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Abstract. The Internet is widely used for network attacks, such as phishing, 
fraud, gambling, the spread of malware, and botnets. Domains play a crucial role 
in attackers' network communication due to their low cost and flexibility. Attack-
ers frequently change or transfer malicious domains to evade detection, making 
it challenging to capture complete associations between domains and related re-
sources. The inherent relationships among domains are difficult to forge, for in-
stance, stable connections exist between domain operators from the same organ-
ization or between domains providing similar services. Recent research has em-
ployed graph learning techniques, including bipartite graphs, homogeneous 
graphs, and heterogeneous graphs, to integrate domain attributes and association 
information for uncovering implicit relationships between domains. However, 
approaches based on bipartite or homogeneous graphs have limited association 
information, while methods based on heterogeneous graphs require expert 
knowledge to design meta-paths and overlook the heterophilic  interactions of the 
domain association graph, where two associated domains may not belong to the 
same label type. Furthermore, domains and related resources are dynamic, with 
attributes and associations changing over time. Previous methods have failed to 
consider the spatiotemporal characteristics. In summary, malicious domain iden-
tification techniques require reduced reliance on expert knowledge, consideration 
of the heterogeneity in graph networks, and attention to the spatio and temporal 
dynamics of domains and associated resources. In this paper, we propose a novel 
STMDF model for detecting malicious domains, which utilizes RNN and atten-
tion modules to learn temporal information, addressing the complex challenges 
in malicious domain identification. To validate the effectiveness of our approach, 
we conduct comprehensive comparisons with various existing detection models, 
demonstrating the superiority of our method. 

Keywords: Spatial-temporal Snapshot Graph Learning, Attention Mechanism, 
Malicious Domain Identification. 
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1 Introduction 

Due to the low cost and flexibility associated with domains, they often play a crucial 
role in various types of cybercrimes. One of the most effective and promising ap-
proaches is to analyze domain system data for the detection of malicious activities[1]. 
Attackers exhibit characteristics such as strong anti-detection capabilities. Nonetheless, 
the relationships behind domains are difficult to forge. The current techniques for iden-
tifying malicious domains can be broadly classified into two categories: feature-based 
methods and association-based methods. Feature-based malicious detection methods 
extract features closely related to malicious domain [2-5]. In order to evade detection, 
Attackers can easily mimic the lexical features of benign domains. Such methods treat 
domain names as independent entities, overlooking the potential interrelationships 
among domain names.Nowadays methods utilize the inference capabilities of the graph 
to identify malicious domains employing evasion techniques[6-9]. Methods based on 
heterogeneous attribute graphs effectively combine domain attribute information and 
the associations between domain names[10-11]. However, current methods require 
manual design of meta-paths through expert knowledge[12]. Using heterogeneous 
graph networks neglect the temporal dynamics of domain names in real-world usage 
scenarios[13]. However, in the DNS context, the spatial resource associations and tem-
poral behaviors of domain names are closely intertwined. The main contributions of 
this paper are as follows: 

 
We utilizes a hierarchical attention mechanism to integrate domain attribute infor-
mation and association information. By aggregating multi-hop neighbors of entities, it 
mitigates the impact of heterogeneity in the association graph.  
 
We proposes an attention-based spatio-temporal graph neural network approach. Build-
ing upon hierarchical attention, it incorporates attention mechanisms and an RNN mod-
ule to capture temporal information. 

 
Comparative analysis is performed against existing methods such as static homogene-
ous graphs, dynamic homogeneous graphs, static heterogeneous graphs, and dynamic 
heterogeneous graphs, demonstrating the superiority of our proposed approach. 

2 Motivation 

2.1 Spatial context-based correlation 

Currently, the geographical attributes of IP addresses have been widely applied and 
have shown promising results in various industries. The geographical location of an IP 
address is a projection of the user's real-world spatial characteristic into the cyberspace, 
reflecting certain regional patterns of network service access. Based on the Data-
Con2020-DNS malicious domain dataset [14], we extracted the latitude and longitude 
data of the visiting client IP addresses for 3,410 malicious domains to calculate the 
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Moran's Index I. The spatial weight matrix used in this section was based on the adja-
cency of eight neighboring locations. The types of malicious domains used in calculat-
ing the Moran's Index included 1,122 gambling domains, 1,009 botnet domains, 788 
trojan domains, and 491 APT domains. The results, shown in Table 1, indicate that the 
Moran's Index values for all three months were greater than 0, with a p-value of 0.01. 
This suggests a significant spatial clustering characteristic in the distribution of client 
IP addresses accessing malicious domains. 

Table 1. Global Moran's index of client IP accessing malicious domain names. 

Month Moran's Index I P 

March 0.9869 <0.01 

April 0.9792 <0.01 

May 0.9890 <0.01 

 
The density map of the geographical locations (latitude and longitude) of client IP ad-
dresses accessing malicious domains is shown in Figure 1. The darker the color in the 
figure, the higher the number of users accessing from that region. From Figure 3-1, we 
can clearly observe clustering patterns, which validate the results of the Moran's Index. 
Additionally, in Figure 1, we can see that the geographical locations of client IP ad-
dresses accessing malicious domains are predominantly positioned to the east of the 
"Aihui-Tengchong Line" which represents the more developed regions in terms of 
economy, population, and internet infrastructure. The users accessing malicious do-
mains are more concentrated in coastal provinces, Beijing, and Henan. 

 

Fig. 1. Geospatial distribution client ip accessing malicious domain.  
"Note: This map was created based on the standard map with survey number GS(2016)1555 

downloaded from the website of the Ministry of Natural Resources. The base map boundaries 
have not been modified." 

3 Model Design 

[15] indicates that many event behaviors exhibit repetitive patterns along the time axis. 
Therefore, the domain spatiotemporal snapshot graph can effectively utilize the 
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temporal and spatial information of domains. The first step in constructing the domain 
association spatiotemporal snapshot graph involves entity extraction. In this study, the 
domain association spatiotemporal snapshot graph focuses on the DNS resolution pro-
cess and the entities involved in the domain usage process as the primary objects. 

 
3.1 Domain entity relation extraction 

Malicious domains often utilize CDNs to map domain names to IP addresses, evading 
direct resource connections and camouflaging their traffic as benign. Based on the find-
ings in [16], it is likely that client IPs accessing malicious domains will also access 
similar malicious domains. During malicious activities, attackers often exhibit correla-
tions between their attack control hosts and infected host groups. For instance, attackers 
may employ overlapping sets of infected host groups at different stages of an attack, 
resulting in abnormal correlations between domain query records. Consequently, we 
establish the (client IP) -- [ :query ] --> (FQDN) relation. Attackers have limited re-
sources [17], as maintaining a large pool of IP resources incurs significant costs. IP 
resources tend to exhibit clustering. CNAME domains of compliant domains are un-
likely to be malicious, and vice versa. Hence, we establish the (FQDN) -- [ :resolve ] -
-> (resolved IP) and (FQDN) -- [ :cname ] --> (FQDN) relations. 
 
In addition to the relationships between domains and client IPs, and resolved IPs, we 
incorporate various enriched information for a comprehensive understanding of mali-
cious behavior. For example, the domain registrant (represented by the administrative 
email) and the ISP (Internet Service Provider) of the IP address. Although domain reg-
istration information is often unverified by authoritative sources, it can serve as sup-
porting evidence. Thus, we establish the (ISP) -- [ :support ] --> (resolved IP), (ISP) -- 
[ :support ] --> (client IP), and (administrative email) -- [ :register ] --> (FQDN) rela-
tions. 
 
3.2 Domain spatiotemporal snapshot construction 

Currently most of these methods focus on static homogeneous or static heterogeneous 
graphs. In reality, many real-world graph networks are both heterogeneous and dy-
namic, often involving multiple types of nodes or edges, which can also dynamically 
change over time. This dynamic variation can be viewed as a long-term sequence learn-
ing problem, aiming to effectively capture precise temporal dependencies between out-
puts and inputs [18].  
 
The spatiotemporal snapshot graph refers to a static list of snapshots that models the 
dynamics of a heterogeneous network. Each snapshot represents the structure of the 
graph network during a specific time period. An individual snapshot consists of a het-
erogeneous graph, comprising different sets of node types and edge types. Specifically, 
let's assume we have a dynamic heterogeneous graph network G, which can be repre-
sented as an ordered list of spatiotemporal snapshots, G = {g1, g2, ..., gt, ..., gT}, where 
each snapshot g is composed of different sets of node types Vt and different sets of edge 
types Et, with t denoting the t-th snapshot. In the node set Vt, each node has a unique 
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identifier, and the number of node types can be represented by the set O. The edge set 
Et contains all types of edges present in the snapshot g, representing the relationships 
between nodes, and the number of edge types can be represented by the set R. The 
purpose of the spatiotemporal snapshot graph is to describe the structural changes of 
the dynamic heterogeneous network over time. 

 
3.3 Node relation learning based on hierarchical attention heterogeneous graph 

This section utilizes a node-level attention model to learn the importance weights of 
each node's neighbors and generates new low-dimensional vector representations by 
aggregating the features of these key neighbors. By comprehensively considering the 
features of these multi-hop neighbors, we can more comprehensively capture the rela-
tional dependencies between domain entities, thereby improving the accuracy and ro-
bustness of the modeling. The hierarchical attention mechanism consists of two main 
parts: node-level attention and edge-level attention.  

 
 

Fig. 2. Hierarchical attention-based malicious domain identification framework 
 
Node-Level Attention： For subgraphs formed by different relationship edges, we em-
ploy an attention model [28] for each subgraph with the same edge type. The weight 
coefficient of each node pair (p, q) in the r-type subgraph is calculated using the fol-
lowing formulas (1) and (2): 
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Subsequently, by aggregating the embedded feature vectors of neighboring nodes [19], 
we can obtain the final representation of node p under the type edge, as shown in the 
following formula (3): 
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In the domain-resource graph, the entities connected to the domain entity are of differ-
ent types, such as the client IP entity or the city entity. Therefore, the network exhibits 
heterophily. In this subsection, we achieve the model's ability to learn heterophily graph 
networks by learning high-order neighbor information [20]. Aggregating multi-hop 
neighbor information increases the probability of learning homophily neighbors, which 
are more informative in graph neural network learning. According to [21], although the 
immediate neighbors of the current node are predominantly heterophily, the probability 
of high-order neighbors being homophily increases. The learning method is demon-
strated by formula (4):    

𝒚𝑝
𝜙 =∥𝑘=1

𝐾  ቄ𝐹 ቀ𝑦𝑝
𝜙, 𝑓 ቀቄ𝑦𝑝

𝜙: 𝑢 ∈ 𝑁𝐸𝐼𝑖(𝑝)ቅቁ , … ቁቅ (4) 

For heterophily networks, after aggregating the neighbor embedding vectors, we do not 
average the two learned embedding vectors as in GCN, as this would lead to infor-
mation mixing. In this subsection, we adopt a simple approach of direct concatenation 
to preserve both parts of the information. 

The formula for the multi-head attention mechanism of node p is as follows: given the 
set of edge types Φ = {1, ..., N}, after calculating the node features through the node-
level attention module, we obtain entity feature vectors under N edge types. 

Edge-Level Attention:  we calculate the normalized weight coefficients β for different 
edge types by computing the similarity between the mapped vectors [22].  

                                                                                                                

𝛽𝑝
𝜙 =

exp 𝐐⊤ ⋅ 𝜎 ቀ𝐖 ⋅ 𝐲𝑝
𝜙 + 𝐛ቁ

∑  𝑁
1 exp ൬𝐐⊤ ⋅ 𝜎 ቀ𝐖 ⋅ 𝐲𝑝

𝜙 + 𝐛ቁ൰
 (5) 

in Equation (5) yields the final embedded feature representation of the domain entity. 

 
3.4 Learning temporal information from the domain temporal snapshot 

graph 

We will employ the hierarchical attention heterogeneous model (HAT) from Section 
3.3 to learn the static information within individual snapshot graphs. Additionally, we 
will utilize an RNN module to incorporate the temporal sequence information from the 
static snapshot sequences. The overall technical architecture is illustrated in Figure 6. 
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Fig. 3. Architecture diagram of malicious domain identification model based on 

spatio-temporal snapshot graph 

When constructing the malicious domain identification model, we can generate a series 
of domain-related snapshots on a daily basis (Δt=1, 2, ...). Within each snapshot, we 
will apply the hierarchical attention mechanism proposed in Section 3.3 to integrate 
domain attribute information, association information, and spatial information. To cap-
ture the temporal changes of domain entities, we will also model the domain entities 
using a recurrent neural network (RNN) model and an attention mechanism module.  

Firstly, our spatio-temporal graph can be extracted as a set of ordered snapshots, de-
noted as G = {g1, g2, ..., gt, ..., gT} [22], where T is the number of consecutive snap-
shots. Here, gt = {Vt, Et} represents the t-th snapshot, where Vt is the set of nodes and 
Et is the set of edges.  After the learning process with the model in Section 3.3, as shown 
in Equation 6, we can obtain the embedded features of domain entity nodes across all 
temporal snapshot graphs. Here, t represents the t-th snapshot, represents the number 
of nodes in the t-th snapshot, and F represents the node feature dimension. 

ቄ𝐲1, 𝐲2, … , 𝐲𝑇, 𝐲𝑡 ∈ 𝕘ห𝑉𝑡
ห×𝐹ቅ (6) 

In this chapter, we utilize RNNs to learn the evolution patterns between consecutive 
snapshots. In this approach, we employ two widely used variants of RNNs, namely 
LSTM[23] and GRU[24]. The output of the RNN module can be seen as    representing 
the { 𝐳

ଵ, 𝐳
ଶ, … , 𝐳

்  , 𝐳
௧ ∈ Rௗ} node i in the t-th snapshot. We further incorporate a layer 

of temporal attention module to capture the evolutionary patterns on the dynamic net-
work. 

Temporal Attention Module: The node representation from the previous steps is taken 
as the input. Firstly, based on the attention calculation formula (7) [25], we map the 
input to different feature spaces to obtain Q, K, and V. 
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  𝑍𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖, 𝐾𝑖, 𝑉𝑖) = softmax (
𝑄𝑖𝐾𝑖

𝑇

ඥ𝑑𝑘

)𝑉𝑖 (7) 

Then, the output is added to a block Y. Since the input features of the temporal domain 
entity sequences are multi-dimensional vectors, analyzing each dimension separately is 
meaningless. Therefore, LayerNorm is introduced here for normalization. The ad-
vantage of Layer Normalization is that it normalizes independently across different 
samples, making the representation of each sample more stable. After normalization, 
the entities pass through a two-layer fully connected layer as shown in Equation (8). 
This involves a linear transformation, followed by a non-linear transformation using 
the ReLU function, and then another linear transformation for forward propagation. 
Subsequently, as shown in Figure 3, the output is added to the residual block again and 
undergoes LayerNorm normalization. 

 FFN(𝑍) = 𝑚𝑎𝑥(0, 𝑧𝑊1 + 𝑏1)𝑊2 + 𝑏2 (8)   

After going through the aforementioned steps, we obtain the embedded features of do-
main entity node across all snapshots. We use the node features from the last snapshot 
as the input for the subsequent classification objective function. 

4 EXPERIMENTS 

The DataCon2020-DNS domain dataset [14] was primarily used as our dataset. This 
dataset covers domain-related active and passive information captured by 360 between 
March 1, 2020, and May 31, 2020. It encompasses various types of domains, including 
normal, gamble, apt, trojans, and botnet domains. In addition to the domain itself, the 
DataCon dataset also provides WHOIS registration information for each domain, which 
aids in understanding the background and attributes of the domains. We extracted data 
from March 27th to May 28th, spanning six weeks, to construct resource snapshots. 
Each snapshot was constructed every seven days (Δt=7). The specific statistics of the 
snapshots are illustrated in Table 2. 

The experimental evaluation in this chapter utilizes commonly used machine learning 
metrics, Accuracy and F1. The models compared to our proposed model in this chapter 
are described as follows: Fanci[26], Deepdom [12], MDFAKG(proposed in Section 
3.3), CAW-N [27],  NP-GLM [28]( metapath2vec and RNN models),  STMDF-G(RNN 
component employs GRU), STMDF-L(RNN component employs LSTM). 

Table 2. Statistical information of domain resource snapshots. 

 Date Number of Nodes in Snapshot Number of Edges in 
Snapshot 

1 2020/0327~2020/0402 34k 58k 
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4.1 Model Parameter Settings 

In order to compare the performance with the Fanci system, we constructed a random 
forest model based on the RandomForest model used in the original Fanci paper, using 
the scikit-learn library. During the validation process, we employed ten-fold cross-val-
idation for testing the model. This involved dividing the labeled dataset into ten smaller 
datasets, where the model was trained on nine of them and tested on one. This process 
was repeated ten times, and the average evaluation metrics such as Accuracy and F1-
Score were used as the testing results for Fanci. 

For the Deepdom model and the proposed model in this chapter, we implemented them 
based on the torch-geometric library [29]. For the MDFAKG model and CAW-N and 
STMDF models, which require selecting the number of neighbors, the upper limit of 
neighbor nodes per layer was set to 25. The learning rate for the classifier was set to 
0.005, and the regularization parameter was set to 0.001. The final node dimension for 
the output feature vector of domain entities was set to 64, the number of attention heads 
was set to 8, the dropout between network layers was set to 0.5, and the number of 
hidden layers was set to 4. Stochastic Gradient Descent (SGD) and the Adam optimizer 
were used for updating and optimization, with the first-moment estimate β1 set to 0.9 
and the second-moment estimate β2 set to 0.98. 

 
4.2 Performance comparison  

 
Fig. 4. Performance comparison graph 

2 2020/0403~2020/0409 29k  53k 

3 2020/0410~2020/0416 28k 51k 

4 2020/0417~2020/0423 36k 57k 

5 2020/0424~2020/0430 36k  57k 

6 2020/0501~2020/0507 28k 50k 
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Comparing with the FANCI method, which achieved scores of 0.8197 and 0.8102 in 
the metrics, it can be observed that considering the hidden associations between domain 
names significantly improves the classification performance of the model. The 
Deepdom model achieved scores of 0.8516 and 0.8462 in the metrics. Furthermore, 
compared to the Deepdom model, our proposed method achieves good results without 
the need for constructing meta-paths. The proposed model exhibits better generalization 
and does not require expert knowledge for selecting meta-paths.  

The STMDF model proposed in this chapter outperforms the CAW-N model and the 
classical dynamic heterogeneous network model NP-GLM in both Accuracy and F1-
score metrics. The highest Accuracy and F1-score achieved by STMDF-L are 0.9233 
and 0.9219, respectively, outperforming the CAW-N baseline with scores of 0.8806 
and 0.8786, metapath2vec-G with scores of 0.8824 and 0.8817, metapath2vec-L with 
scores of 0.8911 and 0.8867, and STMDF-G with GRU utilizing scores of 0.9087 and 
0.8932. Comparing with the CAW-N model reveals that models considering dynamic 
heterogeneity learning achieve better detection performance, and our model exhibits 
the best performance, demonstrating the superiority of our method in modeling dy-
namic changing information. 

Comparison of Snapshot Granularity's Impact ： Describing the dynamic network as an or-

dered list of snapshots, Table 2 reveals that the duration of each snapshot influences the total 
number of snapshots. For example, in our experimental dataset, if the snapshot duration (Δt) is 

21 days, 10 days, and 7 days, there will be 2, 4, and 6 snapshots respectively. 

 
Fig. 5. Impact of snapshot granularity on model results graph 

From the comparison results, it can be observed that finer snapshot granularity, meaning a higher 
number of snapshots, leads to improved performance. When there are only 2 snapshots, the model 
achieves an Accuracy of 0.8667 and an F1 Score of 0.8564, which are lower than the metrics of 
0.9008 and 0.8911 achieved by the model with 4 snapshots. When the number of snapshots in 
the domain temporal snapshot graph is 6, the model achieves the best performance in terms of 
evaluation metrics, with an Accuracy of 0.9233 and an F1 Score of 0.9219. The reason behind 
this improvement is that finer-grained snapshots are more effective in capturing dynamic tem-
poral changes. 
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