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Abstract. Multimodal Large Language Models (MLLMs) have made significant 

progress in bridging the gap between visual and language modalities. However, 

hallucinations in MLLMs, where the generated text does not align with image 

content, continue to be a major challenge. Existing methods for addressing hal-

lucinations often rely on instruction-tuning, which requires retraining the model 

with specific data, which increases the cost of utilizing MLLMs further. In this 

paper, we introduce a novel training-free method, named Piculet, for enhancing 

the input representation of MLLMs. Piculet leverages multiple specialized mod-

els to extract descriptions of visual information from the input image and com-

bine these descriptions with the original image and query as input to the MLLM. 

We evaluate our method both quantitively and qualitatively, and the results 

demonstrate that Piculet greatly decreases hallucinations of MLLMs. Our method 

can be easily extended to different MLLMs while being universal. 

Keywords: Multimodal Large Language Models · hallucinations · training- 

free. 

1 Introduction 

In recent years, there has been remarkable progress in the field of large-scale mod-

els, with the following being typical examples of this work: BERT [3] , GPT-3 [4], 

CLIP [5], DALL-E [6], etc. These works greatly promoted the development of Mul-

timodal Large Language Models (MLLMs), an important branch of Artificial In-

telligence. MLLMs’ goal is to construct an artificial intelligence system capable of 

understanding and handling different modalities, such as image, text, audio, etc. 

The field of MLLMs has seen several landmark advancements, including 
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LLaVa, CogVLM, Minigpt-5 et al. [7]–[9], they cast a profound impact on the im-

provement of MLLMs. 

The rapid development of MLLMs has led to their widespread adoption for 

various applications, such as image captioning and visual question answering. 

Despite their impressive performance, MLLMs are still prone to generating hal-

lucinations, where the generated text does not align with the image content. This 

issue significantly limits the practical applicability of MLLMs. As examplified in 

Fig 1, the generated description of this image is not consistent with the truth: 

1. there are 6 persons in the image, while the MLLM says seven; 

2. there are 3 water bottles on the table, while the MLLM says two; 

3. there is no blackboard on the left wall, only a whiteboard, while the 

model wrongly answers a blackboard after correctly answers a white-

board. 

Researchers have long been addressing the issue of hallucinations of MLLMs, 

and the mainstream methods can be divided into two kinds: training-based and 

training-free. Training-based methods usually collect or re-clean some datasets and 

retrain the models to decrease hallucinations of MLLMs. These kinds of methods, 

naturally, often require substantial manual intervention and are time- consuming. 

Moreover, given the substantial computational resources required for training large 

models, the economic cost of such methods is also quite consider- able. As for 

training-free methods, current methods focus their emphasis on the postprocess of 

MLLMs. Given a user’s query, firstly the MLLMs will answer it as usual. Then 

the answer is thoroughly analyzed and corrected to decrease hal- lucination. These 

kinds of methods often utilize other rather large models apart from the MLLMs to 

be corrected, which is time-consuming and uneconomical. 

Inspired by the phenomenon that humans use specialized tools to enhance 

their abilities, we propose a training-free framework, named Piculet, to enhance 

the input representation of MLLMs by leveraging multiple, specialized, small-

scale, deep learning models to extract a description of visual information from 

the input image, i.e., we use multiple specialized models to guide MLLMs to 

generate more accurate results. Specifically, our Piculet utilizes the outputs 

from these small-scale deep learning models as external konwledge to enhance 

the MLLMs, thereby minimizing MLLMs’ propensity for hallucinations. 

By combining the extracted description of visual information with the orig- inal 

image and query as input to the MLLM, we aim to improve the accuracy of 

the model’s output. Our method requires no retraining of MLLMs and no other 

rather large models, which is much faster and economical than all current available 

training-based methods and training-free methods. We evaluate the ef- fectiveness 

of our method through comprehensive quantitative and qualitative experiments on 

the POPE [13], MME [14], and LLaVA-QA90 [15]datasets. The results and asso-

ciated analyses indicate the superiority of this new paradigm. For instance, on the 

LLaVA-QA90 benchmark, our method largely boosts the accuracy of the baseline 

Qwen-VL-Chat [34] from 6.1 to 7.3 on a scale of 10. 
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Fig. 1: Illustration of Hallucination of MLLMs. This MLLM generates descriptions of an 

image with wrong information, including the number of people and cups, and also, there is 

only whiteboard, not a blackboard on the left wall. 

In summary, the main contributions are as follows: 

- We proposed a training-free, pre-process framework named Pic-

ulet to reduce the hallucinations of MLLMs. To the best of our 

knowledge, we are the first to utilize a pre-process framework to 

tackle the visual hallucination problem. 

- Our framework only requires one inference of the target MLLM 

and several other small deep learning models, which is economical 

and time-saving, and is plug-and-play in various different MLLMs. 

These small models’ information is utilized as external knowledge 

to calibrate the MLLM. 

- We evaluate our method on numerous datasets with other meth-

ods, and the results demonstrate the effectiveness and improve-

ment of our method. 

2 Related Work 

2.1 MLLMs’ Hallucinations 

Despite the mushrooming of MLLMs, the problem of hallucination still hangs 

like the sword of Damocles: MLLMs occasionally generate content that diverges 

from the user input, contradicts previously generated context, or misaligns with 

established world knowledge. While the relatively usual normal deep learning 

models [18–21] output results of quite reliable credibility, hallucination puts the 

MLLMs at a disadvantage, users tend to use MLLMs more for fun rather than 

for professional needs, which is certainly not a good thing for MLLMs developed 
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for professional purposes. To address this challenge, existing mainstream works 

have primarily focused on two aspects: training-based and training-free. 

2.2 Training-based Methods 

For training-based methods, Gunjal et al. [10] introduced MHalDetect, a multi- 

modal hallucination detection dataset that can be used to train and benchmark 

models for hallucination detection and prevention. Liu et al. [11] addressed this 

issue by introducing the first large and diverse visual instruction tuning dataset, 

named Large-scale Robust Visual(LRV)-Instruction. Lu et al. [23] developed 

an evaluation module that automatically creates fine-grained and diverse visual 

question answering examples to assess the extent of agnosia in MLLMs compre- 

hensively. They also developed a mitigation module to reduce agnosia in MLLMs 

through multimodal instruction tuning on fine-grained conversations. 

These training-based methods, also well known as instruction-tuning, usually 

introduce a new dataset for retraining MLLMs, which requires significant com- 

putational resources and specialized data. These methods are also fairly time- 

consuming, considering that the inference of MLLMs is often a much longer time 

than traditional deep learning models. 

2.3 Training-free Methods 

As for training-free methods, Yin et al. [12] represents a typical method that re-

quires no training of MLLMs while can directly correct the hallucinations. 

They emphasized main attention on the post-process stage of MLLMs, firstly 

they get an answer of a MLLM, then utilized auxiliary models’ outputs to cor- rect 

both object-level and attribute-level hallucinations, which was the first to apply a 

corrective manner to tackle the visual hallucination problem. Although their 

method, named Woodpecker, can reduce hallucinations by correcting the MLLM’s 

answers, their method is a post-process framework, and still actually comprises 

three pre-trained rather large-scale models apart from the MLLM to be corrected, 

which are GPT-3.5-turbo [30], Grounding DINO [31] and BLIP-2-FlanT5 XXL 

[32]. Furthermore, the GPT-3.5-turbo is used 3 times in their processing pipeline. 

These models are not only time-consuming, but some are also proprietary, mak-

ing them uneconomical with slow inference processes. 

Compared to their approach, our method addresses the hallucination issue of 

MLLMs at its root and utilizes no other large language models apart from the 

MLLM to be corrected. Different from the Woodpecker method focusing on the 

post-process stage, our method focuses on the pre-process stage of MLLMs. Our 

method utilizes specialized, traditional small deep learning models to generate re-

sults describing factual information. These results, reorganized into a specific 

format, serve as supplementary descriptions and are input alongside the user’s 

query and image into the MLLM, thereby enabling the model to generate correct 

answers directly by referencing additional factual information. Our specialized 

models only need to be run once during the processing pipeline, and the outputs 

of specialized models serve as external knowledge to calibrate the MLLM. 
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3 Method 

Our method aims to address the hallucinations of MLLMs at its original source. 

We firstly utilize specialized traditional light-weight deep learning models to 

detect factual information of input image, then formulate these descriptions, which, 

alongside the user’s query and image, are input into MLLMs. MLLMs, given the 

formulated input, then generate results with reduced hallucinations. Our method 

utilizes these specialized models to generate factual external knowledge apart from 

the single input image, which provides a reliable basis for decision-making in the 

outputs of the MLLMs. We will introduce these steps in detail in sequence. 

 

Fig. 2: Details of input formulation. In each sub-image, we adopt a randomly chosen image 

to exemplify the concrete operation. 

3.1 Specialized Models 

Object Detection. We utilize an object detection model to detect factual in- 

formation of the input image. To be specific, we adopt PP-YOLOE [24], an 

industrial state-of-the-art object detector with high performance and friendly 

deployment, to detect objects inside input image. PP-YOLOE is pre-trained on 

COCO [25], a large-scale object detection, segmentation, and captioning dataset 

that has 80 object categories that can cover the most common objects encoun- 

tered in daily life. 

OCR. We utilize PaddleOCR1 to recognize characters inside image. Pad-

dleOCR is an awesome multilingual OCR toolkit based on PaddlePaddle, which 

supports 80+ language recognition, provides data annotation and synthesis tools, 

and supports training and deployment among server, mobile, embedded and IoT 

devices. We utilize this model to extract additional information inside an image 

 
1 https://github.com/PaddlePaddle/PaddleOCR 
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to serve as supplemental descriptions, together with the detected objects, for the 

MLLMs to refer to. 

 

Fig. 3: Illustration of our method’s processing. Red words are preprocessed results of spe-

cialized models, yellow words are the predefined prompt everybody usually uses, and blue 

words are the user’s original query, purple words are model’s reply without hallucination. 

The recognized characters, faces and objects are integrated into one single sentence, which, 

alongside the user’s original query and image, serves as the final input of MLLMs.  

 

Face recognition. We utilize insightface [26] to detect faces inside an image. 

Insightface is an open-source 2D&3D deep face analysis toolbox, which efficiently 

implements a rich variety of state-of-the-art algorithms of face recognition, face 

detection and face alignment, which are optimized for both training and deploy- 

ment. Furthermore, we establish a repository of celebrities, and the recognized 

faces are classified as concrete celebrities. These descriptions, alongside the de-

tected objects and PaddleOCR’s characters, also serve as external information for 

the MLLMs to refer to. 

3.2 Input Formulation 

We utilize the aforementioned specialized traditional deep learning models to de- 

tect objects, characters, and faces, and in this part we integrate all these detected 
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results into a specific format to serve as input, alongside the original user’s ques- 

tion and image, for the MLLMs. 

Object Detection. For the detected objects, we traverse all the detected re-

sults and integrate them into a single sentence in the following format: “ the image 
contains these objects: there is/are {number} {object}.”. The detail is exampli-

fied in Fig 2a. 

 

Fig. 4: Flowchart of our method. Given an image and a query, firstly we utilize specialized 

models to extract descriptions of visual information, these descriptions are then reorganized 

by prompt formulation block and combined with the original user’s query, the newly com-

bined query and image are then input into the MLLM. 

 

OCR. For the recognized characters, we also traverse all the detected texts and 

integrate them into a single sentence in the following format: “The text content 
contained in the image: {recognized characters}.”. The detail is examplified in Fig 

2b. 

Face recognition. For the recognized faces, we also traverse all the detected 

celebrities and integrate them into a single sentence in the following format: “the 
celebrity/celebrities in the image is/are: {recognized celebrities}.”. The detail is 

examplified in Fig 2c. 

After all these processing, the recognized characters, faces and objects are inte-

grated into one single sentence, which, alongside the user’s original query and 

image, serves as the final input of MLLMs. The final format of a typical input is 

examplified in Fig 3 in detail. In summary, the format is like: 

“Organized OCR results. 
Organized face recognition results.  
Organized detection results. 
Predefined prompt everybody usually uses.  
User’s original query.”. 

Through these steps, our method can directly address the hallucination issue 

of MLLMs at its root. An overview of our framework is depicted in Fig 4. 
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Our method utilizes specialized models to generate results, which serve as 

supplementary descriptions. These reorganized results, alongside the user’s query  

and image, are then input into the large model, thereby enabling the model to 

generate correct answers directly by referencing additional factual information.  

 

 

Fig. 5: Prompt template for GPT-4V-aided evaluation. Response 1 and Response 2 are the 

original responses and the corrected ones, respectively. 

 

Compared to other mainstream methods addressing the hallucination of MLLMs, 

our method has the following advantages: 

- Our method is totally training-free, and requires no re-training of MLLMs, 

which saves a lot of expenses and time. 

- Our framework only requires one inference of one single MLLM. 

- Our framework requires no inference of any other large-scale MLLMs, just 

several traditional deep learning models which are rather small and economical to 

infer and deploy. 
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4 Experiments 

In this section, we will discuss the datasets we use and the experiments we con- 

duct in detail. We use mainstream benchmark datasets POPE [13], MME [14], 

and LLaVA-QA90 [15], and conduct comprehensive comparative experiments 

to validate the effectiveness and superiority of our method. Specifically, we choose 

Qwen-VL-7B and LLaVa-v1.5-13B [7] as our baseline models. Considering that 

Woodpecker is the most similar training-free method to ours, we also compare 

our results with theirs utilizing the same baseline model LLaVa-v1.5-13B on 

POPE and MME benchmarks.  

4.1 Datasets 

POPE. The POPE [13] initiative aims to gauge the tendency of MLLMs to pro- 

duce hallucinations. It employs three varied sampling strategies–random, pop- 

ular, and adversarial—to construct non-existent object samples. Random sam- 

pling randomly selects items not depicted in the image, while popular sampling 

draws from a pool of frequently seen items not present, and adversarial sampling 

identifies items often found together but missing from the image. Each kind of 

strategy has 500 images, and each image has 6 related questions and answers, 

which is 3000 in total. 

For evaluation, to thoroughly compare our method, we directly tested all 

these images, which amounts to 9,000 in total. The questions balance between pos-

itive and negative samples at a 50-50 split. This approach casts object anno- tations 

as binary questions, centering on the evaluation of object hallucinations, with a 

particular emphasis on the aspect of existence. The selected MLLMs will 

answer like "Is there a wine glass in the image? ", and the answer will be measured 

in a metric of Accuracy, Precision, Recall and F1 Score. 

MME. The MME [14] is a comprehensive evaluation benchmark for MLLMs. 

To avoid data leakage that may arise from the direct use of public datasets for 

evaluation, the annotations of instruction-answer pairs are all manually designed. 

The concise instruction design can fairly compare MLLMs, instead of struggling 

in prompt engineering. Besides, with such an instruction, quantitative statistics 

can also be easily carried out. Also like POPE, The selected MLLMs will also 

be prompted Yes or No questions. 

LLaVA-QA90. The LLaVA-QA90 [15] contains randomly selected 30 image 

for COCO-Val-2014, and for each image, three types of questions (conversa-

tion, detailed description, complex reasoning) are generated using the proposed 

data generation pipeline in [15]. Specifically, we sample 10 description-type que-

ries that are paraphrased in various forms to instruct an MLLM to describe an im-

age, such as "Analyze the image in a comprehensive and detailed manner." and 

"Explain the visual content of the image in great detail.". GPT-4V [33] is uti-

lized to evaluate the answers generated by the plain baseline model and our 

framework’s model. We directly feed the image to GPT-4V, and prompt it to 

rate the responses regarding our designed two dimensions, i.e., accuracy and de-

tailedness. The prompt template is available in Fig 5. 
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4.2 Experimental Results 

Resutls on POPE. Instead of sampling several hundreds of images, We directly 

utilized the entire dataset, which amounts to 9,000 image-text queries, thereby en-

abling a more thorough and comprehensive comparison to demonstrate the superi-

ority of our method. The tested results on POPE are shown in Table 1, which uti-

lizes Qwen-VL-Chat [34] and LLaVa [15] as baseline model. Considering that 

Woodpecker [12] is the most similar training-free method to  

 

Table 1: Results on POPE using Qwen-VL-7B and LLaVa-v1.5-13B as baseline model. 

+Piculet denotes MLLM responses generated by our proposed Piculet , and 

+Woodpecker for woodpecker’s method. The best performances within each setting are 

bolded. Our method achieves a near-universal advantage across the board. 

 
 

Table 2: Results on MME using Qwen-VL-7B and LLaVa-v1.5-13B as baseline model. 

+Piculet denotes MLLM responses generated by our proposed Piculet, and +Woodpecker 

for woodpecker’s method. The best performances within each setting are bolded. Our 

method achieves a near-universal advantage across the board. 
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ours, we also compare with their tested results. As can be seen from the results, our 

proposed framework achieves an across-the-board performance improvement on 

all test sets and in all aspects. In detail, in all the adversarial, random, and popular 

testset, our method outperforms both the plain baseline model and the Woodpecker-

enhanced model in all the accuracy, precision, recall and f1-score, except the only 

one random set, where our method is slightly inferior to Wood- pecker. 

 

Table 3: Results on LLaVa-QA90 using Qwen-VL-7B and LLaVa-v1.5-13B as baseline 

model. with denotes MLLM responses generated by our proposed Piculet. We don’t know 

Woodpecker’ exact 10 sampled examples, so cannot compare with their scores. The accu-

racy and detailedness metrics are on a scale of 10, and a higher score indicates better perfor-

mance. The best performances within each setting are bolded. Our method achieves better 

performances on both accuracy and detailedness aspects. 

 

A seemingly counterintuitive point is that the unenhanced, plain LLaVa actu- 

ally performs the best on Recall, compared to both Woodpecker and our Piculet. 

However, this is actually reasonable: because MLLM inherently tends to answer 

"yes" to all Yes or No questions, without discrimination. This results in Recall, 

a measurement that measures the proportion of correctly classified samples out of 

all correct samples, being higher than that of both Woodpecker and our Piculet. 

The relatively high Yes Rate score of plain LLaVA also corroborates this spec-

ulation, which attests to our algorithm’s effectiveness in mitigating the hallucina-

tions of MLLMs as well. 

Overall, our method outperforms Woodpecker, not to mention that our method 

operates with faster inference and lower resource consumption, while merely pro- 
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viding additional factual external knowledge to the MLLM, allowing the MLLM 

to make its own decisions and produce outputs based on the reliable information. 

Resutls on MME. The results on MME are shown in Table 2, and the baseline 

model is also Qwen-VL-Chat and LLaVa. For comparison, we conducted experi-

ments on MME’s existence, count, position, color, celebrity and ocr test set. For 

comparison, we also add the Woodpecker’s results in the table. As can be seen 

from the table, our Piculet outperforms Woodpecker in most aspects, with only 

existence and count set as exceptions, where it slightly lags behind Woodpecker. 

Even so, considering that our method merely incorporates a few additional small 

deep learning models apart from the MLLMs to be corrected, and it significantly 

reduces inference time and operational costs compared to Woodpecker, our method 

is undoubtedly the better choice. 

Resutls on LLaVA-QA90. The results on LLaVA-QA90 is shown in Table 3, and 

the baseline model is also Qwen-VL-Chat and LLaVa. In this experiment, we sam-

pled 10 description-type queries, which are paraphrased in various forms to instruct 

an MLLM to describe an image, to evaluate our proposed framework’s perfor-

mance. The results, as can be seen from the table, show that our method has also 

achieved superior performance in both evaluation aspects. It’s worth noting 

that, as Woodpecker’s sampled 10 queries are not exactly known, so we can’t 

compare with their results here. 

4.3 Ablation Study. 

We conduct an ablation study on MME datasets to validate the superiority and ef-

fectiveness of our method. In this section, we utilize Qwen-VL-Chat as baseline 

model, in each test set, we select two of three specialized models and run experi-

ments to compare the generated results’ scores. The calculated results are shown in 

Table 4. 

 

Table 4: Ablation study results on MME using Qwen-VL-7B as baseline model.√ means 

results generated utilizing corresponding specialized models. 

 
As can be seen from the experimental results, each specialized model manages 

to boost the score on its respective test set. Specifically, the results with the 

specialized Detection model outperform those without it in both existence and 

count scores. Similarly, the use of the specialized OCR model leads to higher 

scores on  the OCR test set compared to when it is not used. The same can be 

said for the specialized Face model. Based on the comprehensive comparative 
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experimental results, we can confidently say that each of our specialized models 

contributes to improved outcomes. That is, the method we propose, which we 

name Piculet, can mitigate the hallucination phenomena in MLLMs, making the 

responses to users’ queries more authentic and reliable. 

5 Conclusion 

In this paper, we propose a novel framework named Piculet to address the hal-

lucinations of MLLMs at its root. As a training-free method, our approach re-

quires only single one inference of the target MLLM, and several other small 

deep-learning models, no other rather large-scale models are involved, which 

is economical and time-saving, and is plug-and-play in various different 

MLLMs. We have achieved the goal of reducing hallucinations by supplying 

the MLLMs with dependable external knowledge generated by specialized 

models. We evaluate our method on numerous datasets with other methods, and 

the results demonstrate the effectiveness and improvement of our method. We 

hope that our method can contribute a small improvement and offer some in-

sights into the handling of hallucinations of MLLMs, thus inspiring further re-

search and development in the field2. 
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