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Abstract. Deploying deep learning models on Internet of Things (IoT) devices 

often faces challenges due to limited memory resources and computing capabili-

ties. Cooperative inference is an important method for addressing this issue, re-

quiring the partitioning and distributive deployment of an intelligent model. To 

perform horizontal partitions, existing cooperative inference methods take either 

the output channel of operators or the height and width of feature maps as the 

partition dimensions. In this manner, since the activation of operators is distrib-

uted, they have to be concatenated together before being fed to the next operator, 

which incurs the delay for cooperative inference. In this paper, we propose the 

Interleaved Operator Partitioning (IOP) strategy for CNN models. By partition-

ing an operator based on the output channel dimension and its successive operator 

based on the input channel dimension, activation concatenation becomes unnec-

essary, thereby reducing the number of communication connections, which con-

sequently reduces cooperative inference delay. Based on IOP, we further present 

a model segmentation algorithm for minimizing cooperative inference time, 

which greedily selects operators for IOP pairing based on the inference delay 

benefit harvested. Experimental results demonstrate that compared with the state-

of-the-art partition approaches used in CoEdge, the IOP strategy achieves 6.39% 

~ 16.83% faster acceleration and reduces peak memory footprint by 21.22% ~ 

49.98% for three classical image classification models. 

Keywords: Deep learning, Distributed inference, Parallel computing. 

1 Introduction 

Artificial Internet of Things (AIoT) has been widely applied in various fields, including 

industrial production, autonomous driving, smart home appliances, and other miscella-

neous domains [1]. With the rise of deep learning technology, the computational and 

memory requirements of these models have steadily increased [2]. Meanwhile, deploy-

ment and real-time inference of intelligent models have received increasing attention 

for AIoT [3]. On the one hand, the memory budget of IoT devices is usually limited 
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[4], which hinders model deployments. On the other hand, many practical application 

scenarios demand strict real-time responsiveness for model inference, such as valve 

leakage detection, which may require response times at the millisecond level. If the 

result is too late, it can cause serious safety hazards [5]. 

Cooperative computing for distributed inference, i.e., cooperative inference, is an 

effective solution [6]. As shown in Fig. 1(a), all operators of the model will be inference 

sequentially on one device for the centralized inference scenario. Meanwhile, in the 

horizontal cooperative inference scenario depicted in Fig. 1(b), the operator of Convo-

lution 1 is partitioned horizontally into three parts across the output channel (OC) di-

mension and assigned to devices A, B, and C, respectively. They execute different parts 

of Convolution 1 in parallel. After the execution, they broadcast and concatenate the 

three parts of the output, which will fed into the next operator, i.e., Convolution 2. 

Similar processing for Convolution 2 and Convolution 3 can also be executed. In this 

manner, both the overall inference time and the memory footprint will be reduced due 

to the parallel execution. 

 

Fig. 1. (a) Centralized inference. (b) Cooperative inference workflow of OC dimension partition-

ing. After each operator execution, devices A, B, and C broadcast and concatenate the three parts 

of the output. 

However, for an operator partitioned in cooperative inference, its output activations 

are distributed across multiple AIoT devices. The inference process for the next opera-

tor can only proceed once these distributed activations are concatenated [7]. This con-

catenation generates additional communication overhead, thereby increasing inference 

latency. 
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Fig. 2. (a) Centralized inference. (b) Cooperative CNN inference workflow of IOP. The output 

from Convolution 2, which is distributed on devices A, B, and C, can be directly fed into Con-

volution 3. 

In this paper, we propose Interleaved Operator Partitioning (IOP), a novel coopera-

tive inference scheme for AIoT. Unlike the traditional horizontal cooperative inference 

scheme based on the OC dimension, by partitioning an operator based on the input 

channel (IC) dimension and its successive operator based on the OC dimension, acti-

vation concatenation is unnecessary. Thus, cooperative inference delay is decreased. 

Take two adjacent operators in Fig. 2, for example. If Convolution 2 is partitioned based 

on the OC dimension, and Convolution 3 is on the IC dimension, the output results 

from Convolution 2 do not need to be concatenated before executing Convolution 3. 

Instead, the output results of Convolution 2 can be directly fed into Convolution 3 on 

the same device, thus saving one communication process and reducing the communi-

cation overhead. 

In summary, this paper makes the following contributions: 

 We propose IOP, a universal cooperative inference acceleration method for CNN 

in AIoT, which reduces inference time by minimizing the number of communications 

required during inference. 

 We formulate the problem of minimizing inference delay based on the IOP scheme. 
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 We propose a heuristic model segmentation algorithm, which applies IOP across 

all segments comprising two operators to produce minimal cooperative inference delay. 

 We evaluate the IOP strategy using multiple CNN models to demonstrate its supe-

rior performance. 

The rest of this paper is organized as follows: Section 2 briefly describes the related 

work on cooperative inference. Section 3 provides a problem formulation using the IOP 

scheme. Section 4 designs the heuristic model segmentation algorithm. Section 5 con-

ducts an experimental evaluation and analysis, and Section 6 is the conclusion. 

2 Related Work 

Cooperative inference involves the partitioning and allocation of the DNN computa-

tional workload while minimizing the communication overhead generated due to the 

distribution of computational workload [8]. Three kinds of partitioning methods are 

usually adopted including feature map partitioning, model partitioning and operator 

partitioning. Typical feature map partition strategies are used in MoDNN [9], CoEdge 

[10], and Musical Chair [11], while model partition strategy is used in Gpipe and hybrid 

parallelism [12]. Meanwhile, AlexNet [13] utilizes operator partition strategy. 

 

Fig. 3. Cooperative CNN inference workflow of CoEdge. The input image is piece-wise parti-

tioned to patches before execution. During the convolution stage, these patches are distributed to 

devices A, B, and C for processing. In the fully connected stage, the activations are concatenated 

to complete the inference.   

Feature map partitioning aims to achieve a rational distribution of workloads. For 

the convolution operator, MoDNN partitions the input tensor along either its rows or 

columns based on the device's computation capability to reduce the communication 

overhead. CoEdge reduces communication overhead by setting a minimum for the 

number of rows partitioned, thus minimizing tensor padding at partition boundaries. As 

shown in Fig. 3, CoEdge partitions the activations among the devices. However, due to 

the sliding computational process used by convolution operators, partitioning the fea-

ture map along the height (H) or width (W) dimensions requires adjacent devices to 

exchange data at the partition boundaries.  

Operator partition commonly uses the OC in the partitioning dimension. To reduce 

inference latency and device memory usage, Alex Krizhevsky partitioned the model's 
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operators across two devices along the OC dimension. However, this method requires 

distributed activations to be broadcast and concatenated before being fed to the next 

operator, resulting in significant communication overhead. 

To tackle this challenge, we propose an IOP scheme that partitions an operator based 

on the IC dimension and the subsequent operator based on the OC dimension. In this 

case, activation concatenation becomes unnecessary, which reduces the number of 

communication links. This reduction leads to a decrease in the cooperative inference 

delay. 

3 Problem Formulation 

We assumed that the communication bandwidth and computing capability of all devices 

are relatively stable. To ensure a precise problem formulation, the following necessary 

concepts and symbols are defined: 

𝑁 = [1,2, … , 𝑛] denotes the operator in order in the pre-deployed model, and the 

𝑀 = [1,2, … , 𝑚] denotes the set of available devices. 

(𝑓, 𝑟)𝑗  is employed to describe the information of computing devices 𝑗, where 𝑓 rep-

resents the device’s computing capability, and 𝑟 represents its available memory capac-

ity. The communication bandwidth between devices is represented by 𝑏. 

𝜂𝑖 = (𝐻, 𝐼𝐶, 𝑂𝐶)𝑖 is employed to describe partition dimension, where 𝐻, 𝐼𝐶, 𝑂𝐶 ∈ 

{0,1}, represent the selection of the partition dimension of operator 𝑜𝑖 , 𝐻 is the feature 

map H dimension and 𝐼𝐶, 𝑂𝐶 represent the IC and OC dimension of operator, respec-

tively. 

(𝑐𝑖𝑛 , 𝑐𝑜𝑢𝑡 , 𝑤𝑘 , ℎ𝑘 , 𝑠, 𝑝)𝑖 is employed to describe operator parameter. For a convolu-

tion operator, 𝑐𝑖𝑛 is the IC number, and 𝑐𝑜𝑢𝑡 is the OC number. 𝑤𝑘 is the convolution 

kernel width, ℎ𝑘 is the kernel height, 𝑠 is the stride and 𝑝 is the padding size. Fully con-

nected operators can be considered a special convolution operator 𝑐𝑖𝑛 with the input 

dimension and 𝑐𝑜𝑢𝑡 as the output dimension. 

𝑜𝑖,𝑗  represents the operator is partitioned into multiple parts for the part of 𝑜𝑖  as-

signed to device 𝑗. 𝑐𝑖,𝑗
𝑖𝑛 denotes its IC number, 𝑐𝑖,𝑗

𝑜𝑢𝑡 represents its OC number, ω𝑖,𝑗 rep-

resents its memory usage of weights, 𝑎𝑖,𝑗 denotes the memory usage of its activation 

outputs. 

There are some numerical constraints on the partition dimensions and sizes: 

 ∑ ω𝑖,𝑗𝑖∈𝑁 + max(𝑎𝑖,𝑗) ≤ 𝑟𝑗 , 𝑗 ∈ 𝑀 (1) 

Equation (1) represents the constraint that the operators deployed on each device 

must satisfy, which is that the peak memory footprint should be less than the device's 

capacity. 

 ∑ 𝜂𝑖[𝑛] = 1𝑛∈0,1,2  (2) 

Equation (2) represents the constraint that each operator in the model can only 

choose one partition dimension from H, IC, and OC. 



6  Z. Liu et al. 

 ∑ 𝜂𝑖[0]𝑗∈𝑀 ⋅ ℎ𝑖,𝑗 = 𝜂𝑖[0] ⋅ ℎ𝑖 , 𝑖 ∈ 𝑁, ℎ𝑖,𝑗 ≥ 0, ℎ𝑖,𝑗 ∈ 𝑍 (3) 

 ∑ 𝜂𝑖[1]𝑗∈𝑀 ⋅ 𝑐𝑖,𝑗
𝑖𝑛 = 𝜂𝑖[1] ⋅ 𝑐𝑖

𝑖𝑛 , 𝑖 ∈ 𝑁, 𝑐𝑖,𝑗
𝑖𝑛 ≥ 0, 𝑐𝑖,𝑗

𝑖𝑛 ∈ 𝑍 (4) 

 ∑ 𝜂𝑖[2]𝑗∈𝑀 ⋅ 𝑐𝑖,𝑗
𝑜𝑢𝑡 = 𝜂𝑖[2] ⋅ 𝑐𝑖

𝑜𝑢𝑡 , 𝑖 ∈ 𝑁, 𝑐𝑖,𝑗
𝑜𝑢𝑡 ≥ 0, 𝑐𝑖,𝑗

𝑜𝑢𝑡 ∈ 𝑍 (5) 

Equations (3), (4), and (5) represent the constraint that after partitioning, the total 

size of all concatenated partitions along the H, IC, and OC dimensions equals the size 

of the respective dimension. 𝜂𝑖[0], 𝜂𝑖[1] and 𝜂𝑖[2] take the values 0 or 1, denotes 

whether to choose H, IC and OC dimensions of the operator for partitioning, respec-

tively. 

 𝑃1: 𝑚𝑖𝑛 ∑ 𝑚𝑎𝑥𝑗∈𝑀(𝑇𝑖,𝑗
𝑐 + 𝑇𝑖,𝑗

𝑔
)𝜂𝑖,𝑖∈𝑁  (6) 

 𝑠. 𝑡. (1), (2), (3), (4), (5) 

The total time required for model inference is comprised of two components: com-

putation delay and communication delay, where 𝑇𝑖,𝑗
𝑐  and 𝑇𝑖,𝑗

𝑔
 represent the computa-

tional and communication delay of the operator 𝑖 on device 𝑗, respectively. They can 

be expressed by Equations (7) and (8). 

 𝑇𝑖,𝑗
𝑐 =

𝑐𝑖,𝑗

𝑓𝑗
, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀 (7) 

 𝑇𝑖,𝑗
𝑔

=
𝑔𝑖,𝑗

𝑏
, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀 (8) 

where, 𝑐𝑖,𝑗 and  𝑔𝑖,𝑗 represent the computation workload and communication workload, 

which depend on the method used for operator partition, while the values of 𝑓 and 𝑏 

are determined by the properties of the devices. 

4 Segmentation Algorithm 

We describe the segmentation and pairing based on the IOP scheme, i.e., Problem 𝑃1, 

as an integer programming problem. To produce a feasible solution efficiently, we seg-

ment the model into 𝛤: 

 𝛤 = [𝛾1, 𝛾2, … , 𝛾𝑘] (9) 

where γ𝑖 is a segment that is either a single operator or a pair of operators. For a seg-

ment of a pair of operators, IOP will be employed on it so as to save communication 

overhead.  

To find an optimal segmentation for minimizing cooperative inference delay. A heu-

ristic segmentation algorithm is designed as follows: Starting from the first operator, it 

searches for interleaved operator pairs layer by layer. Specifically, for operator 𝑜𝑖  and 

its succeeding operator 𝑜𝑖+1, we compare the inference times using the IOP scheme and 

the partition approach in CoEdge. If the IOP scheme achieves a shorter inference time, 
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the two operators will be paired to form a new segment; otherwise, a new segment will 

be formed that includes only 𝑜𝑖 . 

Algorithm 1 Model Segmentation and Pairing Algorithm 

Input: 

Device set: 𝑀 = [1,2, … , 𝑚]  

Operator set: 𝑁 = [1,2, … , 𝑛]  

Operator parameter: (𝑐𝑖𝑛 , 𝑐𝑜𝑢𝑡 , 𝑤𝑘 , ℎ𝑘 , 𝑠, 𝑝)𝑖  

Partition dimension tuple: 𝜂𝑖 = (𝐻, 𝐼𝐶, 𝑂𝐶)𝑖  

Memory, frequency, and bandwidth: (𝑓, 𝑟)𝑗 , 𝑏  

Output: 

Pairing scheme: 𝛤 = [𝛾1, 𝛾2, … , 𝛾𝑘] 

1. Initialize 𝑖 ← 𝑖 +  2 

2. for 𝑖 ← 1 to 𝑛 in 𝑁 do 

3.       γ𝑘 ← (𝑜𝑖 , 𝑜𝑖+1) 

4.       𝑇iop ← IOP_Partition (𝛾𝑘) 

5.       𝑇co ←CoEdge_Partition (𝛾𝑘) 

6.       if 𝑇iop ≤ 𝑇co then 

7.           Add 𝛾𝑘to 𝛤 

8.           𝑖 ← 𝑖 +  2, 𝑘 ← 𝑘 +  1 

9.       else 

10.           𝑖 ← 𝑖 +  1 

11.       end if 

12. end for 

13. return 𝛤 

5 Performance Evaluation 

We compare the IOP scheme with the following similar approaches. (1) OC: The layer-

by-layer OC dimension partitioning method is used in the experimental prototype of 

the classic AlexNet network, which effectively reduces the memory footprint of a de-

vice during model inference. (2) CoEdge: The feature map's H dimension partitioning 

method effectively reduces the communication volume on one device during model 

inference. We implement the IOP scheme in three typical CNN models: LeNet, 

AlexNet, and VGG11. The details of the CNN models and the datasets used are speci-

fied in Table 1. 

Table 1. Details of the CNNs and datasets used in the evaluation 

CNN Description Convolutional number Fully connected number Dataset 

LeNet 7-layer CNN 2 3 MNIST [14] 

AlexNet 12-layer CNN 5 3 
ImageNet 

[15] 

VGG11 17-layer CNN 8 3 ImageNet 
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Fig. 4 shows the comparative results of inference latency for cooperative inference 

based on IOP, OC, and CoEdge, and they are measured in the same experimental set-

tings. Compared with OC, IOP saves 31.53%, 21.06%, and 12.82% inference time for 

three models, respectively. Relative to that of CoEdge, IOP saves 12.05%, 16.83%, and 

6.39% inference time, respectively. The cooperative inference based on OC exhibits 

the largest latency. The reason is that the operator partitioning along the OC dimension 

necessitates the aggregation of output activation for each layer. 

 

Fig. 4. The inference time of OC, CoEdge and IOP strategy running LeNet, AlexNet and VGG11 

models. 

Fig. 5 shows the peak memory footprint during model inference, where CoEdge ex-

hibits the highest peak memory footprint since it has not partitioned the fully connected 

operators. In contrast, the OC and IOP schemes, which partition both convolutional and 

fully connected operators, exhibit lower peak memory footprints. Specifically, com-

pared to CoEdge, IOP achieves reductions in peak memory footprint by 49.98%, 

21.22%, and 40.79% for LeNet, AlexNet and VGG11, respectively. 

 

Fig. 5. The memory footprint of OC, CoEdge, and IOP strategy running LeNet, AlexNet and 

VGG11 models. All experimental settings are the same as that in the experiment Fig. 4. 

We further experiments are conducted to reveal the impact of the VGG network, 

which is more computationally intensive relative to LeNet and AlexNet. We measure 

the inference time of VGG11, VGG13, VGG16, and VGG19 using OC, IOP, and Co-

Edge schemes with varying device communication connection establishment latency. 

According to the results shown in Fig. 6, inference time will increase with increasing 
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communication connection establishment latency in all cases. For the same connection 

latency, IOP always achieves minimal inference time. For VGG11, the inference time 

using IOP is reduced by 14.51% to 26.74% when the communication connection estab-

lishment time between devices is from 1 ms to 8 ms. While for VGG13, VGG16, and 

VGG19, the inference time of the IOP scheme is reduced by 12.99% to 24.99%, 3.34% 

to 31.01%, and 15.01% to 34.87%, respectively. In other words, the larger the commu-

nication connection establishment time, the better the inference acceleration ratio of 

IOP relative to OC and CoEdge. 

 

 Fig. 6. The inference time for each of the four VGG nets under OC, CoEdge, and IOP partition-

ing strategies when the device communication delay ranges from 1ms to 8ms. 

6 Conclusion 

In this paper, we introduce IOP, an efficient partition strategy for cooperative inference 

of CNN. By employing interleaving operation partition between adjacent operators, the 

communication overhead caused by data sharing across devices is reduced, and thus, 

the inference time is decreased. We formulate the optimal distributed deployment for 

cooperative inference as a constrained optimization problem based on the neural net-

work structure. To solve it efficiently, we design an operator pairing algorithm to find 

an efficient pairing strategy. Experimental evaluations show that for three widely 

adopted CNN models, including LeNet, AlexNet, and VGG11. IOP scheme achieves 

6.39% ~ 16.83% inference acceleration and saves 21.22% ~ 49.98% peak memory foot-

print compared to the state-of-the-art CoEdge scheme. 
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