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Abstract. Recently, there’s been a surge in scholarly interest in traffic forecast-

ing. Most of the efforts have been concentrated on short-term forecasting, and 

have yielded promising results. Long-term forecasting, though more practical, 

presents two challenges. First, existing approaches primarily capture dependen-

cies and correlations within short-term historical data. Their performance drops 

when handling long-term spatio-temporal forecasting, indicating limited scala-

bility. Second, most approaches tend to emphasize temporal information, often 

at the expense of neglecting important spatial geographic information. In re-

sponse to these two challenges, we propose our transformer-based traffic fore-

casting approach, MiNiformer, featuring the Spatial Feature Extractor – Mixer 

Adapter as a crucial element. MiNiformer excels in extracting and integrating 

spatial features, leading to impressive results. Experiments show that MiNi-

former, by leveraging spatial information and long-term dependencies, show-

cases robust long-term feature extraction capabilities and performs exceptionally 

well in both short-term and long-term scenarios. 

Keywords: Spatio-temporal, traffic forecasting, Transformer, Mixer-adapter 

1 Introduction 

In the realm of Intelligent Traffic Systems (ITS), traffic forecasting occupies a critical 

role as a spatio-temporal data mining task[1]. It entails leveraging algorithms to unearth 

patterns within historical traffic data, subsequently enabling forecasts of future traffic 

flow. Traffic forecasting directly impacts people’s daily lives, with accurate and effi-

cient models empowering informed travel decisions and lifestyle adjustments. Conven-

tional approaches aim to extract the underlying distribution and salient features of the 

historical data, subsequently enabling the forecasting of future traffic patterns within a 
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specified time window. The forecasting horizon determines the classification of the 

problem into short-term or long-term forecasting [2][3][4]. The forecasting length is 

often divided by a one-hour boundary, with less than one hour for short-term forecast-

ing and more than one hour for long-term forecasting [5]. In practical applications, the 

duration of the forecasting interval offers valuable insights for traffic management strat-

egies. Longer forecasting horizons tend to be more advantageous, particularly for traffic 

flow data encompassing the next few hours. This extended time frame facilitates user 

path planning and optimizes traffic resource allocation. However, long-term forecasting 

presents two key challenges despite its advantages. Firstly, most current methods excel 

at capturing dependencies and correlations within short-term historical data. This focus, 

however, leads to performance degradation when applied to long-term spatio-temporal 

forecasting, highlighting limitations in scalability. Secondly, a prevalent bias exists to-

wards temporal information, often neglecting the critical role of spatial geographic fea-

tures. This omission hinders the ability of existing models to fully capture the complex 

interplay between space and time in traffic flow dynamics. Conventional approaches 

often rely on graph-based methods, such as spatio-temporal Graph Neural Networks 

(STGNNs) [6]. These approaches model historical traffic flow data by treating traffic 

data collection sensors as nodes within a Graph Neural Network (GNN) framework [7]. 

However, graph-based methods require the prioric definition of the graph structure’s 

typology, which significantly hinders the model’s transferability to road networks with 

distinct typologies. This pre-definition restricts the model’s focus solely on the training 

data’s typology, leading to catastrophic performance drops when evaluated on road net-

works with different typologies. In recent years, Transformer-based models[8][9][10] 

have emerged as an alternative and adopt a different way from graph-based methods, 

eschewing spatial typologies in favor of focusing on the temporal characteristics of time 

series data. These models have demonstrated promising performance, fueling a surge 

in scholarly interest. Unfortunately, they disregard the crucial role of spatial infor-

mation in real-world traffic forecasting. To compensate for this omission, some efforts 

have incorporated spatial information through implicit spatial embedding modules 

[10][11]. The implicit nature of these designs hinders interpretability, as it remains un-

clear which specific spatio-temporal features contribute most significantly to enhanced 

prediction performance.  

To address these challenges, we present an intuitive approach, the Mixer-Adapter 

Noise-Embedding Interfaced Transformer, denoted as MiNiformer. The cornerstone of 

MiNiformer is the Mixer-Adapter, a plug-and-play module adept at extracting and rep-

resenting spatial geographic features of the traffic signal matrix 1. In addition, traffic 

flow data often exhibits “spike noise”, characterized by surges in flow at specific in-

stances. To effectively model such noise, we incorporate a learnable noise embedding 

module, Noise Embedding. In summary, the contributions can be summarized as fol-

lows: 

• We first propose a flexible and learnable adapter for spatial information - Mixer 

Adapter, which effectively compresses and extracts spatial information through a 

specially designed feature extraction module. It can explicitly extract spatial features 
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and integrate them with temporal features. This makes the model highly spatially 

sensitive, thereby improving forecasting accuracy and robustness. 

• We integrate a learnable noise embedding module with the vanilla transformer. This 

module has the ability to comprehend and learn from the noise. The term “noise” 

here refers to the random or inconsistent part of the data that may not contribute 

directly to the output but may have an underlying pattern or structure that could be 

beneficial to learn. 

• To verify MiNiformer’s effectiveness in long-term scenarios as well as short-term 

scenarios, we conducted extensive experiments on MiNiformer based on PEMS04 

and PEMS08 to demonstrate its superiority over existing methods. 

2 Relate work 

2.1 Traffic Forecasting Task 

The intelligent transportation system is a crucial component of smart mobility, and traf-

fic forecasting is a significant aspect of intelligent transportation systems[12]. Accurate 

and reliable forecasting can alleviate congestion, conserve resources, guide people’s 

travel, reduce traffic accidents, and mitigate energy waste. Broadly speaking, traffic 

data falls under spatio-temporal data, making traffic forecasting a spatio-temporal data 

mining problem. Specifically, the task involves modeling based on historical data, 

where the model fits the characteristics of the historical data and then predicts data for 

a certain future period. The evaluation criteria are the accuracy of the forecasting for 

future data and the associated error loss. The better the accuracy and the lower the error, 

the more effective the modeling for the problem. Depending on the forecasting horizon, 

traffic forecasting can be categorized into short-term and long-term forecasts, typically 

divided at one-hour intervals. forecasting cycles shorter than one hour are considered 

short-term forecasts, while those longer than one hour are defined as long-term fore-

casts[2][3][4]. 

2.2 Graph-based Approaches 

The fundamental challenge of the traffic forecasting task is the effective modeling of 

the responsible and dynamic spatio-temporal dependencies of traffic data[8]. Many 

methods, such as ARIMA[13] and SVM[14], only consider temporal information, but 

spatial dependency still plays a significant role in the problem of traffic forecasting. 

Therefore, from the perspective of extracting spatial features, we divide the methods 

into implicit spatial information extraction methods and explicit methods. There has 

been a lot of work on explicit methods of spatial features, with Convolutional Neural 

Networks (CNNs)[15] commonly used in the early stages for grid-based traffic data to 

capture spatial dependencies. Later, graph-based methods[16]  have been proven to be 

more suitable for modeling the underlying graph structure of traffic data. However, 

methods based on GNNs often require a predefined structure, which is fixed and can 
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not be modifiable. It can be considered that once the topology of the road network 

changes, the prediction performance drops. 

2.3 Transformer-based Approaches 

Methods based on the Transformer often focus on the embedding encoding of input 

data, thus implicitly modeling the spatio-temporal data. Through a large amount of time 

series data and specially designed embedding modules, an implicit spatial representa-

tion is learned. 

Due to the self-attention mechanism’s advantages of parallelism, designing model ar-

chitectures using self-attention mechanisms is highly attractive. Therefore, in 2017, the 

Google research team proposed a model entirely based on the self-attention mechanism: 

Transformer[17]. Initially proposed as a model for processing text data, the Trans-

former has gradually been applied to fields such as computer vision, reinforcement 

learning, and spatio-temporal data mining.[36][37] 

Temporal-spatial models based on the Transformer architecture are gradually gaining 

attention from researchers, with numerous studies dedicated to this area in recent 

years[10][18]. ODformer[18] introduces a new attention mechanism on top of the 

Transformer architecture, aimed at capturing the special spatial dependencies between 

OD (Origin-Destination) pairs with the same origin (destination). This mechanism im-

proves the model’s predictive capabilities across various application scenarios by iden-

tifying and enhancing the correlations between OD pairs. PDFormer incorporates dy-

namic positional encoding into the transformer, enabling the model to better capture 

long-term dependencies in time series data. With an improved attention mechanism, it 

becomes more sensitive to positional information, thus achieving better results in tasks 

like sequence forecasting. STAEformer[10]  introduces an implicit, learnable temporal-

spatial embedding module at the embedding level to sensitize the model to temporal-

spatial data, achieving commendable results through serial time-space attention mod-

ules. In summary, Transformer-based traffic forecasting methods have been receiving 

increasing attention in recent years, and a wealth of experiments has demonstrated that 

Transformer-based architectures can more effectively handle temporal-spatial related 

data. However, it cannot provide a reasonable and reliable reason in terms of interpret-

ability. Therefore, how to explicitly and efficiently flexibly extract spatial information 

features is a direction worth paying attention to. 

3 Preliminaries 

Traffic Signal Matrix The traffic signal matrix is an adjacency matrix, that shows the 

spatial topological structure of the road network, with elements at each position repre-

senting both the connectivity and distance between two locations (namely, the location 

of the sensor). It is determined by an undirected graph 𝐺 = {𝑉, 𝐸,𝑊} , where 𝑉 =
{𝑉1, 𝑉2, … , 𝑉𝑛} are nodes, representing 𝑛 locations. 𝐸 is the set of undirected edges, rep-

resenting the connected nodes 𝑉𝑖 and 𝑉𝑗. 𝑊 is the matrix of two nodes. 𝐺 ∈ 𝑅𝑛×𝑛 stores 

the distance of connected nodes, 𝐺 is specifically determined by Equation (1). 
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Traffic Forecasting We use 𝑋𝑡 to denote the traffic signal matrix for the time step 𝑡. 
Starting from the sequence 𝑋 = (𝑋𝑡−𝑃+1, 𝑋𝑡−𝑃+2, . . . , 𝑋𝑡) of the past P time steps, pre-

dict the future traffic signal matrix sequence 𝑌 = (𝑋𝑡+1, 𝑋𝑡+2, . . . , 𝑋𝑡+𝑄) for the next Q 

time steps. This paper focuses on long-term traffic forecasting, hence both the input and 

output time spans exceed one hour. 

4 MiNiformer 

The core idea of our proposed MiNiformer, as shown in Fig. 1. Illustration of the ar-

chitecture of MiNiformer. , lies in the explicit and efficient extraction of road network 

topology information. Besides designing a Mixer-adapter embedding module to com-

press spatial information, MiNiformer  adopts a learnable noise module to simulate 

sudden data changes in the real world. 

 

Fig. 1. Illustration of the architecture of MiNiformer. 

4.1 Mixer-adapter.  

How to effectively extract spatial information is a key issue in the field of spatio-tem-

poral data mining. Prior research primarily explores two lines for incorporating spatial 

information: predefined network structures and learnable implicit embedding modules. 

Predefined network structures cannot learn the process of feature extraction from spa-

tial information, and using learnable implicit embedding modules use spatial 
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information implicitly, reducing its interpretability. The Mixer Adapter, acting as a ge-

ographic information extractor, uses network structures as input and effectively extract 

spatial representations of network structures without the need for pre-definition. The 

input of network structures is independent of the time series data. This means that the 

Mixer-Adapter is an explicit, efficient, and learnable extraction method. Illustration of 

Mixer-Adapter is shown in Fig. 2 

 

Fig. 2. Illustration of Mixer-Adapter. Following the pooling operation, the spatial topological 

structure is divided into multiple grids, which are then flattened into one-dimensional data and 

fed into the spatial extraction module. Eventually, they are processed into latent vectors con-

taining spatial information. 

Effectively and comprehensively modeling the dependency information of the network 

structure is not easy. We have fully considered how to compress and aggregate data 

from the original traffic signal matrix to enable the entire module to have better spatial 

feature learning and representation capabilities. For the traffic signal matrix, a max 

pooling operation is first adopted as follows: 
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where 𝑋′𝑖,𝑗 represents the value of the element at position (𝑖, 𝑗) in the output feature 

map after the MaxPooling operation.𝑋𝑠⋅𝑖+𝑎,𝑡⋅𝑗+𝑏  indicates the value of the element 

within the pooling window in the input feature map 𝑋, corresponding to the position 

(𝑖, 𝑗) in the output feature map, scaled by the strides 𝑠 and 𝑡.𝑘 and 𝑔 respectively rep-

resent the vertical and horizontal sizes of the pooling window.𝑠 and 𝑡 are the vertical 
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and horizontal strides, determining the intervals at which the pooling window moves in 

the corresponding directions.  

The matrix, after the pooling operation, condenses the location dependencies, connec-

tivity, and distance information within the road network topology. This information, 

after going through two blocks of patch processing and matrix feature processing (See 

the following paragraphs), is compressed into latent vectors which preserve spatial top-

ological information. 

Patch processing Patch processing includes two steps: clipping and fully connected 

layers at the patch granularity. First, the 𝑛 × 𝑛 matrix is divided into non-overlapping 

blocks of size 𝑝 × 𝑝, with each block containing 𝑝2 values. After flattening, the tensor 

dimension becomes 𝑝2, and these flattened tensors pass through a fully connected layer 

at the patch granularity, mapping the feature space dimensions to 𝐶𝑠. In this way, the 

information contained in each patch is mapped to an tensor, and these tensors together 

constitute the matrix where dimension is [( / )* ]sn p C . 

Matrix Feature Processing. The matrix goes through three sub-layers, which are the 

residual block with the layer normalization, the mean reduce block, and the global fully 

connected layer. The residual block first applies layer normalization to the input, mak-

ing the data distribution more uniform and enabling the model to have stable learning 

capabilities. The matrix, after layer normalization, is processed by an MLP that does 

not change the dimension, followed by an activation function and then another MLP 

layer that does not change the dimension too, and finally, it goes through layer normal-

ization again. Moreover, to prevent overfitting, a dropout layer is added between the 

activation layer and the MLP. The output is obtained through a residual layer. The spe-

cific process can be represented by the following Equation. 3: 

 ( ( ( ( ( ( ))))))    LayerN orm M LP DropouO t M LP LayerN o mut x r x+=  (3) 

After the residual connection operation, the matrix undergoes a dimension reduction 

through a mean normalization operation. By this point, the spatial information of the 

road network structure has been compressed into latent vectors. To better integrate with 

time series information, another MlP layer is introduced to unify the space of spatio-

temporal data. 

4.2 Embedding Layer 

In Fig. 3, we categorize time series data into periodic series data with a daily periodic-

ity, and short-term series data characterized by time step granularity obtained based on 

different sampling frequencies within a day. Through learnable embedding matrices — 

specifically, the weekly-periodic embedding
* *w fT N d

wE R  and the recent-periodic em-

bedding 
* *w fT N d

rE R , we learn the temporal features and information of these two 

trends, respectively. Here, 7wN = signifies that there are seven days in a week, while 

1
rN

f
= depends on the sampling frequency f. Here, 288rN = . 

t TW R and 
t TD R

correspond to the periodic data and the recent data within the traffic time series for the 

interval ! 2[ , , , ]t T t T tX X X− + − + , which are used as indices to retrieve the corresponding 
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weekly-periodic embedding 
* fT dw

tE R and recent-periodic embedding 
* fT dr

tE R

from their embedding dictionaries. By combining these two embedding modules, we 

obtain the periodicity embedding 
* *2 fT N d

timesttampsE R for the traffic time series, thus 

facilitating an enhanced representation of temporal patterns within the data. 

 

(a). short-term sequence data with time step granularity 

       

(b). weekly periodic sequence data 

Fig. 3. Dividing time scries data according to different trends: (a) short-term sequence infor-

mation by sampling time units. (b) periodic information by day units. 

4.3 Transformer and Regression Layer 

As depicted in Figure 1, the encoder structure of the vanilla Transformer is applied to 

complex spatio-temporal traffic relationships: temporal encoder and spatial encoder. 

The temporal encoder focuses on capturing temporal information across temporal di-

mensions, and the spatial encoder captures spatial information. To ensure the efficiency 

of information capture, we adopt a “cascading structure” instead of a “cross-fusion” 

approach. Assume that the traffic latent variables in the latent space are represented by 

𝑍 ∈ ℝ𝑇×𝑁×𝑑ℎ , where T denotes the number of time steps and N represents the number 

of spatial nodes (i.e., locations of sensors). The latent variables 𝑍 pass through a multi-

head self-attention mechanism. Attention scores are obtained by multiplying with learn-

able parameter matrices, and the final computation result is obtained by multiplying 

with the values, the formula is as follows: 

 𝑍𝑡 = softmax[
(𝑍𝑊𝑞

𝑡)(𝑍𝑊𝑘
𝑡)

√𝑑ℎ
] × (𝑍𝑊𝑣

𝑡) (4) 

where 𝑊𝑞
𝑡, 𝑊𝑘

𝑡 and 𝑊𝑣
𝑡 are learnable parameter matrices. Through the computation of 

self-attention in the temporal dimension, we can extract the temporal features of the 

matrix. Similarly, applying a similar operation to the spatial dimension can extract spa-

tial features: 
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 𝑍𝑠 = softmax[
(𝑍𝑡𝑊𝑞

𝑠)(𝑍𝑡𝑊𝑘
𝑠)

√𝑑ℎ
] × (𝑍𝑊𝑣

𝑠) (5) 

Finally, we leverage the output of the spatio-temporal transformer layers 𝑍𝑠 ∈
ℝ𝑇×𝑁×𝑑ℎ  to generate forecasting. The regression layer can be formulated as: 

 𝑌 = 𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑍𝑠) (6) 

𝑌 ∈ ℝ𝑇×𝑁×1 is the output forecasting result. By changing the dimensions through a 

fully connected neural network, the features are transformed into one dimension, thus 

obtaining the results to be predicted. 

5 Experiments 

5.1 Experimental Setting 

Dataset. We selected two widely used datasets, PEMS04 and PEMS08. Both datasets 

are constructed by the Caltrans Performance Measurement System (PeMS) with a sam-

pling frequency of once every 5 minutes, that is, 12 times per hour, 288 times per day. 

More detailed information is provided by Table 1. 

Table 1. Summary of Datasets 

Dataset Sensors(N) Time steps Time Range Time interval 

PEMS04 307 16,992 01/2018-02/2018 5 min 

PEMS08 170 17,856 07/2016-08/2016 5 min 

Dataset Processing. We divide the dataset into training, validation, and test sets with 

a ratio of 6:2:2. Moreover, depending on the specific task, we sample data from differ-

ent setup (24, 36, 48 steps) to predict future data of the same sampling granularity. The 

difference from previous tasks lies in our task’s focus on long-term traffic forecasting. 

Baselines. We compare MiNiformer  with the following baseline methods: 

1. History Average (HA): Directly use the average of past time series data as the fore-

cast value. 

2. Vector Auto-Regression (VAR) [19]: The VAR method constructs models by treat-

ing each endogenous variable in the system as a function of the lagged values of all 

endogenous variables in the system, thereby avoiding the requirements of structured 

models. 

3. Deep Convolutional Recurrent Neural Network (DCRNN)[20]:  The DCRNN 

model is a deep learning model that combines Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs), specifically designed to handle 

sequence data with spatial features and temporal dependencies, such as traffic flow 

forecasting. 

4. Graph WaveNet (GWNet)[21]:  GWNet is a neural network model for deep spa-

tial-temporal graph modeling, which enhances the analysis and forecasting of 
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dynamic graph-structured data by combining graph convolution and recurrent units 

to capture complex spatial and temporal dependencies in graph data. 

5. Graph Multi-Attention Network (GMAN)[9]:  GMAN is a deep learning model 

that efficiently aggregates node features in a graph by employing multiple graph 

pooling strategies and attention mechanisms to fit spatio-temporal data. 

6. Adaptive Graph Convolutional Recurrent Network (AGCRN)[22]:  AGCRN 

captures complex spatio-temporal correlations in traffic sequences by introducing 

node-adaptive parameter learning modules and data-adaptive graph generation mod-

ules. 

7. Attention based Spatial-Temporal Graph Neural Network (ASTGNN)[23]:  

ASTGNN is a traffic forecasting model that captures the local context of time series 

and the dynamic correlations of spatial data by combining self-attention mechanisms 

and dynamic graph convolution. 

8. Self-supervised Spatial Temporal Bottleneck Attentive Network (SSTBAN)[5]:  

SSTBAN employs self-supervised learning and spatio-temporal bottleneck attention 

mechanisms, optimizing computational complexity and data utilization efficiency. 

9. STAEformer[10]: STAEformer is a Transformer based model which has the spa-

tial-temporal embedding 𝐸𝑎. It has achieved performance in short-term traffic flow 

forecast through different embedding vectors and attention mechanisms for different 

dimensions. 

Run Setting. All experiments are conducted on a server equipped with an set of 

NVIDIA Force A6000 GPUs and 256GB of memory. The server’s operating system is 

Ubuntu 18.04. The code of MiNiformer  is implemented entirely using Pytorch-2.1.0 

and Python 3.9.7.  

Evaluation Metrics. For the evaluation of the model, we selected three metrics: (1) 

Mean Absolute Error (MAE), (2) Mean Absolute Percentage Error (MAPE), and (3) 

Root Mean Squared Error (RMSE). The formulas for these metrics are as follows: 

• Mean Absolute Error (MAE): MAE assigns the same weight to all errors, meaning 

that both large and small errors have the same impact in the calculation. 

 MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
𝑖=1  (7) 

• Mean Absolute Percentage Error (MAPE): MAPE can intuitively express the pro-

portion of error relative to the actual values. 

 MAPE =
100%

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|𝑛

𝑖=1  (8) 

• Root Mean Squared Error (RMSE): RMSE can better reflect the sensitivity of the 

model to outliers and the accuracy of forecasting. 

 RMSE = √
1

𝑛
∑ (𝑛
𝑖=1 𝑦𝑖 − 𝑦̂𝑖)

2 (9) 
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5.2 Main Results 

We comprehensively compared different time intervals with 8 models based on the 

PEMS04 and PEMS08 datasets. The results of these tasks can serve as a basis for long-

term traffic forecasting capabilities. In Table 1 , it can be seen that our MiNiformer  

generally achieved the best performance in the forecasting tasks of two datasets at dif-

ferent time steps. A more detailed observation are as follows. 

1. The PEMS04 dataset contains 307 sampling points, and its complex data composi-

tion makes models more susceptible to the influence of discrete values. Despite the 

challenges, our MiNiformer  achieved the best performance across all RMSE met-

rics. RMSE, by squaring the errors, amplifies larger errors and is more sensitive to 

significant errors. Our model demonstrates a good ability in sensitivity to outliers 

and forecasting accuracy. 

2. On the PEMS08 dataset, MiNiformer  consistently performed well in terms of MAE, 

which is the most intuitive metrics of the model’s ability to capture the trend. Thus, 

it can be considered that our model can effectively fit the target data. 

3. Our model achieved the best performance on most of the 12 metrics. For the remain-

ing metrics, it still performed second best. This fully demonstrates the robustness 

and reliability of our model. 

4. Among models that explicitly utilize spatial information, SSTBAN has the best per-

formance, but the use of spatial topological structure is not learnable, which means 

SSTBAN can not be transferred to other road networks with different spatial topo-

logical structures. On the contrary, extraction of spatial information for MiNiformer 

is learnable, making MiNiformer performs better. 

5. STAEformer is a classic model that uses spatial information implicitly, reducing its 

interpretability. MiNiformer fully utilizes connectivity and distance cost, hence its 

performance is superior in most scenarios. 

Table 2. Performance on PEMS04 and PEMS08. 

Red marks the best performance; blue indicates second-best 

Datasets Metric HA VAR DCRNN GWNet GMAN AGCRN SSTBAN STAEformer MiNiformer 

P
E

M
S

0
4

 

Step 24 

(2 hours) 

MAE 56.47 27.19 28.70 22.79 21.67 21.63 20.17 19.41 19.14 

RMSE 81.57 41.09 42.86 35.52 38.10 38.10 32.82 31.71 31.33 

MAPE(%) 45.49 21.42 21.23 16.04 17.78 17.78 14.43 12.68 12.54 

Step 36 

(3 hours) 

MAE 76.01 30.48 33.78 24.71 22.12 22.12 20.82 20.06 20.15 

RMSE 106.58 45.44 51.40 38.17 52.86 52.86 34.15 32.83 32.56 

MAPE(%) 68.84 24.15 27.10 17.67 16.43 16.43 14.83 12.94 13.17 

Step 48 

(4 hours) 

MAE 93.37 33.5 38.26 26.42 23.35 23.35 21.66 21.17 21.27 

RMSE 127.28 49.46 57.85 40.60 47.85 47.85 35.51 34.56 34.49 

MAPE(%) 94.62 27.28 33.73 18.99 17.98 17.98 15.90 13.78 13.82 

P E M S 0 8
 

Step 24 MAE 48.30 28.31 22.60 19.07 17.38 17.38 15.97 14.62 14.53 
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(2hours) RMSE 69.72 44.47 33.34 29.47 34.29 34.29 26.32 25.96 25.01 

MAPE(%) 32.09 19.53 15.46 12.25 15.66 15.66 12.29 9.57 9.74 

Step 36 

(3 hours) 

MAE 65.99 31.70 25.82 21.76 17.21 17.21 16.84 15.27 15.22 

RMSE 92.72 48.96 39.37 33.54 35.89 35.89 28.30 26.74 26.29 

MAPE(%) 46.64 22.56 18.53 13.68 16.33 16.33 12.20 10.05 10.35 

Step 48 

(4 hours) 

MAE 81.51 34.51 30.47 22.60 18.70 18.70 16.94 15.90 15.69 

RMSE 111.85 52.14 45.64 34.20 48.54 48.54 28.82 27.89 27.31 

MAPE(%) 61.29 25.28 25.10 14.16 16.81 16.81 12.47 10.54 10.45 

5.3 Experiment of Robustness 

Fig 4. illustrates the performance and robustness of in comparison to base-lines across 

various time steps. Based on results reflected in Fig. 3. Dividing time scries data ac-

cording to different trends: (a) short-term sequence information by sampling time units. 

(b) periodic information by day units., we can analyze the robustness of the models by 

checking if performance increases steadily as time steps increase. DCRNN and GMAN 

models show significant variations in MAE, RMSE, and MAPE metrics across different 

time steps. Although AGCRN and GWNet demonstrate more stability across different 

time steps, their performance is still inferior to MiNiformer. Compared to other base-

lines, MiNiformer  exhibits better robustness and stability, reflected in the more stable 

slope of its curve across forecasting over various time steps and achieving smaller er-

rors. This demonstrates that the MiNiformer  shows consistent effectiveness and excep-

tional performance in traffic forecasting tasks. 
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Fig. 4. Comparison of MiNiformer with baselines on various tasks is depicted in the top three 

graphs, showcasing the MAE, RMSE, and MAPE scores at different time steps on the PEMS04 

dataset. Correspondingly, the three graphs on the bottom reflect the MAE, RMSE, and MAPE 

for the PEMS08dataset. 

5.4 Ablation Study 

To further demonstrate the effectiveness of our two key modules (i.e., Mixer-Adapter 

and Noise Embedding), we conduct the ablation study on these two modules, compar-

ing the complete MiNiformer  with the version lacking the Mix-er-Adapter and the 

version lacking both the Mixer-Adapter and Noise Embed-ding, in a step-by-step ex-

ploration of the effectiveness of each module. The results in Table 3. showcase the 

outcomes of our comparative experiments designed for different modules. It is evident 

that these two modules play a crucial role. 

Table 3. Ablation Study On PEMS04 and PEMS08 

 PEMS04-24 PEMS08-24 

 MAE RMSE MAPE MAE RMSE MAPE 

Complete MiNiformer 19.14 31.33 12.54 14.53 25.01 9.74 

W/o Mixer-Adapter 20.51 33.04 14.56 15.43 27.16 10.61 

W/o Mixer-Adapter & Noise-embedding 24.99 40.25 16.76 17.43 29.78 11.39 

6 Conclusion 

We propose MiNiformer, that is capable of efficiently utilizing spatial information to 

address long-term traffic forecasting. Addressing the gap in past re-search, where ex-

plicit learning of spatial information was not possible, we de-signed a learning-capable 

spatial information capture module, the Mixer Adapter, allowing the model to consider 

spatial information while learning temporal data, thereby achieving explicit learning of 

spatial information and a paradigm for spatio-temporal data fusion processing. We have 

also integrated a noise learning module, significantly enhancing the model’s robustness. 

We conducted extensive experiments on two real-world datasets across three different 

forecasting intervals, demonstrating the superiority of MiNiformer. 
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