This dataset includes transaction records from the Beijing area on the 

Meituan platform spanning six years (from January 2014 to January 2020). We use 

attributes like categories, locations, and keywords extracted from customer reviews.  

2. Amazon Beauty, Sports [28]: These three datasets are derived from Amazon's re-

view dataset. For this study, we have chosen two specific subcategories, namely 

"Beauty" and "Sports." We will be focusing on detailed categories and specific prod-

uct brands as features. 



3. Tmall5 [29]: A commonly used e-commerce dataset, often utilized in research on 

recommendation systems and deep learning models. This dataset contains user in-

teraction data on the Tmall platform, including user clicks, purchases, favorites, and 

other behavioral data, as well as item attribute information. The Tmall5 dataset is 

characterized by its large scale and rich multimodal information, including text and 

images. Researchers can use this dataset to study user behavior patterns, recommen-

dation algorithms, and multimodal data processing, among other issues. 

We have preprocessed the datasets utilized in our experiments using the following 

approach: We employ a prior strategy to filter the data, retaining only the records of 

users and items that have at least five interactions, while filtering out those with fewer 

interactions. This ensures that each user and item has a history of at least five interac-

tions. Additionally, we restructure the cleaned dataset by grouping it according to user 

interaction behavior and subsequently sorting the interaction records in ascending order 

based on timestamps. Through these steps, we aim to highlight the more representative 

users and items during the data analysis and modeling process, while also maintaining 

the temporal sequence of interactions. 

4.2 Evaluation Metrics 

We employ Hit Rate (HR)、Normalized Discounted Cumulative Gain (NDCG) [30] as 

metrics to assess the model's performance.  

1. HR@K: It measures how many items among the top K recommended items are ac-

tually interacted with by the user in the real interaction data.  

 𝐻𝑅 =  
𝑈𝑐

𝑈𝑡
 (6) 

Where 𝑈𝑐  represents the number of users with clicks, while 𝑈𝑡 signifies the total num-

ber of users. 

2. NDCG@K: It assesses the quality and ranking accuracy of the top K recommended 

items. The calculation formula for NDCG (Normalized Discounted Cumulative 

Gain) is as follows: 

 𝑛𝐷𝐶𝐺𝑃 =
𝐷𝐶𝐺𝑃

𝐼𝐷𝐶𝐺𝑃
 (7) 

Where, IDCG refers to Ideal DCG, which is the Discounted Cumulative Gain in its 

optimal ordering. To compute IDCG, one first obtains the search results and manually 

sorts them into the best possible arrangement. The DCG computed from this ideal rank-

ing constitutes the IDCG. 

 𝐶𝐺𝑃 = ∑ 𝑟𝑒𝑙𝑖
𝑃
𝑖=1  (8) 

The term 𝑟𝑒𝑙1 represents the relevance at the i-th position. 

 𝐷𝐶𝐺𝑃 = 𝑟𝑒𝑙1 + ∑
𝑟𝑒𝑙1

𝑙𝑜𝑔2(1+𝑖)
𝑃
𝑖=2  (9) 
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We report the results of HR@5, HR@10, NDCG@5, and NDCG@10 as perfor-

mance metrics for the model. 

4.3 Baseline Models 

We will evaluate our proposed method by comparing it to the subsequent baseline 

methods:  

1. S3-Rec [31]: S^3 employs self-supervised learning tailored for sequence recom-

mendation based on self-attention mechanisms. The main strategy involves using the 

natural connections in available data to create self-supervised signals. This is fol-

lowed by employing pre-training approaches to augment data representations, ulti-

mately leading to improved sequence recommendations. 
2. FM [32]: Factorization Machines (FM) are machine learning models designed to 

address recommendation and prediction problems under sparse data conditions. By 

decomposing interactions among features, FM effectively captures relationships be-

tween different characteristics.  
3. BERT4Rec [33]: This involves the application of pre-trained BERT models to 

recommendation systems. By learning from item text descriptions and user interac-

tion sequences, it aims to boost recommendation accuracy and personalization. 
4. DuoRec [34]：This method improves recommendation accuracy and personaliza-

tion by combining user behavior and item information. Using neural networks, it 

learns user and item representation vectors to predict user preferences. This approach 

addresses data sparsity and cold-start issues, enhancing recommendation system per-

formance. 
5. UniRec [35]: UniRec is a single-modality recommendation method that maximizes 

the use of a single data source to enhance recommendation accuracy and efficiency. 

It does not involve multi-modal data fusion but focuses solely on optimizing recom-

mendation models based on a single data modality. 
6. MMRec [36]: This approach aims to improve recommendation system perfor-

mance by leveraging correlations between different data modalities. It integrates 

multimodal data to comprehensively capture user and item features, enhancing rec-

ommendation accuracy and personalization. 

4.4 Experimental Details 

We preprocessed the datasets used in the experiments as follows: we adopted a previous 

strategy to filter the data, keeping only user and item records with at least five interac-

tions, while filtering out those with fewer interactions. This ensured that each user and 

item had at least five interaction histories. Additionally, we reorganized the cleaned 

dataset by grouping it based on user interaction behavior and sorting the interaction 

records in ascending order according to the timestamps. Through these steps, we aimed 

to highlight users and items that are more representative in the data analysis and mod-

eling process, while maintaining the chronological order of interactions, as shown in 

Table 1. 



We utilize the source code provided by the authors for BERT4Rec, GRU4Rec, 𝑆3-Rec, 

FM, and DuoRec. The hyperparameters are configured according to the recommenda-

tions given in the original publications. Furthermore, the process of adjusting and opti-

mizing the baseline models is carried out on three different datasets that are used for 

further analysis. In regards to our proposed model, we use the Adam optimizer with a 

learning rate of 0.001 and configure the batch size to be 8192. The masking rate for the 

model is set at 0.2. For the four Amazon datasets, we set the maximum sequence length 

to be 20, while for the Meituan dataset, we configure the maximum sequence length to 

be 100. To ensure the fairness of the experiments, we conducted ten repetitions of each 

experiment. The results of each experiment were averaged, and the standard deviation 

was included. 

Table 1. Statistics of the datasets after preprocessing. 

Datasets Meituan Beauty Sports Tmall 

Users 13,622 22,363 25,598 66,909 

Items 20,062 12,101 18,357 37,367 

Actions 747,827 198,502 296,337 427,797 

Sparsity 99.73% 99.93% 99.95% 99.95% 

4.5 Comparison to the State of the Arts 

In Table 2, we compare the proposed method with several baseline models across three 

public datasets. From the results, several observations can be made: 

1. Compared to BERT4Rec, our method across all datasets, we find that our method 

outperforms BERT4Rec. This is because BERT4Rec primarily uses learned text fea-

tures as item representations, rather than ID embeddings. 

2. Compared to FM, our method shows significant superiority. This is because FM only 

models interactions between features within a single modality and lacks the ability 

to integrate multiple modalities. 

3. Compared to 𝑆3 − Rec and DuoRec, we observe that models combining modality 

features with ID embeddings as input perform better than models relying solely on 

ID embeddings. This can be attributed to the fact that modality features provide ad-

ditional information for training. 

4. By comparing with other multi-modal recommendation methods, such as UniSRec 

and MMRec, we find that MMRec outperforms UniSRec. This is because UniSRec 

relies on pre-training methods to learn generic, ID-agnostic representations from text 

features, while MMRec can model more multi-modal features in feature-level se-

quences and cross-modal fusion. Additionally, our method introduces a new scoring 

criterion and models items well, leading to superior results. 

5. Compared to all other baseline models, our method shows significant improvements 

on dense datasets, such as Meituan. Our model diverges from conventional tech-

niques that depend on item embedding-based methods for sequence recommenda-

tion. Instead, it employs a self-supervised multimodal pre-training approach to gain 
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comprehensive item representations, hence improving the model's ability to gener-

alize. These data demonstrate the efficacy of our model. 

Therefore, these results substantiate the efficacy of our proposed model. 

Table 2. Performance comparison of different methods on three datasets. 

Datasets Metric BERT4Rec FM 𝑺𝟑 − 𝐑𝐞𝐜 DuoRec UniRec MMRec Ours 

Meituan 

HR@5 0.1800  

±0.0041 

0.0493 

±0.0013 

0.2219 

±0.0044  

0.2194 

±0.0045 

0.1817  

±0.0037 

0.2206  

±0.0045 

0.2465  

±0.0030 

HR@10 0.2007 

±0.0043 

0.0542 

±0.0016 

0.2441 

±0.0042 

0.2414 

±0.0048 

0.1999 

±0.0038 

0.2427 

±0.0048 

0.2712 

±0.0032 

NDCG@5 0.1079 

±0.0023 

0.0308 

±0.0013 

0.1387 

±0.0026 

0.1371 

±0.0025 

0.1136 

±0.0031 

0.1379 

±0.0036 

0.1541 

±0.0022 

NDCG@10 0.1367 

±0.0026 

0.0385 

±0.0013 

0.1733 

±0.0027 

0.1714 

±0.0028 

0.1419 

±0.0039 

0.1724 

±0.0039 

0.1926 

±0.0024 

Beauty 

HR@5 0.0396 

±0.0012 

0.0112 

±0.0003 

0.0503 

±0.0014 

0.0497 

±0.0016 

0.0412 

±0.0014 

0.0500 

±0.0017 

0.0558 

±0.0008 

HR@10 0.0440 

±0.0014 

0.0124 

±0.0003 

0.0558 

±0.0014 

0.0552 

±0.0018 

0.0457 

±0.0015 

0.0555 

±0.0018 

0.0620 

±0.0009 

NDCG@5 0.0244 

±0.0010 

0.0067 

±0.0001 

0.0301 

±0.0012 

0.0298 

±0.0011 

0.0246 

±0.0010 

0.0299 

±0.0012 

0.0334 

±0.0004 

NDCG@10 0.0305 

±0.0012  

0.0084 

±0.0002 

0.0376 

±0.011 

0.0372 

±0.0015  

0.0308 

±0.0012 

0.0374 

±0.0013 

0.0418 

±0.0004 

Sports 

HR@5 0.0325 

±0.0012 

0.0094 

±0.0002 

0.0424 

±0.0017 

0.0419 

±0.0018 

0.0347 

±0.0014 

0.0421 

±0.0014 

0.0471 

±0.0005 

HR@10 0.0361 

±0.0013 

0.0105 

±0.0006 

0.0470 

±0.0015 

0.0465 

±0.0015 

0.0385 

±0.0014 

0.0468 

±0.0017 

0.0523 

±0.0007 

NDCG@5 0.0213 

±0.0009 

0.0057 

±0.0002 

0.0255 

±0.0010 

0.0252 

±0.0011 

0.0209 

±0.0010 

0.0254 

±0.0011 

0.0284 

±0.0002 

NDCG@10 0.0249 

±0.0011 

0.0065 

±0.0001 

0.0291 

±0.0014 

0.0287 

±0.0014 

0.0238 

±0.0010 

0.0289 

±0.0013 

0.0323 

±0.0002 

4.6 Ablation study3 

In this section, we conduct an ablation study on datasets such as Meituan and Sports to 

analyze the impact of each proposed technique and component on system performance. 

Specifically, we compared with the following variants: (1) w/o V: without visual mo-

dality. (2) w/o S: without textual modality. (3) w/o P: without pretraining. (4) w/o P+V: 

without pretraining and visual modality. (5) w/o P+S: without pretraining and textual 

modality. 



 

Fig. 1. Performance comparison of different methods on three datasets. 

The results are shown in Figure 2. Based on the experimental results of our model, we 

can infer that: 

1. Our pretraining has been shown to improve the performance of the model in down-

stream recommendation tasks, providing further evidence that our pretraining task 

effectively learns how to align representations between different modalities and 

boost their reciprocal reinforcement. 

2. Our model design efficiently combines features from multiple modalities. Addi-

tionally, when using both visual and textual modalities simultaneously, our model 

achieves outstanding performance. 

5 Conclusion, Broader Impact and Limitation 

This research presents a new and innovative sequential recommendation model de-

signed for the Internet of Things (IoT) scenario. In order to allow the model to make 

predictions about the next item in a sequence based on the contextual information, we 

combine the feature embeddings, modality embeddings, and position embeddings to 

create a representation of the item. We use the predicted embeddings from the user 

encoder for retrieving the embeddings generated by the item encoder. Furthermore, to 

enhance the retrieval performance of the model, we propose a multi-modal pretraining 

method. The model's generalization capacity is enhanced by creating contrastive learn-

ing challenges that involve various feature combinations. Our model's performance is 

demonstrated through experiments conducted on three public datasets. 

In our future work, we will explore ways to streamline our model structure in order to 

decrease the computational resources required. We also aim to optimize modal selec-

tion to better align with our daily lives. Additionally, we aim to expand the current 

framework to encompass a wider range of user modeling activities.  
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