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Abstract. Style transfer learning has garnered significant attention in the field of 

computer vision in recent years, with anime style transfer being particularly no-

table for its entertaining nature and widespread application. This fascinating fea-

ture has been integrated into various short video platforms, mini-programs, and 

photography applications. According to our survey, nearly one in four individuals 

has used applications based on anime style transfer models, with most users 

providing positive feedback, citing its novelty, fun, and high playability. This 

paper provides a comprehensive summary of the technological advancements in 

style transfer, focusing on four mainstream methods: Convolutional Neural Net-

works (CNN), Variational Autoencoders (VAE), Vision Transformers (ViT), and 

Generative Adversarial Networks (GAN). We detail the implementation of spe-

cific models for each method and systematically compare the performance of 

several representative models. Finally, we include links to the open-source code 

of these models to facilitate further research and application.  

Keywords: Style Transfer, Convolutional Neural Networks (CNN), Variational 

Autoencoders (VAE), Vision Transformer (ViT), Generative Adversarial Net-

works (GAN), Image Processing. 

1 Introduction 

With the development of deep learning technology and the advent of the big data era, 

style transfer technology has made significant progress in the fields of computer vision 

and image processing. Style transfer is an image processing technique [1, 2] aimed at 

applying the artistic style of one image to another while maintaining the content con-

sistency of the target image. This field has evolved through multiple stages, from early 

basic methods to current deep learning approaches, achieving substantial advance-

ments. 

The earliest style transfer techniques can be traced back to 1999 when Efros and 

Leung [3] proposed a texture synthesis method based on Markov Random Fields. This 



2  F. Author and S. Author 

method achieved texture synthesis by matching and stitching local image patches. It 

was capable of generating high-quality textures and was suitable for simple texture im-

ages. However, this approach was not suitable for complex images and styles, and the 

generation process was relatively slow. 

As the information age progressed, visual information became increasingly abun-

dant, and images grew more complex. Consequently, these early methods were gradu-

ally replaced by more advanced technologies. In 2001, Hertzmann et al. [4] proposed a 

filtering-based method for style transfer, which achieved style transfer through image 

filtering and matching. This method had the advantage of being applicable to a variety 

of style transfer tasks, but it heavily relied on input images and had limited effectiveness 

in handling complex styles. 

In the following decade, style transfer technology did not attract widespread atten-

tion. It wasn't until 2013, when Kingma and Welling [5] introduced the Variational 

Autoencoder (VAE) method, and 2015, when Gatys et al. [6] proposed a neural net-

work-based approach, that style transfer regained significant interest. These advance-

ments brought renewed focus to the field, highlighting the potential of deep learning 

techniques in achieving more sophisticated and effective style transfer results. 

Since 2017, style transfer technology has experienced a surge in development, lead-

ing to the emergence of several models based on Generative Adversarial Networks 

(GANs), such as CycleGAN [7] and DualGAN [8]. Simultaneously, van den Oord et 

al. optimized the VAE-based [9] method and proposed the VQ-VAE model [10]. These 

advancements have garnered significant attention and research interest from scholars 

and experts, further driving the evolution and application of style transfer techniques. 

In recent years, Transformer-based models [11] have also begun to be applied in the 

field of style transfer, such as Vision Transformer (ViT) [12] and DALL-E [13]. Within 

the realm of Generative Adversarial Networks (GAN) [14,15], several noteworthy 

models have emerged, including UGATIT [16], DualStyleGAN [17], and Vtoonify 

[18]. These models have demonstrated outstanding performance in image style transfer, 

particularly in anime style transfer. 

Anime style transfer [19,20,21] is a specialized application of style transfer, aiming 

to transform images or videos into those with a specific anime style. The implementa-

tion of anime style transfer typically relies on deep learning techniques such as Convo-

lutional Neural Networks (CNN) [22,23] and Generative Adversarial Networks (GAN) 

[24,25,26]. By training models to learn and extract the characteristics of anime styles, 

these features can then be applied to target images to achieve the desired style transfer. 

The subsequent comparison of model performances will focus on this particular appli-

cation. 

In this paper, we introduce the convolutional neural network (CNN)-based, varia-

tional auto-encoder (VAE)-based, Vision Transformer (ViT)-based, and generative ad-

versarial network (GAN)-based approaches for style migration in Sections 2, 3, 4, and 

5, respectively. Each section lists representative models of the above methods and de-

scribes their structure and advantages and disadvantages. In Section 6, the performance 

of these representative models is compared and links to the open source code of the 

different models are provided. Section 7 summarizes the full text. 
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2 Methods Based on Convolutional Neural Networks (CNN)  

With the development of deep learning, Convolutional Neural Networks (CNN) [27] 

have demonstrated powerful capabilities in image processing tasks. CNNs extract im-

age features through multi-layer convolution operations, enabling style transfer while 

preserving the content of the image. The core of style transfer technology lies in effec-

tively separating and recombining the content and style features of images. 

2.1 Working Principle 

The system uses neural representations to separate and recombine the content and style 

of arbitrary images, providing a neural algorithm for creating artistic images. Convolu-

tional Neural Networks (CNNs) are composed of multiple layers of small computing 

units that process visual information in a hierarchical, feedforward manner. Each layer's 

units can be viewed as a set of image filters used to extract specific features from the 

input image. The output of each layer is a so-called feature map, which represents dif-

ferent filtered versions of the input image. 

When a CNN is trained for object recognition, it gradually reveals the object's infor-

mation through the processing layers, allowing the higher-level feature maps to focus 

more on the actual content of the image rather than on detailed pixel values. To obtain 

the style representation of an input image, a feature space is utilized, which was initially 

designed to capture texture information. This feature space is based on the correlations 

between the filter responses in each layer of the network. By including feature correla-

tions from multiple layers, a multi-scale representation of the input image is obtained, 

capturing its texture information rather than its global arrangement. 

Advantages of This Method: 

⚫ High-quality image generation: CNN-based style transfer methods can generate 

high-quality images with rich details. 

⚫ Strong feature extraction capability: CNNs can extract complex features from im-

ages, making the style transfer effect more natural. 

Disadvantages of This Method: 

⚫ High computational complexity: The multi-layer structure of CNNs results in a 

large computational load and long training times. 

⚫ Dependence on training data: A large amount of high-quality training data is re-

quired to ensure the model's effectiveness. 

2.2 Representative Model - Neural Style Transfer 

Neural Style Transfer leverages Convolutional Neural Networks (CNNs) to achieve 

high-quality image style transfer. The core idea of this method is to separately extract 

the features of the content image and the style image, and then apply the style features 

to the content image through an optimization process. The model structure is shown in 

Fig. 1. 
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Fig. 1. Neural Style Transfer Model Structure 

Content Representation: Using a specific layer of the pre-trained VGG network [28,29], 

the content features of the input image are extracted. These feature maps capture the 

high-level content information of the image at the deeper layers of the network. Style 

Representation: The style features of the style image are extracted using multiple layers 

of the VGG network, and the Gram matrices [30,31]of these feature maps are com-

puted. These Gram matrices represent the correlations between feature maps at differ-

ent layers, capturing the texture information of the style image. Image Synthesis: An 

initial white noise image is optimized to match the content features of the content image 

and the style features of the style image simultaneously. Specifically, a loss function is 

defined that includes both content loss and style loss components. The optimization 

process aims to minimize this loss function. The form of the loss function is as follows: 

 𝐿𝑡𝑜𝑡𝑎𝑙(𝑝, 𝑎, 𝑥) = 𝛼𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑝, 𝑥) + 𝛽𝐿𝑠𝑡𝑦𝑙𝑒(𝑎, 𝑥) (1) 

Where 𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 is the content loss, measuring the difference in content features be-

tween the generated image and the content image; 𝐿𝑠𝑡𝑦𝑙𝑒  is the style loss, measuring the 

difference in style features between the generated image and the style image; 𝛼 and 𝛽 

are weighting factors used to balance the importance of content and style. 

3 Methods Based on Variational Autoencoders (VAE)  

Variational Autoencoder (VAE) is a deep generative model that utilizes variational 

Bayesian inference to achieve efficient approximate inference and learning. By encod-

ing input data into a continuous latent space and generating data samples from this 

latent space, VAEs have successfully demonstrated superior performance in various 

image generation tasks. VAEs are particularly well-suited for style transfer tasks, as 

their encoder-decoder structure can effectively extract and reconstruct the content and 

style features of images. 
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3.1 Working Principle 

VAE consists of an encoder and a decoder. The encoder maps the input image to a 

distribution of latent variables, while the decoder generates images from these latent 

variables. Specifically, given a dataset 𝑋 = {𝑥(𝑖)} 𝑁
𝑖=1

, the data is assumed to be gener-

ated by an unobserved continuous random variable 𝑧 through the following process: 

first, 𝑧 is sampled from a prior distribution 𝑝𝜃(𝑧); then, data 𝑥 is generated from the 

conditional distribution 𝑝𝜃(𝑥|𝑧). 

Since the posterior distribution 𝑝𝜃(𝑧|𝑥) is typically intractable, VAE introduces an 

approximate inference model 𝑞𝜙(𝑧|𝑥) and uses variational inference for approxima-

tion. By optimizing the variational lower bound 𝐿(𝜃,𝜙;𝑥), the model parameters can be 

efficiently learned. 

Advantages of This Method: 

⚫ Efficient inference and learning: VAE utilizes variational inference, achieving ef-

ficient approximate posterior inference and parameter learning. 

⚫ Powerful generative capability: VAE can generate high-quality images, making it 

suitable for various image generation and style transfer tasks. 

Disadvantages of This Method: 

⚫ Reconstruction quality limitation: The reconstruction quality of VAE may be lim-

ited by its assumptions about the latent variable distribution, especially with 

high-dimensional data. 

⚫ High computational complexity: The training process involves a significant 

amount of parameter optimization and computation, particularly when han-

dling large-scale datasets. 

3.2 Representative Model - VQ-VAE 

VQ-VAE (Vector Quantized Variational Autoencoder) is an improved version of the 

Variational Autoencoder that enhances the diversity and quality of generated images 

by introducing a vector quantization mechanism. The core idea of VQ-VAE is to use a 

discrete latent space, thereby avoiding the continuous assumption of latent variables in 

VAE, which improves the stability and diversity of the generated images. The model 

structure is shown in Fig. 2. 

 

Fig. 2.  VQ-VAE Model Structure 
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Encoding Process: The input image is encoded by the encoder (typically a Convolu-

tional Neural Network) into a set of continuous latent representations. These latent rep-

resentations are then quantized to the nearest vectorized code, generating discrete latent 

variables 𝑧𝑞. Decoding Process: The discrete latent variables are decoded by the de-

coder (typically a Convolutional Neural Network) to generate the image. Optimization 

Process: The model parameters are optimized by defining a loss function that includes 

reconstruction loss and vector quantization loss. The reconstruction loss measures the 

difference between the generated image and the original image, while the vector quan-

tization loss ensures consistency between the continuous latent representations output 

by the encoder and the discrete vectorized codes. The form of the loss function is as 

follows: 

 𝐿𝑡𝑜𝑡𝑎𝑙 =  𝐿𝑟𝑒𝑐𝑜𝑛 + 𝛽𝐿𝑣𝑞 (2) 

where 𝐿𝑟𝑒𝑐𝑜𝑛 is the reconstruction loss,  𝐿𝑣𝑞 is the vector quantization loss, and 𝛽 is 

a weighting factor that balances the importance of the two loss components. 

4 Methods Based on Vision Transformer (ViT)  

Vision Transformer (ViT) is a pure Transformer model applied to computer vision 

tasks. Unlike traditional Convolutional Neural Networks (CNNs), ViT directly pro-

cesses sequences of image patches and uses self-attention mechanisms to achieve image 

classification and style transfer. The design of ViT is inspired by the successful appli-

cation of Transformers in the field of Natural Language Processing (NLP). 

4.1 Working Principle 

The ViT model divides the input image into fixed-size patches, then flattens and em-

beds these patches into a linear vector space. These embedded patch sequences are fed 

into a standard Transformer encoder for feature extraction and processing. Unlike 

CNNs, ViT does not rely on local receptive fields and convolution operations but cap-

tures contextual information of the image globally through the self-attention mecha-

nism. 

Advantages of This Method: 

⚫ Global Context Capture: The self-attention mechanism can capture contextual in-

formation of the image globally, enhancing the model's understanding of both 

image details and overall structure. 

⚫ High Scalability: ViT can handle large-scale datasets and performs exceptionally 

well after large-scale pre-training. 

⚫ Strong Generalizability: ViT can be directly applied to various vision tasks, such 

as image classification, image generation, and style transfer. 

Disadvantages of This Method: 

⚫ High Data Requirements: Due to the lack of prior knowledge from convolution 

operations, ViT does not perform as well as CNNs on small-scale datasets and 

requires large-scale data for pre-training. 
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⚫ High Computational Resource Requirements: The self-attention mechanism in 

Transformers has high computational complexity, demanding significant hard-

ware resources. 

4.2 Representative Model - Vision Transformer (ViT) 

ViT was proposed by the Google Brain team. Its core idea is to transform the image 

processing problem into a sequence modeling problem. By processing sequences of 

image patches through a Transformer encoder, it achieves tasks such as image classifi-

cation and style transfer. The model structure is shown in Fig. 3. 

 

Fig. 3.  Vision Transformer Model Structure 

Image Patch Division: The input image is divided into fixed-size patches (e.g., 16x16 

pixels). Patch Embedding and Position Encoding: Each image patch is flattened and 

embedded into a linear vector space. Position encodings are added to retain the posi-

tional information of each patch. Transformer Encoder: The sequence of embedded im-

age patches is fed into a standard Transformer encoder, which performs feature extrac-

tion through multi-head self-attention mechanisms and feedforward neural networks. 

Classification Head: A learnable classification token is added to the output of the Trans-

former encoder, which is used for image classification or other vision tasks. The form 

of the loss function is as follows: 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑐𝑙𝑠 + 𝛽𝐿𝑟𝑒𝑔 (3) 

Where 𝐿𝑐𝑙𝑠 is the classification loss, which measures the model's performance on the 

classification task;  𝐿𝑟𝑒 is the regularization loss, which prevents the model from over-

fitting; and 𝛽 is the weighting factor used to balance the importance of the classification 

loss and the regularization loss. 
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5 Methods Based on Generative Adversarial Networks (GAN)  

Generative Adversarial Networks (GAN) are a type of deep learning model that achieve 

high-quality image generation through adversarial training between two neural net-

works: a generator and a discriminator. GANs perform exceptionally well in style trans-

fer tasks, capable of generating realistic style-transferred images. 

5.1 Working Principle 

GAN consists of a generator and a discriminator. The generator is responsible for cre-

ating realistic images, while the discriminator's task is to distinguish between real and 

fake images. Through the adversarial training process, the generator aims to produce 

images that are realistic enough to deceive the discriminator, while the discriminator 

continuously improves its ability to correctly identify real and generated images. 

Advantages of This Method: 

⚫ High-quality image generation: GANs can generate high-quality, detail-rich im-

ages, making them suitable for various image generation and style transfer 

tasks. 

⚫ High flexibility: GANs can achieve multiple image generation and transformation 

tasks through different generator and discriminator structures. 

Disadvantages of This Method: 

⚫ Training instability: The adversarial training process of GANs can lead to issues 

such as mode collapse and training instability. 

⚫ High computational resource requirements: The training process of GANs re-

quires substantial computational resources and time, especially when handling 

high-resolution images. 

5.2 Representative Model - CycleGAN 

CycleGAN is a GAN model used for unsupervised image-to-image translation, achiev-

ing image style transfer through cycle consistency loss. CycleGAN does not require 

paired training data and can learn mappings from one domain to another without 

matched image pairs. The model structure is shown in Fig. 4. 

 

Fig. 4. CycleGAN Model Structure 
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Generators and Discriminators: Generator 𝐺: 𝑋→𝑌 Maps the input image from domain 

𝑋 to the target domain 𝑌. The discriminator 𝐷𝑌 attempts to distinguish between images 

generated by 𝐺, i.e., 𝐺(𝑥), and real images in the target domain 𝑦. Generator 𝐹: 𝑌→𝑋 

Maps images from the target domain 𝑌 back to the original domain 𝑋. The discriminator 

𝐷𝑋 attempts to distinguish between images generated by 𝐹, i.e., 𝐹(𝑦), and real images 

in the original domain 𝑥. Adversarial Loss: The adversarial loss for generator 𝐺 and 

discriminator 𝐷𝑌 is defined as: 

 ℒ𝐺𝐴𝑁(𝐺, 𝐷𝑌, 𝑋, 𝑌) = 𝔼𝒴~𝑃𝑑𝑎𝑡𝑎(𝒴)[𝑙𝑜𝑔 𝐷𝑌(𝒴)] + 𝔼𝒳~𝑃𝑑𝑎𝑡𝑎(𝒳) [𝑙𝑜𝑔 (1 − 𝐷𝑌(𝐺(𝒳)))] （4） 

Similarly, the adversarial loss for generator 𝐹 and discriminator 𝐷𝑋 is defined as: 

 ℒ𝐺𝐴𝑁(𝐹, 𝐷𝑌, 𝑌, 𝑋) = 𝔼𝒳~𝑃𝑑𝑎𝑡𝑎(𝒳)[𝑙𝑜𝑔 𝐷𝑋(𝑥)] + 𝔼𝒴~𝑃𝑑𝑎𝑡𝑎(𝒴) [𝑙𝑜𝑔 (1 − 𝐷𝑋(𝐹(𝒴)))] （5） 

Cycle Consistency Loss: The cycle consistency loss ensures that an image, after be-

ing translated by two generators, can be reconstructed back to the original image: 

 ℒ𝑐𝑦𝑐(𝐷, 𝐹) = 𝔼𝒳~𝑝𝑑𝑎𝑡𝑎(𝒳)[‖𝐹(𝐺(𝑥)) − 𝑥‖1] + 𝔼𝒴~𝑝𝑑𝑎𝑡𝑎(𝒴)[‖𝐺(𝐹(𝒴)) − 𝒴‖1] （6） 

This loss consists of two parts: 

 𝔼𝒳~𝑝𝑑𝑎𝑡𝑎(𝒳)[‖𝐹(𝐺(𝑥)) − 𝑥‖1]: Ensures that an image 𝑥 from domain 𝑋, when 

mapped to domain 𝑌 by generator 𝐺 and then back to domain 𝑋 by generator 𝐹, remains 

close to the original image 𝑥. 

𝔼𝒴~𝑝𝑑𝑎𝑡𝑎(𝒴)[‖𝐺(𝐹(𝒴)) − 𝒴‖1]: Ensures that an image 𝑦 from domain 𝑌, when 

mapped to domain 𝑋 by generator 𝐹 and then back to domain 𝑌 by generator 𝐺, remains 

close to the original image 𝒴. 

Full Loss Function: The full loss function for CycleGAN combines the adversarial 

loss and the cycle consistency loss. The complete loss function is given by: 

 ℒ(𝐺, 𝐹, 𝐷𝑋, 𝐷𝑌) = ℒ𝐺𝐴𝑁(𝐺, 𝐷𝑌, 𝑋, 𝑌) + ℒ𝐺𝐴𝑁(𝐹, 𝐷𝑋, 𝑌, 𝑋) + 𝜆ℒ𝑐𝑦𝑐(𝐺, 𝐹) （7） 

Where 𝜆 is a weighting factor that balances the importance of the adversarial loss 

and the cycle consistency loss. 

5.3 Representative Model - DualstyleGAN 

DualStyleGAN is a Generative Adversarial Network (GAN) model designed for exem-

plar-driven high-resolution portrait style transfer. It introduces dual style paths (intrin-

sic style path and extrinsic style path) to achieve flexible control over content and style. 

The model structure is shown in Fig. 5. 

Dual Style Paths: Intrinsic Style Path: Responsible for controlling the style of the 

original domain, including facial structure and detailed features. Extrinsic Style Path: 

Responsible for controlling the style of the target domain, adjusting color and complex 

structural styles through a hierarchical structure. 

Style Transfer Process: Intrinsic Style Representation: The intrinsic style features 

are extracted using a pre-trained StyleGAN model, retaining the structural information 
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of the original image. Extrinsic Style Representation: The extrinsic style path is intro-

duced, using additional convolutional layers and residual blocks to adjust the color and 

structure of the target domain. 

 

Fig. 5. DualstyleGAN Model Structure 

Adversarial Training: The generator and discriminator undergo adversarial training, 

where the generator attempts to create realistic images to deceive the discriminator, 

while the discriminator continually improves its ability to distinguish real images from 

generated ones. Cycle consistency loss and style loss are used to ensure consistency 

between the content and style of the generated images. 

Progressive Fine-Tuning: During the training process, the task difficulty is gradually 

increased to smoothly transition the generated space to the target domain. Progressive 

fine-tuning ensures that the model maintains high quality and diversity in the generated 

images. 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐺𝐴𝑁 + 𝜆𝑐𝑦𝑐𝐿𝑐𝑦𝑐 + 𝜆𝑠𝑡𝑦𝑙𝑒𝐿𝑠𝑡𝑦𝑙𝑒  （8） 

Where 𝐿𝐺𝐴𝑁 is the adversarial loss, measuring the similarity between the generated 

images and the real images; 𝐿𝑐𝑦𝑐 is the cycle consistency loss, ensuring that the gener-

ated images can reconstruct the original images after passing through the dual style 

paths; 𝐿𝑠𝑡𝑦𝑙𝑒  is the style loss, ensuring consistency in the style of the generated images; 

𝜆𝑐𝑦𝑐 and 𝜆style  are weighting factors used to balance the importance of each loss term. 

6 Comparison of Mainstream Model Performance  

In this section, we provide a detailed comparison of the performance of mainstream 

models based on different methods in the task of anime style transfer. Specifically, we 

examined methods based on Convolutional Neural Networks (CNN), Variational Au-

toencoders (VAE), Vision Transformers (ViT), and Generative Adversarial Networks 

(GAN). These models were trained and tested on the same anime dataset. 

As shown in Fig. 6, we present the test results of different models trained on the 

same anime dataset. These results illustrate the specific performance and generated ef-

fects of each method in handling the anime style transfer task. 
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Fig. 6.  Model Performance Comparison 

To quantitatively evaluate the performance of these models, we calculated the Frechet 

Inception Distance (FID) score for each model. The FID score measures the similarity 

between the generated images and real images, with lower scores indicating higher sim-

ilarity. The experimental results are summarized in Table 1, which lists the FID scores 

for the five models. 

Table 1. Comparison of FID Scores for Relevant Methods 

Method Model 

 FID  

Hayao Miya-

zaki 
Pixar 

American 

Comic 

CNN Neural Style Transfer 146.58 143.13 142.86 

VAE VQ-VAE 136.12 137.25 134.98 

ViT Vision Transformer 107.11 112.19 109.66 

GAN 
CycleGAN 124.03 119.34 127.53 

DulestyleGAN 110.25 104.97 106.56 

Additionally, we have summarized the fundamental mechanisms of each mainstream 

style transfer model and provided relevant access links to facilitate further research and 

application. This information is listed in Table 2. 
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Table 2. Mechanisms and Access Links of Mainstream Models 

Method Model Mechanism and Access Links 

CNN 
Neural Style 

Transfer [6] 

Extract high-level image features, Gram matrices, VGG network 

Access Links: https://github.com/jcjohnson/neural-style 

VAE VQ-VAE [10] 

Vector quantization representation, Encoder, Decoder 

Access Links: https://github.com/SingleZombie/DL-

Demos/tree/master/dldemos/VQVAE 

ViT 
Vision Trans-

former [12] 

Divided into fixed-size patches, Retain spatial information, Cap-

ture global context 

Access Links: https://github.com/google-research/vision_trans-

former 

GAN 

CycleGAN [7]  

No paired training data required, Adversarial generator and dis-

criminator, Cycle consistency 

Access Links: https://github.com/junyanz/pytorch-CycleGAN-

and-pix2pix 

DulestyleGAN [8] 

Intrinsic and extrinsic styles, High resolution, Exemplar-based 

Access Links: https://github.com/ williamyang1991/DualStyle-

GAN 

7 Conclusion 

Style transfer technology is garnering increasing attention due to the unpredictability 

of its generated images. Different parameter settings and input images produce varying 

effects, keeping researchers and users engaged with a sense of anticipation. In our 

study, we found that for the specific task of anime style transfer, methods based on 

Generative Adversarial Networks (GANs) and Vision Transformers (ViTs) demon-

strated outstanding performance. Both techniques excelled in terms of FID scores and 

visual quality, positioning them at the forefront. 

In this paper, we provided a detailed overview of four major style transfer tech-

niques, including methods based on Convolutional Neural Networks (CNNs), Varia-

tional Autoencoders (VAEs), Vision Transformers (ViTs), and Generative Adversarial 

Networks (GANs). We highlighted classic models for each method and conducted ex-

perimental comparisons to analyze their performance in anime style transfer tasks. 

We conducted a comprehensive summary and provided links to the open-source 

codes for all discussed models to facilitate further research. Future research can explore 

the following aspects: 

⚫ Model Architecture: Investigate more efficient and optimized network structures 

to enhance the effectiveness and speed of style transfer. 

⚫ Training Duration: Optimize the training process to reduce the time required while 

ensuring the quality of generated images. 

⚫ Data Volume: Study the performance of models under varying amounts of train-

ing data to determine the optimal data scale. 

https://github.com/jcjohnson/neural-style
https://github.com/SingleZombie/DL-Demos/tree/master/dldemos/VQVAE
https://github.com/SingleZombie/DL-Demos/tree/master/dldemos/VQVAE
https://github.com/google-research/vision_transformer
https://github.com/google-research/vision_transformer
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/%20williamyang1991/DualStyleGAN
https://github.com/%20williamyang1991/DualStyleGAN
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We hope this paper provides a clear direction for subsequent research in style trans-

fer technology, fostering its development and application. 
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