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Abstract. Lithology classification is an important research direction in
geological remote sensing. Lithology exhibits discernible textural features at a
certain spatial scale, which require representation at the scene scale. Lithology
is a high-level semantic information and its features are easily masked by
vegetation, posing challenges in remote sensing feature extraction. In this paper,
we constructed a lithology scene classification dataset named MSRS-LSC based
on multi-source remote sensing data. Subsequently, we propose a lithology
scene classification model called channel grouping fusion and adaptive feature
filtering network (CGFAFFNet) to solve this problem. This model consists of
two modules: 1) Channel grouping fusion (CGF) module: this module performs
channel grouping learning, infor-mation interaction, and weighted fusion on the
features extracted from multi-source remote sensing data, fully utilizing the
complementary information in the channel dimension of the multi-source
remote sensing data to extract key litholo-gy features; 2) Adaptive feature
filtering module: this module cascades the fused features from different CGF
modules and performs weighted calculations in both the channel and spatial
dimensions. It filters out redundant feature information caused by multi-source
remote sensing data, enhancing the model's ability to ex-tract key contextual
information. The proposed model achieved an Overall accu-racy (OA), F1-
score, and Kappa of 80.99% ± 0.4%, 81.26% ± 0.38%, and 78.85% ±
0.44%, respectively, outperforming mainstream scene classification models.
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1 Introduction

Lithology classification is the basis of earth science research and is of great
significance to geological survey, mineral exploration, environmental protection and
resource management [1]. With the development of the type and quantity of remote
sensing image data, the information provided is more and more abundant, which
makes it possible to automatically classify lithology at regional scale. Therefore, it is
of great theoretical and practical significance to carry out lithology classification by
remote sensing [2].
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Remote sensing lithology classification refers to the process of distinguishing rock
and soil types of shallow surface based on remote sensing data [3]. Different from the
research targets in conventional remote sensing images, lithology is a high-level
abstract semantic feature, which is presented as a spatial aggregation feature at a
certain scale in remote sensing images, and the spatial distribution has a certain
continuity, so it needs to be characterized and learned at the scene scale. Scene scale
can contain more information and better adapt to complex landforms and surface
object types caused by different lithology. Moreover, some zonal texture structures
can be observed on remote sensing images. Therefore, the spatial context information
in image scene blocks can help to learn more lithology characteristics [4]. Fig. 1
shows the comparison of multispectral images of Calcium Magnesium Silicate Rocks
at different scales. Fig. 1 (a) is the scene-level scale, where some banded texture
structures can be observed, and Fig. 1 (b) is some information features that are
difficult to characterize lithology at pixel scale.

Fig. 1. Comparison of multispectral images of Calcium Magnesium Silicate Rocks at different
scales

Lithology classification methods can be divided into three categories: artificial
feature-based, machine learning, and deep learning. In the early stages, researchers
used methods based on artificial features for lithology classification [5], [6], [7]. For
example, Hunt et al. [8] studied the reflection spectra of rocks and minerals, measured
the spectra of rocks and minerals in the visible-near-infrared range, and discussed and
summarized the causes. Gaffey et al. [9] conducted spectral analysis of anhydrous
carbonate minerals and proposed the concept that absorption peaks are diagnostic
identification features for minerals. However, artificial feature-based methods have
low efficiency and limited feature representation capability due to their shallow
feature extraction levels.

Subsequently, the emergence of machine learning methods has partly alleviated the
problem of low efficiency in manually extracting features. Previous researchers have
employed machine learning algorithms for lithology classification. For example,
Perez et al. [10] extracted spectral and texture information of lithology and employed
Support Vector Machine (SVM) for the lithology classification. Rezaei et al. [11]
utilized SVM to enhance lithology mapping in the Sangan region of northern Iran.
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Machine learning methods have improved the efficiency of lithology classification.
However, features based on shallow learning in machine learning methods have
significant limitations in lithology information representation, especially in scenes
where lithology is obscured. Additionally, machine learning methods cannot be
trained in an end-to-end manner, which is no longer suitable in the era of remote
sensing big data [12].

Recently, deep learning techniques have demonstrated powerful feature
representation capabilities. Drawing on the advanced progress of deep learning
techniques, various deep learning methods have dominated the field of lithology
classification in remote sensing and achieved significant breakthroughs in
classification performance [13]. Compared to traditional methods, deep neural
network architectures can extract high-level semantic features and obtain more robust
object feature representations [14]. With the widespread adoption of deep learning
techniques, there have been numerous surveys published in recent years that utilize
deep learning methods for lithology classification [15]. For example, Ye et al. [16]
used the Gaofen-5 satellite data equipped with advanced hyperspectral collector,
combined with deep learning to classify, and achieved good results. However, the
lithology is mostly covered by vegetation in remote sensing images, and its feature
information is weak. Conventional deep learning methods are difficult to extract the
key features of lithology, resulting in poor classification performance.

In addition, at the data level, a single data source can only provide partial
information about the lithology [17]. For example, multispectral data can capture the
spectral and spatial features of lithology, SAR data has strong penetration capability
and can effectively reflect differences in surface morphology and roughness, while
DEM can represent information about surface topography [18]. In areas with
vegetation cover, the spectral information about lithology is weak, and the surface
topography and morphology caused by lithology can be complex. Relying solely on a
single data source cannot provide sufficient information about the lithology. In such
cases, the fusion of multi-source remote sensing data sources is necessary to
complement each other’s information and provide sufficient information about the
lithology. Currently, researchers have used multi-source data for lithology
classification [19], [20], [21]. For example, Chen et al. [22], [23] constructed a multi-
source remote sensing dataset based on multispectral, SAR, and DEM data, and
designed a network that performs multi-source data fusion at the feature level for
lithology classification. Qasim et al. [24] utilized Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) and Sentinel-2B data, and applied
techniques such as decorrelation stretch (DS), band indices (BI), principal component
analysis (PCA), and minimum noise fraction (MNF) to analyze spectral features of
rock lithology and achieve lithology mapping. Indeed, the previous mentioned dataset
primarily focused on fusing the source data without fully leveraging some of the
information contained within the source data. Therefore, in this study, in addition to
utilizing multispectral, SAR, and DEM data, we also extract additional information
from the DEM such as aspect, slope, and hillshade. This inclusion of additional data
derived from the DEM enhances the richness of the lithology information present in
the dataset.
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To address the issues of insufficient lithology information in single-source data and
underutilization of information from multi-source data, a multi-source remote sensing
lithology scene classification dataset (MSRS-LSC) has been constructed. In addition,
in order to extract lithology key features and context information, a lithology scene
classification model called channel group fusion and adaptive feature filtering
network (CGFAFFNet) was proposed and tested. Our model has the following two
key structures: (1) Channel grouping fusion (CGF) module. This module can enhance
channel information, extract lithology key features and improve classification
accuracy by grouping and interacting channel dimensions. (2) Adaptive feature
filtering (AFF) module. This module is used to filter out some redundant information
when the multi-scale feature cascade, improve the ability of the model to extract
context information, and improve the classification accuracy.

2 MSRS-LSC

2.1 Overview of the study area and remote sensing data

The study area is located in the southeast of Hubei Province, with a longitude of
113°59’ - 115°52’ and a latitude of 29°03’ - 30°27’. The study area is located in a low
mountain and hilly area, with scattered lakes, more vegetation coverage, and a
subtropical monsoon climate with more rainfall and mild climate. The wide
distribution of vegetation in the area makes it challenging to classify lithology scenes.
In this study, the multispectral image was captured by Gaofen-6 (GF-6) satellite in
2021 with a resolution of 2m; the SAR data was captured by Gaofen-3 (GF-3)
satellite in 2021 with a resolution of 5m; the 10m DEM data was captured by Ziyuan-
3 (ZY-3) satellite. The aspect, slope, and hillshade was extracted from DEM. The
images of the study area are shown in Fig. 2.

Fig. 2. Study area images
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2.2 Label data

As shown in the Fig. 3, the label data of the study area contains a total of 15 types of
lithology: Water, Metaquartzite-Quartz Conglomerate, Ultrabasic Intrusive Rocks,
Quaternary, Calcium Magnesium Silicate Rocks, Siliceous Rocks, Basic Volcanic
Lava, Basic Intrusive Rocks, Terrigenous Clastic Rocks, Acid Volcanic Lava, Acid
Intrusive Rocks, Carbonate Rocks, Ferric Rocks, Intermediate Volcanic Lava, and
Intermediate Intrusive Rocks.

Fig. 3. Study area label
2.3 Introduction of the MSRS-LSC

The image cutting size was set to 256 × 256. A size analysis was carried out. The
class ratio of 256 × 256 is more suitable, and the prior knowledge of lithology
symbiosis probability can be obtained better than other sizes. Considering the
lithology characteristics and prior knowledge of the vegetation area, 256 × 256 was
selected.

After tailoring, 600 samples were randomly selected from each category of sample,
and the training set, validation set and test set were divided according to 6:2:2, and the
MSRS-LSC as shown in the following Table 1 was finally obtained.

Table 1. MSRS-LSC
Category Training set Validation set Test set Total
Water 360 120 120 600
Metaquartzite-Quartz Conglomerate 242 82 80 404
Quaternary 360 120 120 600
Calcium Magnesium Silicate Rocks 360 120 120 600
Siliceous Rocks 360 120 120 600
Terrestrial Clastic Rocks 360 120 120 600
Acidic Intrusive Rocks 360 120 120 600
Carbonate Rocks 360 120 120 600
Intermediate Volcanic Lava 293 99 97 489
Intermediate Intrusive Rocks 360 120 120 600
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In the cutting samples, Ultrabasic Intrusive Rocks, Basic Intrusive Rocks and Ferric
Rocks samples account for a relatively small proportion, and the number of samples is
0. The Basic Volcanic Lava and Acid Volcanic Lava samples are less than 10, and the
scene label category is also discarded. Therefore, the dataset of scene classification
produced only has 10 categories.
2.4 MSRS-LSC features

The samples of MSRS-LSC have the following features:
1) Serious vegetation coverage. In the remote sensing image, the lithology is

heavily covered by vegetation, and the bare lithology is less, resulting in weak
lithology information and difficult to extract key features.

2) Inter-class similarity and intra-class difference. The lithology in remote sensing
image has some similarity among different categories and some difference in the
same category, so the model is easy to misclassify, which makes it difficult to
improve the classification accuracy.

3 Methods

3.1 Overall structure

CGFAFFNet is shown in the Fig. 4. Using DenseNet121 as the backbone. This
network improves the efficiency of information transmission by designing dense
connection blocks, and this structure enables the network to better reuse features and
avoid information loss. In the Fig. 4, DenseBlock is a dense connection block of the
backbone network DenseNet121, which is mainly used for feature extraction. The
subsampling is the Transition of DenseNet, which mainly reduces the dimensionality
of features. CGF is used to enhance channel information, and AFF is used to avoid
false information caused by the fusion of different scale features, and fuses multi-
scale features.

Fig. 4. CGFAFFNet
3.2 Channel grouping fusion

By performing convolution operations on the channel dimension, the network can
learn the correlation and importance between different channels, so as to extract richer
and more abstract feature representations. However, due to the complex information
in multi-source remote sensing lithology data, the model cannot focus on key channel
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information, and it may not be able to make full use of different channel information
brought by multi-source data only through ordinary convolution. Inspired by SENet
[40] and ECA-MSDWNet [41], a CGF was proposed. The key difference of CGF
from SENet and ECA-MSDWNet lies in the combination of ideas from both models.
In CGF, we integrate the concept of channel weighting from SENet and the idea of
channel grouping and information interaction from ECA-MSDWNet. By facilitating
information exchange among channels, CGF fully utilizes the channel information
between multiple data sources and weights the channel information to extract crucial
channel features. This combination enables CGF to effectively capture and leverage
the essential channel-level information for better feature representation and
classification in multi-source data. The CGF is shown in the Fig. 5.

Fig. 5. Channel grouping fusion
The input feature X is divided to 4 parts along the channel dimension.

4321 ,,, XXXX will have the )(plitS function shown in formula 1, assuming
number of X channels is C, then number of 4321 ,,, XXXX channels are C/4, so
X is divied into 4 parts along the channel dimension.

)(,,, 4321 XSplitXXXX  (1)

After a convolution operation, 1X gets 1Y , and then 1Y and 2X are added to get

the feature reuse feature '
2X , and 2Y is obtained by convolution, and 4321 ,,, YYYY

is obtained according to formula 2 and formula 3. )(Conv in formula 3 refers to the
convolution operation of 1 × 1.

iii XYX  1
' (2)

)( '
ii XConvY  (3)
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4321 ,,, YYYY connect channels, as shown in formula 4. )(C represents the
connection function of channel dimension, and Y feature map is obtained after
connection.

),,,( 4321 YYYYCY  (4)

While the channel information is reused in the grouping, the original feature X is
calculated through two fully connected layers and the Sigmoid activation function to
obtain the channel weight W . In formula 5, FC represents the fully connected
operation.

)))((( XFCFCgmoidiSW  (5)

Finally, the channel weight W and the feature map Y are multiplied to obtain the
feature map 'Y which enhances the channel information.

YWY ' (6)

By grouping channels and mixing information, we can make full use of the
information of each channel in the multi-source data, improve the network
representation ability through channel information interaction, and then select more
important channel information and extract key features based on the channel weight
W obtained by the original feature X .

3.3 Adaptive feature filtering

Multi-scale features cascade is used in conventional feature fusion methods.
However, these features contain redundant information, which increases the difficulty
of classification. Therefore, it is necessary to filter these features before the cascade of
multi-scale features. Inspired by attention [42], [38] and MSFT [43], an AFF was
proposed. As Fig. 6 shown, the AFF consists of three branches: trunk branch, channel
branch, and spatial branch.

Fig. 6. Adaptive feature filtering
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(1) Trunk branch: for the input feature diagram F , its length is H, width is W, and
the number of channels is C, that is, its size is H × W × C, and after a 1 × 1

convolution operation, the size becomes H × W × C/2, and the feature is called
'F ,

as shown in formula 7.

)(11
' FConvF  (7)

(2) Channel branch: this branch learns the relationship between channels through
global embedding. Specifically, global average pooling in spatial dimensions is used
to generate the global features of each channel. Pooling operations can be expressed
as follows:


 


H

i

W

j
C jiF

WH
CV

1 1

),(1)( (8)

F represents the input feature map, and since CV does not agree with the number
of feature map channels generated by the channel branch, a full connect operation is
required for alignment. As shown in formula 9, '

CV is obtained through full
connection operation.

)('
CC VFCV  (9)

'
CV is a vector with correlation between channels, and CR can be reweighted in

channel dimensions as follows:

'' FVR CC  (10)

CR represents the feature map after channel weighting, that is, the blue feature block
in the top half of the figure.  represents element-wise product, which filters the
feature information of channel dimensions by giving less weight to irrelevant channel
information.

(3) Spatial branch: this branch can be regarded as the computation of the label
relation from the spatial dimension, where semantic information can be further
extracted from the spatial dimension.

Firstly, global average pooling is used in channel dimension to generate spatial tag
features, as follows:





C

k
jiT kP

C
jiV

1
, )(1),( (11)

TV represents an H × W × 1 feature map, and jiP , represents the (i,j) position of

the feature map. Then, it is flattened by a Flatten operation, and then reshaped to the
size of H × W × 1 to obtain a relation information between different semantics in the
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spatial dimension, which can also be called the weight of the spatial dimension. The
specific operations are as follows:

)))((('
TT VFLAFCRSPV  (12)

'
TV is a two-dimensional vector that represents the semantic information of the

spatial dimension and is used as the weight of the spatial dimension 'F . By giving
less weight to irrelevant spatial information, the feature information of the spatial
dimension is filtered. In addition, the output of the spatial branch is shown as follows:

'' FVR TS  (13)

SR represents the features weighted by the spatial information, that is, the yellow
feature block in the figure, the size of which is H × W × C/2, and  represents
element-wise product. The final output of the AFF is obtained from the output of two
branches, and the specific operation is as follows:

),( CS RRConcatR  (14)

)(Concat represents the channel dimension connection. Through this operation,

SR and CR are connected in the channel dimension. Finally, the feature map R
with the size of H × W × C is obtained, that is, the orange feature block in the figure.

The AFF performs weighted calculations in channel and spatial dimensions, giving
higher weights to important features and less weights to irrelevant features, so as to
filter feature information in both channel and spatial dimensions and avoid redundant
information caused by the cascade of multi-scale features.

4 Experimental results

4.1 Experimental configuration

The hardware and software environment of the experiment are shown in the Table 2.
Parameter settings are shown in the Table 3.

Table 2. Experimental environment
Experimental environment Specific parameter

Hardware environment
CPU AMD EPYC Processor
GPU NVIDIARTXA5000(24G)
Internal memory 32GB

Software environment
Operating system Windows10

Deep learning framework Pytorch 2.1.0
The model will dynamically adjust the learning rate during training, and the initial
learning rate is set to 0.0001. At the same time, the learning rate attenuation strategy
is introduced, that is, the learning rate will be adjusted and the size of the learning rate
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will be adjusted when a certain condition in the training meets the condition set. The
learning rate is reduced after the verifica-tion set loss does not decrease for more than
5 epochs, and the multiple is 0.5. For other parameters involved in the experiment, the
default coefficients in the experiment framework are used.

Table 3. Hyperparameters
Parameter Value
Batch Size 32
Epoch 100
Lr 0.0001
Optimizer Adam
Loss function Cross entropy loss function

4.2 Accuracy evaluation results

Table 4 shows the evaluation index results of different network structures on the
MSRS-LSC. On the MSRS-LSC, the proposed model (CGFAFFNet) achieved the
best results in various indexes, OA reached 80.99% ± 0.4%, F1-score reached 81.26%
± 0.38%, and Kappa reached 78.85% ± 0.44%. Compared with DenseNet121, which
had the best effect in the comparison model, OA increased by 2.66%, F1-score by
2.64% and Kappa by 2.96%.

Table 4. Experimental results on the MSRS-LSC
Model Year OA(%) F1-score(%) Kappa(%)
AlexNet [25] 2012 66.00 ± 0.90 66.02 ± 1.15 62.18 ± 0.98
Vgg16 [26] 2014 47.10 ± 3.53 45.45 ± 4.02 41.17 ± 3.98
GooleNet [27] 2014 66.00 ± 1.70 66.53 ± 1.81 62.17 ± 1.89
ResNet101 [29] 2015 63.46 ± 0.90 63.43 ± 1.07 59.36 ± 0.98
DenseNet121 [31] 2016 78.33 ± 0.44 78.62 ± 0.37 75.89 ± 0.49
ShuffleNet [28] 2017 71.51 ± 0.83 71.65 ± 0.93 68.31 ± 0.92
EffcientNet_b7 [35] 2019 62.67 ± 2.47 62.53 ± 2.79 58.53 ± 2.70
MobileNetV2 [30] 2019 57.72 ± 0.68 57.66 ± 0.61 52.98 ± 0.76
Vit [36] 2020 68.90 ± 0.74 69.09 ± 0.69 65.40 ± 0.83
Swintransformer [37] 2021 63.80 ± 1.77 64.04 ± 1.79 59.72 ± 1.97
ResNetMvt [39] 2022 74.53 ± 1.52 74.78 ± 1.60 71.67 ± 1.68
WaveMix [32] 2022 73.97 ± 1.09 74.22 ± 1.03 71.06 ± 1.22
DGBANet [33] 2023 77.10 ± 0.86 77.59 ± 0.85 74.52 ± 0.95
GhostNetV3 [34] 2024 52.01 ± 1.27 61.79 ± 3.58 46.59 ± 1.41
CGFAFFNet(ours) 2024 80.99 ± 0.40 81.26 ± 0.38 78.85 ± 0.44

Among the comparison models, VGG16 has the worst effect, while other models have
the best effect, among which DensNet121, Vit and ResNetMvt have significantly
better effects than other models, or close to 70% or greater than 70%, indicating that
for the research objective of lithology, more deep features are needed. Features reuse
and the acquisition of context information are also important. Therefore,
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DenseNet121 is used as the backbone network, and CGF module is added to reuse
and interact channel features to enhance channel information. AFF module is added
for multi-scale feature cascade to enhance the ability of the model to extract context
information, so as to obtain better classification effect.

5 Discussions

This section presents and discusses the ablation experimental results of different
modules in the proposed CGFAFFNet model to verify the validity of these modules.
5.1 Effectiveness of different modules

In order to verify the effectiveness of each module, we conducted ablation
experiments for CGF module, AFF module and multi-scale features cascade (MSFC).
Due to the requirement of combining the AFF with MSFC, no combined experiment
of CGF and AFF was conducted.

Table 5 shows the results of the ablation experiments. On top of the Backbone, the
addition of individual modules has resulted in improvements, with CGF showing the
highest enhancement. OA, F1-score, and Kappa have been improved by 2.25%,
2.22%, and 2.51%, respectively. This indicates that CGF facilitates channel grouping
learning, information interaction, and weighted fusion of features, extract crucial
lithology features and improve the classification accuracy of the model. Additionally,
MSFC can extract contextual information and improve classification accuracy.
Furthermore, incorporating AFF during MSFC, which filters out redundant
information in both the channel and spatial dimensions, can further enhance the
classification accuracy.

In addition, the experimental results of combining two modules together are
superior to the results of adding individual modules alone. Compared to using a single
module alone, the combination of CGF and MSFC as well as the combination of AFF
and MSFC both show improvements in OA. This indicates that there is a certain
complementary relationship between the modules, and combining different modules
can further enhance the classification performance of the model.

Table 5. Results of ablation experiments on the MSRS-LSC
Model CGF AFF MSFC OA(%) F1-score(%) Kappa(%)
CGFAFFNet 78.33 ± 0.44 78.62 ± 0.37 75.89 ± 0.49
CGFAFFNet √ 80.58 ± 0.57 80.84 ± 0.53 78.40 ± 0.63
CGFAFFNet √ √ 80.74 ± 0.19 80.97 ± 0.16 78.58 ± 0.21
CGFAFFNet √ 79.77 ± 0.33 80.17 ± 0.31 77.49 ± 0.36
CGFAFFNet √ √ 80.33 ± 0.58 80.66 ± 0.50 78.13 ± 0.65
CGFAFFNet √ √ √ 80.99 ± 0.40 81.26 ± 0.38 78.85 ± 0.44

Combining the three modules together resulted in the highest OA of 80.99% ± 0.4%.
This indicates that the three modules complement each other in terms of information
extraction, enabling the extraction of critical lithology features and enhancing the
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model's performance in lithology classification, particularly in areas with vegetation
coverage.

6 Conclusion

To address the issues of insufficient lithology information in single-source data and
underutilization of lithological information from multiple data sources, a multi-source
remote sensing lithology scene classification dataset named MSRS-LSC was
constructed. The MSRS-LSC incorporates multi-spectral, SAR, and DEM data, along
with derived data such as slope direction, slope gradient, and hillshade. To address the
challenge of extracting remote sensing features due to the high-level semantic nature
of lithology and its susceptibility to vegetation coverage, we propose a method called
CGFAFFNet. CGFAFFNet’s effectiveness can be attributed to: 1) the Channel
Grouping Fusion module is capable of grouping feature maps in the channel
dimension, facilitating feature interaction and weighted fusion. This process enables
the extraction of crucial fused features across channels; 2) the Adaptive Filtering
module can filter out redundant information from both the channel and spatial
dimensions when cascading multi-scale features, thereby extracting more accurate
contextual information.

The experimental results show that the OA, F1-score and Kappa of CGFAFFNet
on MSRS-LSC reached 80.99% ± 0.4%, 81.26% ± 0.38% and 78.85% ± 0.44%,
respectively, which is superior to other models. The experimental results demonstrate
the effectiveness of CGFAFFNet. In future research, we will focus on improving the
dataset and further investigate lithology scene classification methods.
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