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Abstract. X-ray security inspection has been widely used to maintain safety in 

public places and transportation systems. Due to the imaging characteristics of 

X-ray images, the stacking of items can cause translucency interference in the 

images, making it challenging to detect contraband items in backpacks or suit-

cases during security checks. Most existing methods have improved detection by 

adjusting the combination of features without considering the relationships be-

tween targets. In this paper, we propose a novel prohibited item graph represen-

tation learning algorithm to explicitly model inter-item relationships, aiming at 

improving their detection performance. Our approach starts with GTG module 

which generates a graph topology structure connecting the proposals output by 

the detection backbone network, where each proposal is treated as a node de-

scribing a candidate object. Then, the MDE module creates a set of multi-dimen-

sional edge features to comprehensively and explicitly describe the relationships 

between each pair of connected nodes, allowing context information to be used 

for their detection. Extensive experiments validate the effectiveness of our 

method which not only enhances the detection accuracy, but also better identifies 

hard-to-distinguish objects in complex scenarios. This exploration opens up an 

uncharted graph-based direction previously unexplored in prior research, provid-

ing a new path for future studies in graph-based X-ray security inspection detec-

tion. Our code is provided in the Supplementary Material. 

Keywords: Prohibited items detection, X-ray image, Graph Representation 

Learning and Multi-dimensional Edge Feature. 

1 Introduction 

 In the past years, the increasing density of crowds in public transportation hubs has 

made the security checks in public spaces increasingly important to effectively suppress 

terrorism and criminal incidents[1]. X-ray security imaging can describe the internal 

information of objects in a non-contact manner. Since X-ray images provide excellent 

recognition ability, clarity, and visualization capabilities[2], this technology has been 

commonly used to check luggage for prohibited items in the past decades. To alleviate 

the pressure of human staff at checkpoints and reduce public safety hazards, intelligent 

prohibited item detection based on X-ray images holds great research value. 
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Fig. 1. Comparison of Obstruction in Real-World and X-ray Images: This figure 

illustrates the difference in obstruction challenges faced in X-ray image prohibited item 

detection versus general object detection. In X-ray images, objects often overlap, cre-

ating a unique challenge not typically observed in standard object detection scenarios. 

To address the issue of translucency interference,  Rao et al. [3] attempted to incor-

porate edge and colors, which is prominent features of X-ray images, into their design. 

They utilized the traditional edge detection operator, Sobel, to obtain edge images, gen-

erate attention maps, and weight the backbone features, thereby solving some overlap-

ping problems. Zhao et al. [4] introduced a new label-aware mechanism to separate 

overlapping objects in high-level feature maps. By assigning labels to different anchor 

boxes and adaptively adjusting the corresponding features, this approach can handle 

overlaps between objects and similar backgrounds, as well as among multiple objects. 

Although these two methods have improved detection accuracy to some extent by in-

troducing prior information and adjusting label allocation mechanisms, targets are often 

interfered with by other stacked items due to the translucent nature of X-ray images. In 

other words, these methods only consider feature reconstruction on a single target level, 

which means that the extracted features will always contain elements of the background 

or other items, hindering further performance enhancement. In general, prior ap-

proaches primarily concentrated on modifying the front network structure to mitigate 

the effects of translucency interference, while neglecting the relationships between ob-

jects. 

To address the aforementioned issues, this paper proposes a novel graph-based X-

ray image prohibited items detection approach. It starts with an object detection net-

work [5] which detects potential contraband items (i.e., candidate objects) within the 

X-ray images by individually capturing each single target object whose features may 

be intertwined with background elements or obscured by other objects. Since objects 

with mutual translucent obstruction in a X-ray image may share common regions of 

interest, while X-ray security inspection images usually involve various types of objects 

such as luggage, electronic devices, liquids, and metal products, we assume the 
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interactions and relationships between these objects differ from those in regular color 

images recorded in natural conditions. To model such interactions/relationships, we 

treat each the regions of interest (ROIs) output by the detection network as a node, and 

explicitly explore the relationship between each pair of candidate objects via a multi-

dimensional edge feature learned by our novel graph representation learning framework 

inspired by GRATIS [6]. Specifically, our strategy determines the connectivity between 

nodes based on the size, shape, and position of the ROIs. Building upon this, we learn 

task-specific multi-dimensional edge features to better represent the relationships be-

tween nodes. In this manner, we can effectively simulate the real interactions and con-

nections between objects in X-ray images, making it more likely for the graph neural 

network to capture potential prohibited items. As a result, our proposed approach can 

accurately interpret the complex structures of these objects, thereby further enhancing 

the detection accuracy. The main contributions of this paper can be summarized as fol-

lows: 

⚫ By exploring a previously uncharted strategy, i.e., reducing the impact of trans-

lucency occlusion by investigating the relationships between target candidate 

objects, this paper proposes the first graph-based approach that learns a multi-

dimensional edge feature for the detection of prohibited items in a X-ray im-

agery. 

⚫ The proposed GTG (Graph Topology Generation) and MDE (Multi-dimen-

sional Edge) modules dynamically generate graph topology structures and mul-

tidimensional edge features to explicitly describe the relationship and interac-

tion between each pair of detected objects. 

⚫ Extensive experiments demonstrate that the superiority of our proposed 

method compared to state-of-the-art (SOTA) approaches. This research offers 

a novel direction for future X-ray security inspection detection studies. 

2 Methodology 

 In this section, we propose a novel method that integrates the object detection frame-

work with the graph representation learning. This method generates a graph represen-

tation with a dynamic topology and multidimensional edge features to describe the re-

gions of interest and their relationships, the overall framework of our method as shown 

in Figure 2. 
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Fig. 2. The overall pipeline of the proposed approach. ① Graph Embedding mod-

ule first takes the X-ray image as the input and outputs features describing N object 

proposals. Within this module, multi-scale spatial features of the input X-ray image are 

extracted by the backbone network, where the output of each layer is subjected to a 

pooling operation to obtain a global contextual representation. ②The Graph Topology 

Generation (GTG) module then generates a basic graph topology structure based on 

these input proposals and their coordinates used for calculating IOU. ③ The Multidi-

mensional Edge (MDE) module creates multidimensional edges, utilizing the global 

contextual representation and the basic graph topology structure provided by GTG. ④ 

The nodes and multidimensional edge features are processed through a Graph Convo-

lutional Network (GCN) to obtain the learned object-specific features, based on which 

the final predictions are made. 

2.1 X-ray Image Graph Representation Learning 

Node Feature and Adjacency Matrix Learning. Graph representation learning in-

cludes the graph embedding, graph topology structure generation and multi-dimen-

sional Edge learning. We use the features of the regions of interest output by the object 

detection network as node features, forming the node set 𝑝 ⊆  {𝑝𝑖  ∈ 𝑅1×𝐾}, 𝑖 =
1,2, … , 𝑁, and then map the full-scale features through RoI pooling to obtain the global 

context 𝐺𝐶 ∈ 𝑅1×𝐾. Unlike the processing of graph data, there is no predefined graph 

topology in detection tasks. Therefore, we propose a graph topology structure genera-

tion module to generate the graph topology. This module takes the basic node features 

\(P\) and the coordinates of the proposal boxes as input and outputs the adjacency ma-

trix 𝐴 ∈ 𝑅1×𝐾  that delineates the topology of graph 𝐺, where the elements of 𝐴 are bi-

nary values: 0 indicates that there is no connection between the corresponding nodes, 

and 1 indicates a connection. In this case, 𝐴 is a symmetric matrix, as the connections 

between nodes are mutual. It can be expressed as: 
𝐴 = 𝐺𝑇𝐺(𝑃)

𝐸 ⊆ {𝑒𝑖,𝑗 = 1|𝑝𝑖 , 𝑝𝑗 ∈ 𝑎𝑛𝑑 𝐴𝑖,𝑗 = 1}
 (2) 

The node features derived from the detection network depend on the learning of the 

detection network itself. It encodes the region proposal boxes into node features. Due 
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to the translucent imaging characteristics of X-ray images, the learned node features 

include not only the characteristics of the target but also certain background features. 

Inputting these raw features into subsequent classification and regression networks can 

introduce translucent interference. Therefore, we introduce a graph neural network to 

further update node features, filtering out background features while retaining prohib-

ited item features. After integrating the graph topology structure, the node features 

learned by the network ultimately contain not only the characteristics of the regions of 

interest themselves but also those of related nodes (other regions of interest). The ex-

istence of each edge can be determined by a specific rule applied to the corresponding 

pair of vertices (for example, the distance between vertices, their similarity, or the rel-

ative position of the corresponding frames in the original image), where each existing 

edge feature is 1, and non-existing ones are 0. Grounded in a key observation that in X-

ray images, items with mutual translucency occlusions tend to share common regions 

in the original imagery, our graph topology construction strategy connects nodes that 

share a significant proportion of the same area. In other words, when the Intersection 

over Union (IoU) of two proposed boxes exceeds a predetermined threshold, they are 

interconnected. 

Multidimensional Edge Feature Learning. We hypothesize that the complex web of 

relationships between objects, as well as between objects and their background, can not 

be sufficiently captured by basic feature representations, be they binary or numerical. 

Therefore, upon acquiring the complete set of node features 𝑃 and creating a tailored 

graph topology 𝐴, our methodology introduces an advanced module for the generation 

of multidimensional edge features. This innovative module substantially enriches the 

understanding of inter-node dynamics within a 1 × 𝐾 dimensional space, facilitating 

detailed characterization of each edge through the assignment of multidimensional fea-

tures �̂�(𝑖,𝑗) ∈ 𝑅1×𝐾. These assignments play a crucial role in enabling a comprehensive 

message-passing network across the graph, thereby integrating relational insights both 

within the individual node features and throughout the wider global context 𝐺𝐶. 

 
Fig. 3. Description of the Proposed MDE Module. 
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As a result, for each linked edge where 𝐴(𝑖,𝑗) = 1, we craft a specific multidimen-

sional edge feature �̂�(𝑖,𝑗). This feature incorporates insights from the individual node 

features 𝑝𝑖  and 𝑝𝑗, alongside the overarching global context 𝐺𝐶, delineated as: 

�̂�(𝑖,𝑗) = 𝑀𝐷𝐸(𝐺𝐶, 𝑝𝑖 , 𝑝𝑗)

�̂� ⊆ {�̂�(𝑖,𝑗) = �̂�(𝑝𝑖 , 𝑝𝑗)|𝑝𝑖 , 𝑝𝑗 ∈ 𝑃 𝑎𝑛𝑑 𝐴𝑖,𝑗 = 1}
 (2) 

The MDE module is divided into two primary components: the Proposal-Global con-

text Relation (PGR) block, which initially pinpoints cues relevant to each vertex within 

the global context 𝐺𝐶; and the Proposal-Proposal Relation (PPR) block, dedicated to 

extracting contextual relational features between proposals from the output of PGR. 

This process is targeted at developing the final multidimensional edge features. The 

entire sequence of operations is depicted in Figure 3. 

PGR: In the PGR module, relational cues between various proposal boxes, denoted 

as 𝑃𝑖  and 𝑃𝑗, are discerned and then transformed into multidimensional edge attributes 

𝑒(𝑖,𝑗) or 𝑒(𝑗,𝑖). This component leverages the node properties of 𝑃𝑖  and 𝑃𝑗, in conjunction 

with the global context 𝐺𝐶 , as its primary inputs. Within this framework, 𝑃𝑖  and 𝑃𝑗 

function autonomously as queries to pinpoint specific node-context relational features 

𝐹(𝑖,𝑔𝑐) and 𝐹(𝑗,𝑔𝑐), within 𝐺𝐶, utilizing 𝐺𝐶 itself as both key and value in an attention 

mechanism. The procedural mathematics of this operation are depicted as: 

𝐹(𝑖,𝑔𝑐)  =  𝑃𝐺𝑅( 𝑃𝑖 , 𝐺𝐶)  𝐹(𝑗,𝑔𝑐)  =  𝑃𝐺𝑅(𝑃𝑗 , 𝐺𝐶) (3) 

where the cross-attention mechanism within PGR is formulated as: 

 𝑃𝐺𝑅(𝐴, 𝐵) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
(𝐴𝑊𝑞(𝐵𝑊𝑘)𝑇)

√𝑑𝑘

) (𝐵𝑊𝑣) (4) 

Here, 𝑊𝑞, 𝑊𝑘, and 𝑊𝑣 are the learnable weights for encoding the query, key, and 

value respectively. The selection of these weights is contingent upon the input data's 

structure, and 𝑑𝑘 acts as a scaling factor, aligning with the channel count in 𝐵. The 

ensuing outputs 𝐹(𝑖,𝑔𝑐) and 𝐹(𝑗,𝑔𝑐) encapsulate task-specific indicators pertinent to ver-

tices 𝑃𝑖  and 𝑃𝑗, as derived from the global context 𝐺𝐶. 

PPR: Utilizing 𝐹(𝑖,𝑔𝑐) and 𝐹(𝑗,𝑔𝑐), the PPR module delves deeper into extracting con-

text-specific cues pertinent to each pair of vertices. Like PGR, PPR employs a cross-

attention mechanism. This approach uniquely leverages 𝐹(𝑖,𝑔𝑐) and 𝐹(𝑗,𝑔𝑐) as queries, 

keys, and values, generating two reciprocal node-to-node relational features 𝐹(𝑖,𝑔𝑐,𝑗) 

and 𝐹(𝑗,𝑔𝑐,𝑖). Specifically, 𝐹(𝑖,𝑔𝑐,𝑗) encapsulates the relational insights from 𝐹(𝑗,𝑔𝑐) rele-

vant to  𝐹(𝑖,𝑔𝑐), and vice versa for 𝐹(𝑗,𝑔𝑐,𝑖). These features, 𝐹(𝑖,𝑔𝑐,𝑗) and 𝐹(𝑗,𝑔𝑐,𝑖), amal-

gamate global context and specific details pertaining to nodes 𝑃𝑖  and 𝑃𝑗, capturing their 

intricate relationships. The formulation is as given: 

𝐹(𝑖,𝑔𝑐,𝑗) = 𝑃𝑃𝑅(𝐹(𝑖,𝑔𝑐), 𝐹(𝑗,𝑔𝑐))

𝐹(𝑗,𝑔𝑐,𝑖) = 𝑃𝑃𝑅(𝐹(𝑗,𝑔𝑐), 𝐹(𝑖,𝑔𝑐))
(5) 

In the concluding step, a fully connected layer (denoted by the operation 𝐿) is uti-

lized to morph the features into multidimensional edge vectors �̂�(𝑖,𝑗) and �̂�(𝑗,𝑖), effec-

tively finalizing the transformation as delineated: 

�̂�(𝑖,𝑗) = 𝐿(𝐹(𝑖,𝑔𝑐,𝑗))   �̂�(𝑗,𝑖) = 𝐿(𝐹(𝑗,𝑔𝑐,𝑖)) (6) 
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Consequently, every multidimensional edge feature �̂�(𝑖,𝑗) encompasses tailored cues 

from the full context 𝐺𝐶 of the input data 𝐼, pertinent to vertices 𝑝𝑖  and 𝑝𝑗. This ap-

proach allows edge features to be expressed as �̂�(𝑖,𝑗)  =

[�̂�(𝑖,𝑗)(1), �̂�(𝑖,𝑗)(2), … , �̂�(𝑖,𝑗)(𝐾)], effectively capturing the intricate inter-node relation-

ships that single-valued edge representations may overlook. 

2.2 Object Feature Reconstruction 

After determining the node connections and creating multidimensional edges, we can 

employ a Graph Convolutional Network (GCN) to refine node features. This architec-

ture is structured into several layers, with each layer tasked with distinct transfor-

mations. Edge and Node Feature Transformation: For each GNN layer, there's a 

series of linear transformations applied to both node and edge features. This is achieved 

through linear layers. These transformations are crucial for learning complex relation-

ships in the graph. Residual Connections: The architecture incorporates residual con-

nections to combat the issue of vanishing gradients, facilitating the effective training of 

more profound network layers. Node and Edge Feature Update: The updates of node 

and edge features are intertwined within the graph structure. Edge features are refined 

using the transformed node features and existing edge information, involving opera-

tions like einsum and batch normalization for efficiency and stability. Simultaneously, 

node features are updated through aggregating neighbor information, guided by edge 

attention weights. Output: The final output is a set of transformed node features, which 

can be used for downstream tasks like classification or regression. 

3 Experiments 

3.1 Experimental settings 

Table 1. An Overview of the Category Distribution Statistics in the OPIXray and 

HiXray Dataset. 

Dataset Categories train-

ing 

test-

ing 

total 

OPIXray Folding Knife, Straight 

Knife, Scissor,  Utility 

Knife, Multi-tool Knife 

7109 1776 8885 

HiXray Portable Charge 1, Portable 

Charge 2, Water, Laptop, 

Mobile Phone, Tablet, Cos-

metic, Nonmetallic Lighter 

82452 20476 102928 

Datasets: We evaluate our approach on the OPIXray [3] and HiXray [7] datasets as 

our primary data sources. The OPIXray dataset stands as a pioneering high-quality da-

taset tailored for security object detection, incorporating a diverse range of bladed in-

struments across 8885 X-ray images. In parallel, the HiXray dataset encompasses 
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44,364 images derived from routine security screenings at global airports, cataloging 

eight types of prohibited items including, but not limited to, lithium batteries, electronic 

gadgets, liquids, and lighters, commonly found in everyday scenarios. These datasets 

are universally acknowledged as among the foremost dependable public resources in 

the domain of X-ray object detection. Their detailed information is presented in Table 

1. 

Implementation details: The experiments are conducted utilizing the AdamW op-

timizer, setting the initial learning rate at 0.0001, with betas configured to (0.9, 0.999), 

and implementing a weight decay of 0.05. We resize the input images to a resolution of 

1000x600 pixels, and initialize our model's backbone with ResNet50, which is pre-

trained on the ImageNet 1K dataset. The experimental setup is built on the mmdetection 

[8] framework for object detection. The programming for these experiments is done in 

Python, and we leverage five NVIDIA RTX3090 GPUs, each equipped with 24GB of 

VRAM. Our computations leverage the parallel computing capabilities of CUDA 11.1, 

utilizing the Pytorch 1.7.1 framework for deep learning. 

Evaluation metrics: We utilize the Mean Average Precision (mAP) metric to eval-

uate the efficacy of our models. 

3.2 Comparison with existing methods 

 Table 2. Comparisons on OPIXray, where FO, ST, SC, UT and MU denote “Folding 

Knife”, “Straight Knife”, “Scissor”, “Utility Knife” and “Multi-tool Knife”. 

models 
OPIXray mAP

% FO ST SC UT MU 

DOAM [3] 
86.7

1 

68.5

8 

90.2

3 

78.8

4 

87.6

7 

82.4

1 

CHR [9] 
87.9

4 

84.5

3 

95.2

3 

50.9

9 

74.4

7 

78.6

3 

FBS [10] 
86.3

8 

88.2

9 

95.4

5 

57.9

9 

80.6

2 

81.7

5 

ATSS [4] 
87.7

2 

74.9

9 

97.6

0 

85.7

0 

90.2

6 

88.2

6 

Faster RCNN 

[5] 

88.7

2 

77.5

9 

90.1

0 

86.2

5 

89.7

8 

86.4

9 

FAPID [11] 89.8 84.2 90.2 88.0 89.6 88.4
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3 6 8 0 0 0 

Ours 
91.1

6 

85.3

3 

93.1

7 

90.7

3 

90.2

7 

90.1

3 

Comparisons on the OPIXray dataset: In Table 2, our approach achieved superior 

performance. With the highest overall mAP50 of 90.13, it outperforms the other models. 

Notably, it achieves top precision in FO (91.16), UT (90.73), and MU (90.27), show-

casing its effectiveness across various categories. Comparatively, while models like 

FBS show strong results in certain categories, such as ST and SC, they do not consist-

ently maintain this high level of precision across all categories. Furthermore, compared 

to the standard Faster RCNN, our method demonstrates improvements across all cate-

gories to varying degrees, particularly in the weaker categories of the original model 

(ST), where it shows a notable increase of 7.74%. This performance is even 1.07% 

higher than methods that reconstruct features, such as FAPID. 

Table 3. Comparisons on HiXray, where PO1, PO2, WA, LA, MP, TA, CO and NL denote 

“Portable Charger 1”, “Portable Charger 2”, “Water”, “Laptop”, “Mobile Phone”, “Tablet”, 

“Cosmetic”, and “Nonmetallic Lighter”. Bold indicates the best performance overall, while un-

derline denote the best performance within the same baseline. 

Ba

se-

lin

e 

Models 

HiXray 

mA

P% 
PO

1 

PO

2 
WA LA MP TA CO NL 

- SCM[13] 
96.

0 

95.

0 

93.

9 

98.

3 

98.

5 

95.

8 

65.

6 

20.

0 

83.

2 

YO

LO

v5s 

[12

] 

YOLOv5s 
95.

5 

94.

5 

92.

8 

97.

9 

98.

0 

94.

9 

63.

7 

16.

3 

81.

7 

DOAM 
95.

9 

94.

7 

93.

7 

98.

1 

98.

1 

95.

8 

65.

0 

16.

1 

82.

2 

LIM 
96.

1 

95.

1 

93.

8 

98.

2 

98.

3 

96.

4 

65.

8 

21.

3 

83.

2 

ZPGNet 
95.

7 

95.

2 

92.

5 

96.

5 

97.

7 

94.

4 

66.

4 

33.

0 

83.

9 
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Ours 
96.

6 

95.

4 

93.

1 

98.

3 

98.

3 

95.

7 

68.

4 

34.

0 

85.

0 

Fas

ter 

RC

NN 

Faster RCNN 

89.

8 

88.

4 

88.

9 

90.

2 

90.

1 

89.

9 

65.

7 

27.

9 

78.

9 

FAPID 
89.

7 

89.

1 

88.

2 

89.

5 

90.

0 

88.

8 

63.

3 

36.

5 

79.

4 

Ours 
90.

5 

88.

7 

88.

4 

90.

7 

90.

4 

89.

3 

70.

3 

66.

2 

84.

3 

Results on the HiXray dataset: Table 3 presents a comprehensive comparison of 

our method (Ours) against various improved strategies based on YOLOv5s and Faster 

RCNN models, evaluated on the HiXray dataset. By examining the mAP\(_{50}\) and 

the precision across different categories, our approach demonstrates superiority on mul-

tiple fronts.Specifically, our method achieves the highest mAP\(_{50}\) scores of 85.0 

(post-YOLOv5s improvements) and 84.3 (post-Faster RCNN improvements), outper-

forming the best YOLOv5s enhancement, ZPGNet, by 1.1 percentage points, and sur-

passing the top Faster RCNN enhancement, FAPID, by 4.9 percentage points. This un-

derscores our method's exceptional comprehensive performance. In terms of individual 

categories, our approach shows remarkable competitiveness in PO1 (96.6\%), PO2 

(95.4\%), LA (98.3\%), MP (98.3\%), CO (68.4\%), and NL (34.0\%), notably in the 

typically challenging CO and NL categories. Here, our method exceeds the next best 

competitor, ZPGNet, by 1.8 and 0.6 percentage points, respectively. These results not 

only highlight our method's capability in identifying features in clearer categories but 

also, more importantly, its significant advantages in detecting categories with less ob-

vious features. This advantage is more pronounced in our improved methods based on 

Faster RCNN. Compared to the baseline Faster RCNN model, our method demonstrates 

improvements across all categories, especially in the challenging CO and NL catego-

ries, with a huge performance boosts of 4.6 and 28.3 percentage points, respectively. 

This significantly enhances the model's ability to recognize occluded and overlapped 

items. 
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3.3 Ablation studies 

 
                             (a)                                                               (b)       

Fig. 4. Results (mAP%) achieved by different module combinations and IOU thresh-

old settings. Figure (a) shows the ablation experiments on method based on Faster 

RCNN, while (b) presents the experiments on method based on YOLOv5s. The addi-

tion of the MDE module is predicated on the inclusion of the GTG module; the MDE 

module cannot be used in isolation. 

Table 4. The average number of connected node under different baseline model. 

IoU threshold 0.6 0.65 0.7 0.75 0.8 

Faster RCNN 3.11 1.82 1.17 1.06 1 

YOLOv5s 3.42 1.75 1.21 1.05 1 

Contributions of different modules under different IOU threshold settings. As il-

lustrated in Figure 4 and Table 4, the best performance is achieved when the IoU thresh-

old for connecting boxes is set to 0.7, resulting in a 2.5% improvement with the addition 

of just the graph topology structure, and further increasing to 84.3% with the inclusion 

of multidimensional edges on Faster RCNN based model. Moreover, in the experiments 

on method based on YOLOv5s, incorporating the GTG module leads to an improve-

ment of 1.1%, and further addition of the MDE module results in an enhancement of 

3.3%. At this point, the average number of connected boxes is 1.17 and 1.21 respec-

tively, suggesting that each box was average connected to 0.17 and 0.21 other boxes in 

addition to itself. When the IoU threshold is increased to 0.75, both the addition of the 

GTG module and the further inclusion of the MDE module exhibit a decrease in per-

formance compared to that at an IoU threshold of 0.7. When the IoU threshold is set to 

0.8, the average number of connected boxes was reduced to 1, indicating that each box 

was only connected to itself. This result suggests that considering only the individual 

box, without taking into account information from other boxes, does not yield the best 

results in X-ray image detection. As the IoU threshold is lower to 0.65 and 0.6, the 

average number of connected boxes continue to increased, and performance began to 

noticeably decline with the addition of more connected boxes. This indicates that as the 

number of connections increases, more interference is introduced, diminishing the mod-

el's performance. It's evident that the model with multidimensional edges experienced 
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a more significant performance decrease with an increase in connected boxes. We spec-

ulate this is because multi-dimensional edges amplify interference from irrelevant 

nodes, leading to a further decline in model performance. 

Visualization.  

 

Fig. 5. A figure caption is always placed below the illustration. Short captions are centered, while 

long ones are justified. The macro button chooses the correct format automatically. 

To validate the efficacy of our method in mitigating the challenges posed by translu-

cency occlusions, we have presented visualizations of detection results across various 

categories on the HiXray dataset. As seen in Figure 5 our method outperforms the base-

line model and other approaches, especially in scenarios with severe item overlap. In 

all four columns of the figure, which depict items heavily occluded, other methods ei-

ther fail to detect them or yield detections with very low confidence. In contrast, our 

model accurately identifies these items with exceptionally high confidence. Notably, as 

shown in the second column, our model can detect the Nonmetallic Lighter with a con-

fidence score of 0.69, even though it is almost invisible to the human eye in the original 

image. Additionally, as evident from the fourth column, while our method does intro-

duce some false positives, it is aligned with the stringent operational standards of secu-

rity inspection, which prioritize minimizing missed detections while tolerating a certain 

level of false positives. 

4 Conclusion 

 This paper explores a novel direction in addressing the unique translucency interfer-

ence problem in X-ray images. To enhance the capability of learning more dis-

crimintaive object representation, our approach focuses on the relationships between 
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targets, where an effective multi-dimensional edge-based graph representation learning 

approach is proposed. Our proposed GTG module generates a graph topology to con-

nect the proposed boxes outputted by the detection network, while the MDE module 

generates multidimensional edges to further delineate the nodes' relationships. Exten-

sive experiments demonstrate that our approach has significant advantages in X-ray 

security inspection detection despite the employed backbone is just a standard Faster 

RCNN and YOLOv5s. It not only enhances detection accuracy but also more effec-

tively identifies hard-to-distinguish objects in complex scenarios. The main limitation 

of our experiments is that it only considered the IoU threshold between boxes as the 

condition for connection, without exploring other potential selection methods. Addi-

tionally, the introduction of a highly sparse adjacency matrix resulted in excessive 

VRAM usage by the model during computation. 
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