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Abstract. Single-cell RNA sequencing (scRNA-seq) provides critical insights 

into cellular diversity, essential for understanding complex biological dynamics. 

Traditional scRNA-seq analysis employs either unsupervised clustering methods 

or supervised learning-based approaches to interpret cells or cell clusters, but 

both lacks the flexibility to adjust the clustering resolution needed to fully capture 

the complex spectrum of cell types and states. On the other hand, hierarchical 

clustering can explore cell distribution structures across various resolutions with-

out predefined cluster counts, thus overcoming the limitations of both unsuper-

vised and supervised methods. Nevertheless, the high-dimensional nature of 

scRNA-seq poses significant analytical challenges to hierarchical clustering. In 

addition, as scRNA-seq data usually exhibit rich nonlinear structures in the high-

dimensional space, linear dimension reduction methods such as Principal Com-

ponents Analysis (PCA) are usually notable to reveal these structures for effec-

tive cell type analysis. This study introduces ALLSTATE, a novel single-cell data 

processing pipeline that combines non-linear transition embedding and hierar-

chical clustering in a computationally efficient manner. Our experiments demon-

strate that ALLSTATE achieves satisfactory clustering performance and allows 

us to explore the connections between cellular hierarchies and cell types at mul-

tiple levels of resolution. Additionally, ALLSTATE further enables capturing 

complex cellular differentiation paths, offering a nuanced view of cellular heter-

ogeneity with performance comparable to mainstream methods. 

Keywords: scRNA-seq, Clustering, Non-linear transition embedding, Cellular 

differentiation path. 

1 Introduction 

Single-cell RNA sequencing (scRNA-seq) is a powerful technique to reveal the heter-

ogeneity and diversity among cell populations, facilitating a deep comprehension of 

intricate biological phenomena [1–4]. A major analytical challenge for scRNA-seq data 

analysis is to associate each high-dimensional cell phenotype to a previously identified 

cell type when interpreting large quantities of single-cell data, which is also crucial for 

other downstream applications such as linking tumor microenvironment composition 
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to patient outcomes [5]. Furthermore, single-cell studies usually require identifying the 

potential cell status evolution or cell development trajectory through trajectory infer-

ence analysis, which constructs cell evolution trajectory from the gene expression 

change patterns with the aid of complementary knowledge, such as RNA velocity, 

timepoint information, or other types of omics data [6, 7]. Typically, trajectory infer-

ence requires researchers to perform clustering on the original single-cell data first to 

identify stable cell states in the data as starting points and afterward connect these states 

to form a trajectory.  

Cell type identification is usually done by cluster-then-annotate methods [8–11], 

whereby discrete cell types are identified through unsupervised clustering analysis, 

which are then annotated based on expressions of marker genes on different clusters. 

After cell type identification, researchers can manually select one or more clusters for 

further refinement based on prior knowledge. The accuracy of clustering is significantly 

affected by researchers’ subjective choice of resolution. Moreover, the discrete selec-

tion of resolutions limits their capability to fully capture the complexities of cellular 

differentiation processes. Alternatively, supervised clustering methods leverage ma-

chine learning algorithms trained on pre-labeled data for cell type identification [12–

15], thus enhancing pattern recognition and accuracy. Yet their dependency on training 

data poses limits on adaptability and generalization capabilities. In particular, similar 

to unsupervised clustering methods, their ability to discern different cell types is limited 

by the resolution at which datasets are annotated.  

To identify the hierarchical structures of scRNA-seq data, hierarchical clustering 

stands out as a promising alternative due to its inherent ability to process data with 

layered structures [16]. These methods systematically build a dendrogram, mapping 

data points across a continuum of similarity, thereby unveiling detailed insights into 

their intertwined relationships and facilitating adaptive resolution adjustments tailored 

to distinct analytical goals. This strategy effectively eliminates the need for predeter-

mined cluster counts, making it suitable for applications where the number of clusters 

is indeterminate or fluctuating. Moreover, it offers a flexible framework for data explo-

ration across various levels of abstraction, adeptly navigating the intricacies of multi-

layered structural analyses that traditional clustering techniques, both unsupervised and 

supervised, often struggle to handle.  

Unfortunately, the direct application of hierarchical clustering to scRNA-seq data 

encounters a number of challenges. Firstly, the inherent high-dimensional nature of 

scRNA-seq data leads to a substantial computational burden. Secondly, the sparsity of 

data makes it difficult to find a representative metric that can accurately measure the 

differences between cells. Such a metric is crucial for the efficacy of hierarchical clus-

tering. A potential solution to the above issues is the application of appropriate dimen-

sion reduction techniques to process scRNA-seq data, with the aim of obtaining an ef-

fective representation of high-dimensional data in a low-dimensional space. However, 

traditional linear dimension reduction methods like PCA [17], as well as model-embed-

ded dimension reduction approaches [18, 19] that integrate dimension reduction within 

data processing models, often struggle to capture the rich characteristics of scRNA-seq 

data due to its complex, non-Euclidean manifold-like structure in high-dimensional 

space.  
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To address these issues, we propose ALLSTATE, a hierArchicaL cLuSTering pipe-

line bAsed on non-linear Transition Embedding in manifold space. This pipeline com-

bines the power of non-linear transition embedding to extract diverse information per-

taining to cell differentiation paths, with the capability of hierarchical clustering meth-

ods to decipher the heterogeneous state of cells in multiple resolutions. The proposed 

method demonstrates the ability to delineate the global structure of single-cell data 

without pre-defined resolution. In addition, it also provides comparable performance to 

the current mainstream scRNA-seq clustering methods when compared at pre-defined 

resolution. 

2 Methodology 

An overview of ALLSTATE is shown in Fig. 1. To delineate the structures of single-

cell data at multiple resolutions through a unified manner, ALLSTATE first performs 

diffusion condensation to identify the hidden affinity-preserving manifold embedding 

of high-dimensional single cell data using PHATE [20]. Cell subtypes of different gran-

ularity are then identified by using simple hierarchical clustering on the identified man-

ifold embedding. For clusters of single cells that form continuous distributions on the 

projected manifold, ALLSTATE further identifies their expression evolution trajecto-

ries by using the PAGA [21] algorithm based on their structures identified at finer res-

olutions, from which potential continuous cell state evolution or cell development tra-

jectory can be identified. 

2.1 Non-linear Transition Embedding 

To capture the complex structure of scRNA-seq data, we employ the PHATE method. 

Briefly, starting with a high-dimensional expression matrix 𝑋 ∈ 𝑅𝑚×𝑛, where 𝑚 repre-

sents genes and 𝑛 for cells, we construct a k-nearest neighbors (k-NN) graph. Cell-to-

cell affinities are calculated using a Gaussian kernel: 

 𝑨𝑖𝑗 = 𝑒𝑥𝑝 (−
𝑑(𝒙𝑖,𝒙𝑗)2

𝜖
) (1) 

where 𝐀𝑖𝑗 denotes the affinity between cells 𝑖 and 𝑗, with 𝑑(𝐱𝑖, 𝐱𝑗) quantifying the Eu-

clidean distance between their gene expression profiles. The parameter 𝜖, determines 

the radius (or spread) of neighborhoods captured by this kernel. This forms an affinity 

matrix 𝐀, which is used to generate a diffusion operator 𝐃 = 𝐀 ⋅ 𝐀𝑇 . The operator cap-

tures the global structure of the input data through a diffusion process. By performing 

spectral decomposition on 𝐃, we obtain eigenvectors 𝐯𝑖 and corresponding eigenvalues 

𝜆𝑖: 

 𝐃𝐯𝑖 = 𝜆𝑖𝐯𝑖 (2) 

Dimensionality reduction is achieved by selecting principal eigenvectors based on their 

eigenvalues, arranged in descending order. This selection, 𝐗reduced = 𝐕selected, provides 

a reduced representation that preserves the intrinsic geometry of data. 
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Fig. 1. Overview of ALLSTATE. 

2.2 Distance Calculation in Manifold Space 

Following dimensionality reduction to obtain 𝐗reduced, we calculate the Euclidean dis-

tance between any two cells 𝑖 and 𝑗 in the reduced space as: 

 𝑑reduced(𝑖, 𝑗) = √∑ (𝑥𝑖𝑘
reduced − 𝑥𝑗𝑘

reduced)
2𝑟

𝑘=1  (3) 
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where 𝑟 represents the dimensions post-reduction, and 𝑥𝑖𝑘
reduced, 𝑥𝑗𝑘

reduced are the coordi-

nates of cells 𝑖 and 𝑗. This generates a distance matrix 𝐷reduced essential for subsequent 

analyses. 

2.3 Hierarchical Clustering 

For structure exploration, we apply agglomerative hierarchical clustering to 𝐷𝑟𝑒𝑑𝑢𝑐𝑒𝑑 . 

Initially treating each point as an individual cluster, we iteratively merge them based 

on the shortest distance, using linkage criteria such as single, complete, average linkage, 

or Ward’s method, detailed as follows. 

 𝑆𝑖𝑛𝑔𝑙𝑒 𝐿𝑖𝑛𝑘𝑎𝑔𝑒:        𝑑SingleLinkage(𝐶𝑖 , 𝐶𝑗) = 𝑚𝑖𝑛(𝑑𝑖𝑗): 𝑥 ∈ 𝐶𝑖 , 𝑦 ∈ 𝐶𝑗 (4) 

 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐿𝑖𝑛𝑘𝑎𝑔𝑒: 𝑑CompleteLinkage(𝐶𝑖 , 𝐶𝑗) = 𝑚𝑎𝑥(𝑑𝑖𝑗): 𝑥 ∈ 𝐶𝑖 , 𝑦 ∈ 𝐶𝑗 (5) 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑖𝑛𝑘𝑎𝑔𝑒:       𝑑AverageLinkage(𝐶𝑖 , 𝐶𝑗) =
1

|𝐶𝑖||𝐶𝑗|
∑ ∑ 𝑑𝑖𝑗𝑦∈𝐶𝑗𝑥∈𝐶𝑖

 (6) 

 𝑊𝑎𝑟𝑑’𝑠 𝑀𝑒𝑡ℎ𝑜𝑑:       𝑑Ward(𝐶𝑖 , 𝐶𝑗) =
|𝐶𝑖||𝐶𝑗|

|𝐶𝑖|+|𝐶𝑗|
⋅ 𝑑𝜇𝑖𝜇𝑗

2  (7) 

Merging continues until reaching a single cluster or a predetermined condition. This 

process yields a dendrogram, providing insights into data organization and cluster iden-

tification. 

2.4 PAGA 

After dimensionality reduction and clustering, we apply PAGA for further trajectory 

analysis. PAGA constructs a k-nearest neighbors (k-NN) graph from reduced data, par-

titioning it into clusters based on hierarchical clustering outcomes. Connectivity be-

tween clusters is quantified with the PAGA connectivity score: 

 𝜙(𝐶𝑖 , 𝐶𝑗) =
𝑂(𝐶𝑖,𝐶𝑗)−𝐸(𝐶𝑖,𝐶𝑗)

√𝑉(𝐶𝑖,𝐶𝑗)
  (8) 

where 𝑂(𝐶𝑖 , 𝐶𝑗) represents the observed edge count, 𝐸(𝐶𝑖 , 𝐶𝑗) represents the expected 

count under a random model, and 𝑉(𝐶𝑖 , 𝐶𝑗) represents the variance. This measurement 

distinguishes meaningful connections between clusters. 

PAGA then simplifies the graph, where nodes stand for clusters and edges indicate 

the strength of connectivity, illuminating cellular interactions and potential transitions 

between states. 
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3 Experiment Settings 

3.1 Data Description 

We conduct experiments on six scRNA-seq datasets. These scRNA-seq datasets consist 

of cells with known labels, and their details are given in Table 1. Note that the 

MCA_sub dataset is derived from the Mouse Cell Atlas 2.0, where it has been 

downsampled to 13,000 cells from the Adult subset. Subsequently, cells belonging to 

the cell_type2 category with fewer than 50 cells were removed. 

Table 1. Details of the six scRNA-seq datasets. 

Datasets Cells Genes 
Level 1 Cell 

Types 

Level 2 Cell 

Types 

GSE144735 22414 33694 6 40 

Zilionis_mouse_lung 6738 28205 6 18 

Shekhar 26830 13166 5 18 

Young 5685 33658 5 15 

Stewart_Mature 22536 33694 26 32 

MCA_sub 12707 39483 11 41 

3.2 Baseline Methods 

We compare ALLSTATE with the following seven baseline methods. 

PCA+HC [28]: It’s an application of the traditional hierarchical clustering method. 

It runs linear dimensionality reduction using PCA followed by hierarchical clustering 

in the low-dimensional space, and can obtain clustering results of continuous multiple 

resolutions. 

PCA+Kmeans [29]: It combines the linear dimensionality reduction of PCA and the 

clustering capabilities of Kmeans, providing a solution that balances dimensionality 

reduction and clustering efficiency. 

Leiden and Louvain [30]: These two methods are community clustering algorithms 

that focus on discovering modular structures in the data to optimize community delin-

eation of clusters. 

HGC [31]: A graph-based hierarchical clustering method which emphasizes the hi-

erarchy and structure of data, aiming to improve the interpretability and biological sig-

nificance of clustering results. 

scDeepCluster [18]: A deep learning clustering method which combines the Zero-

Inflated Negative Binomial (ZINB) model-based autoencoder with clustering loss, op-

timizing clustering while performing dimension reduction. 

DESC [19]: An unsupervised deep learning algorithm that iteratively learns cluster-

specific gene expression representation and cluster assignments for scRNA-seq analy-

sis. 
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4 Results and Analysis 

In this section, we first explore the influence of using different linkage criteria on model 

performance and select an optimal distance metric for subsequent experiments. Next, 

we compare ALLSTATE with seven current widely-used scRNAseq data clustering 

methods. We demonstrate the effectiveness of our method in improving the quality of 

data dimension reduction and its applicability in cell subpopulation identification 

through visualization. Finally, we apply the entire pipeline to re-explore the subtype 

branches of a specific cell type and perform trajectory inference to verify the evolution-

ary pathways between subtypes of a specific cell type. 

4.1 Parameter Analysis 

Table 2. Experimental results on different distance measures in hierarchical clustering. 

Datasets 
Linkage 

Criteria 
NMI ARI V-Measure 

GSE144735 

Single 0.7300 0.3735 0.7008 

Complete 0.7231 0.4341 0.7227 

Average 0.7704 0.5485 0.7633 

Ward 0.7252 0.5256 0.7247 

Zilionis_mouse_lung 

Single 0.8416 0.9140 0.8270 

Complete 0.8314 0.8883 0.8264 

Average 0.8733 0.9624 0.8769 

Ward 0.7152 0.4156 0.7147 

Shekhar 

Single 0.4420 0.1325 0.3310 

Complete 0.7202 0.5619 0.7188 

Average 0.7630 0.6022 0.7701 

Ward 0.7712 0.5934 0.7751 

Young 

Single 0.4864 0.3745 0.4896 

Complete 0.6923 0.5872 0.6915 

Average 0.7691 0.6733 0.7684 

Ward 0.7431 0.6711 0.7430 

Stewart_Mature 

Single 0.7548 0.7981 0.7302 

Complete 0.7346 0.5137 0.7249 

Average 0.8802 0.9647 0.8796 

Ward 0.6480 0.2757 0.6187 

MCA_sub 

Single 0.6307 0.1764 0.5780 

Complete 0.7636 0.5484 0.7631 

Average 0.7826 0.5462 0.7846 

Ward 0.7811 0.5425 0.7817 

 

In this experiment, the distance measures are set to the shortest distance (Simple), the 

longest distance (Complete), the average distance (Average) and the Ward method 

(Ward), respectively, to study their impact on the performance of the algorithm. Results 

in Table 2 show that the distance measure in hierarchical clustering significantly affects 
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the clustering performance. Among the six datasets tested in the experiment, the aver-

age distance metric achieves the best performance in five datasets, while the perfor-

mance in the remaining Shekhar dataset ranks second, with a normalized mutual infor-

mation (NMI) gap of only 0.00038 from the best-performing Ward method. Based on 

these results, the average distance metric is the optimal choice of distance metric in the 

current algorithm.  

4.2 Multi-level Structural Analysis 

Our analysis employs clustering visualization to showcase the significant capability of 

ALLSTATE in extracting meaningful insights from complex datasets. We focus on the 

outcomes of ALLSTATE clustering across multiple resolutions, ensuring these resolu-

tions are in sync with the actual cell type diversity present in our dataset. As illustrated 

in Fig. 2a, the transition from Level 1 to Level2 resolution exemplifies the adeptness of 

ALLSTATE in accurately identifying specific cell types, e.g., B cells and NK cells. 

This precision in distinguishing cell type, avoiding the merging of unrelated cell groups, 

highlights the method’s exceptional strength and reliability in unraveling the complex 

web of biological data. 

 

Fig. 2. Multi-level structural analysis results. 

ALLSTATE allows researchers to explore the connections between cellular hierar-

chies and cell types at multiple levels of resolution after identifying the appropriate 

number of clusters. As shown in Fig. 2a, the new resolution levels from Level 1 to Level 

2 provide a rich perspective for this type of analysis. This method can support tracking 

to the depth of each cell type branch, greatly promotes an in-depth understanding of 

cell subtype classification and its biological characteristics, and provides a solid foun-

dation for exploratory cell subtype identification tasks.  

To further validate the clustering performance of ALLSTATE, we extended our 

analysis by mapping the clustering results obtained from ALLSTATE against the 
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expression profiles of known marker genes. As depicted in Fig. 2b, the expression pat-

terns of these marker genes align well with clustering results of ALLSTATE at the 

Level 1 resolution, with each cluster corresponding to specific cell type identification 

markers. This alignment confirms the precision of ALLSTATE’s results.  

Highlighting the capacity of ALLSTATE to discern cellular nuances across multiple 

analytical layers, our exploration extends to a nuanced examination of subclusters 

within T cells and monocytes, initially identified at level 1 resolution, now analyzed at 

a more detailed Level 2 resolution. The findings, as illustrated in Fig. 2c, reveal that 

cells segregated into distinct subclusters exhibit differential expression patterns of spe-

cific marker genes. This variation in marker gene expression across subclusters not only 

validates ALLSTATE’s ability to unravel cellular complexity at a granular level but 

also highlights its prowess in capturing the nuanced diversity within broader cell type 

categorizations. 

4.3 Comparison with Existing Clustering Methods 

To verify the effectiveness of ALLSTATE, we compare ALLSTATE with seven pop-

ular clustering algorithms, including PCA+HC, PCA+K-means, Louvain, Leiden, 

HGC, and two deep learning-based methods (scDeepCluster and DESC), on six 

scRNA-seq datasets. We choose adjusted rand index (ARI) [32] and normalized mutual 

information (NMI) [33] as the performance evaluation metrics. Higher score of these 

two metrics indicates better performance. The results are shown in Fig. 3. 

ALLSTATE demonstrates robust clustering performance across a range of datasets 

and achieves comparable accuracy to established methods like Leiden, a widely ac-

cepted clustering method in single-cell cell type identification. It consistently shows 

high average clustering accuracy at both coarse-grained and fine-grained cell types lev-

els. Specifically, ALLSTATE yields superior NMI values, demonstrating enhanced ac-

curacy in matching true labels of cell types, especially noticeable in datasets 

GSE144735 Level 1 and Level 2, with scores of 0.87 and 0.91, respectively. This trend 

is mirrored in the ARI benchmarks, where our method achieves top scores, notably a 

0.72 ARI on GSE144735 Level1, underscoring its robustness in identifying the correct 

number of clusters and their quality. The performances of multi-level also indicate 

ALLSTATE’s robustness in handling various data complexities and its effectiveness 

without the need for the extensive training and parameter tuning that deep learning 

methods typically require.  
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Fig. 3. Heatmap of NMI and ARI values for all methods among six datasets. 

To illustrate the effectiveness of latent space representation, we use UMAP to visu-

alize the 2D embeddings from ALLSTATE, PCA, and deep learning models as shown 

in Fig 4. ALLSTATE effectively delineates distinct cell populations in various datasets, 

such as MCA_sub, GSE144735, and Stewart_Mature, demonstrating robust clustering 

capabilities. In contrast, PCA and deep learning methods like scDeepCluster and DESC 

often create overlapping and fragmented clusters, particularly in complex datasets like 

Zilionis_mouse_lung. Moreover, ALLSTATE’s embeddings demonstrate distinct ca-

pability in preserving the coherent and continuous distributions of cell populations 

across the datasets, demonstrating its exceptional ability to map complex biological 
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continuities. Conversely, the embeddings from PCA, scDeepCluster and DESC tend to 

focus primarily on local structures, resulting in clusters appearing as isolated islands 

without clear transitional connections between related cell states.  

 

Fig. 4. Comparison of 2D visualization of embedded representations. The axes are arbitrary units. 

Each point represents a cell. The distinct colors of the points represent the true labels. No method 

uses the true label information. 

Furthermore, we integrate the embedding of scDeepCluster and DESC methods into 

hierarchical clustering for multi-level structural analysis. We also extended our analysis 

by mapping the clustering results against the expression profiles of known marker 

genes. As shown in Fig 5, both methods have difficulty delineating subtypes of T cells 
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within the data across multi-levels, which is as expected as deep learning-based cell 

clustering methods are typically trained to produce cell representations that match the 

cell labels provided at the training stage. As a result, the results may not preserve the 

fine structures existing in the distributions of interconnected cell types essential for 

single-cell analysis of multiple resolutions. 

 

Fig. 5. Multi-level structural analysis results based on embedding of deep learning-based meth-

ods. 

4.4 ALLSTATE Reveals Evolution Path among Myeloid Cell Subtypes 

To further evaluate the interpretative capabilities of the ALLSTATE pipeline for down-

stream analysis in single-cell studies, we utilize the GSE120575 dataset from a cohort 

of melanoma patients undergoing PD-1 immune checkpoint blockade therapy. This da-

taset comprises 16,291 immune cells derived from tumor biopsies of 48 patients treated 

with checkpoint inhibitors. Among these individuals, 34 do not respond to the therapy 

while 14 are identified as responders. This dataset is chosen to rigorously assess how 

effectively the ALLSTATE pipeline can navigate and elucidate the intricate cellular 

dynamics associated with varying responses to immunotherapy.  

Firstly, we identify the myeloid cells similar to the cluster of monocytes/macro-

phages using ALLSTATE clustering (Fig. 6a). Then we can define monocytes, macro-

phage and moDCs (monocyte-derived dendritic cells) by expression of CLEC10A, 

MARCO, APOE, CD14, CD163 and CD1C genes (Fig. 6c). By adopting PAGA, un-

supervised ordering of the scRNA-sequenced myeloid cells by diffusion mapping re-

vealed a monocytes-to-moDCs or monocytes-to-macrophages differentiation trajectory 

(Fig. 6d).  

We also visualize the changes in gene expression of genes associated to macro-

phages (Fig. 6e right) or moDCs (Fig. 6e left) along the two trajectories from monocytes 

in pseudo-time. This reveals a progressive increase in the expression of CD163 and 

APOE in the early stages, followed by an upregulation of MARCO later in the macro-

phage trajectory. We also observed a late increase of CLEC10A along the moDCs tra-

jectory.  
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Fig. 6. Myeloid cells in human patients with melanoma show a bimodal differentiation pattern 

related to the therapeutic response of αPD1 therapy. (a) Single-cell RNA sequencing data [34] of 

tumor biopsies of patients with metastatic melanoma treated with αPD1 therapy identify myeloid 

cells, including four subsets generated by ALLSTATE. (b) PAGA graphs of four subsets. (c) 

Expression of several key genes are differentially distributed in the tumor-resident myeloid cells. 

(d) Using the four identified subsets as landmarks, PAGA is used to order cells in pseudo-time.  

(e) Quantification of monocytes, macrophages and moDCs from tumor biopsies of patients with 

melanoma either responding or not responding to PD1 checkpoint blockade.  (f) Gene changes 

along PAGA paths of the differentiation process of monocytes to macrophages or dendritic cells. 

Furthermore, we examine the impact of PD-1 checkpoint blockade on this cellular 

differentiation. By quantifying the proportionate presence of monocytes, moDCs, and 

macrophages, we find that moDCs are notably more prevalent in patients who exhibit 

a positive response to αPD1 treatment, in contrast to non-responders (Fig. 6f), suggest-

ing that that the presence of strong moDCs infiltration in tumor microenvironment 

could be a predictive marker for patient response to PD1-targeted therapies. 
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5 Conclusion 

This paper presents ALLSTATE, a scRNA-seq data analysis pipeline, which integrates 

non-linear dimension reduction, hierarchical clustering, PAGA topological mapping, 

and pseudo-time analysis to support refined deciphering of cellular diversity and dif-

ferentiation paths. The experimental findings demonstrate that ALLSTATE can accu-

rately resolution levels, and reveal complex biological characteristics and differentia-

tion paths, thus providing a useful tool for biologists to obtain a clearer picture of un-

derlying cell biology from data generated from their single-cell studies.  
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