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Abstract. Genes regulate fundamental processes in living cells, such as the syn-

thesis of proteins or other functional molecules. Studying gene expression is 

hence crucial for both diagnostic and therapeutic purposes. 

State-of-the-art Deep Learning techniques such as Xpresso have been proposed 

to predict gene expression from raw DNA sequences. However, DNA sequences 

challenge computational approaches because of their length, typically in the order 

of thousands, and sparsity, requiring models to capture both short- and long-range 

dependencies. Indeed, the application of recent techniques like transformers is 

prohibitive with common hardware resources. 

This paper proposes FNETCOMPRESSION, a novel gene-expression prediction 

method. Crucially, FNETCOMPRESSION combines Convolutional encoders and 

memory-efficient Transformers to compress the sequence up to 95% with mini-

mal performance tradeoffs. Experiments on the Xpresso dataset show that 

FNETCOMPRESSION outscores our baselines and the margin is statistically signif-

icant. Moreover, FNETCOMPRESSION is 88% faster than a classical transformer-

based architecture with minimal performance tradeoffs. Code and data are avail-

able at https://github.com/vittoriopipoli/FNetCompression. 
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1 Introduction 

Gene Expression [2] regulates the existence of every living organism. It consists of the 

fundamental mechanisms the cells exploit to gather information from the deoxyribonu-

cleic acid (DNA) and synthesize functional molecules (e.g., proteins) according to in-

herent regulatory mechanisms. Recent work has proposed to use of Deep Learning (DL) 

models to predict gene expression directly from raw DNA sequences sampled and se-

quenced from living organisms, e.g., human tissues [3]. However, DNA sequences of-

ten count thousands of elements, and the signal within them is sparse (e.g. functional  
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Fig. 1. FNETCOMPRESSION overview (left). After sequence embedding and pooling, DFTCom-

pression (center) and MHA (right) layers compress and route information from the input se-

quence. Similar functional blocks share background colors. 

coding regions alternate with long non-coding parts). Length and sparsity make such 

sequences impractical for modern DL models, motivating increasing interest in com-

pression for efficiency and noise reduction. Therefore, recent methods encode the se-

quence of original base pairs (bp) into shorter sequences, where each new token “rep-

resents” several bp. 1D Convolution layers [18], Long Short-Term Memory [13], and 

Transformer-based networks [24] have been adopted for the task [3,25,5,16].  

The nature of such DNA sequences requires gene expression prediction algorithms 

to learn from both local- and long-range interactions. For example, recent evidence 

found interactions among DNA elements at several kilobase pairs (kbp) of distance [22]. 

Transformers models [24] provide a suitable method to learn from both short- and long-

range dependencies: the Multi-Headed Attention (MHA) mechanism. A typical MHA 

layer connects every input item with every other item and learns how to weigh every 
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pair. By contrast, Convolutional Neural Networks (CNNs) [19] need a deep structure 

with many layers to enlarge the receptive field to distant elements. 

However, MHA's memory footprint grows quadratically with the sequence length, mo-

tivating recent research efforts on efficient transformers [10,8]. FNet [20] is a prominent 

example: the network substitutes MHA with a Discrete Fourier Transform (DFT), a 

non-parametric, linearithmic token mixing strategy. 

Contributions. This work introduces FNETCOMPRESSION, a novel approach to gene 

expression prediction from long DNA sequences. FNETCOMPRESSION uses convolution 

kernels, DFT-based transformers, and low-pass filters to compress input sequences and 

a final MHA layer for improved information routing. Results on gene-expression da-

tasets [3] show that FNETCOMPRESSION significantly outperforms the baseline solution, 

reaching up to 93% of performances of less efficient standard transformers despite com-

pressing inputs by 95% of their length. Moreover, we conducted a qualitative analysis 

on FNETCOMPRESSION and discovered that i) attention weights are stronger on low-fre-

quency components of the sequence, and ii) all elements contribute to the prediction. 

 

2 Related Work 

Recent advances in sequence modeling and compression have motivated new neural 

gene expression models to learn from raw DNA sequences. 

Xpresso [3] (Agarwal et al., 2020) is a state-of-the-art Deep Convolutional Neural 

Network [19] in the field of gene expression. The network predicts the steady-state gene 

expression levels in human and mouse organisms, exploiting DNA sequences and fea-

tures associated with mRNA stability. The authors claim that Xpresso explains 59% of 

the variation (measured with R2) in steady-state mRNA levels in humans. Xpresso han-

dles sequences of several thousand base pairs. The best-reported range is 7,000 bps and 

3,500 bps, respectively, upstream and downstream Transcription Start Site (TSS). Note 

that the information around the TSS is an important proxy for gene expression [15]. We 

build on Xpresso and use initial Convolutional layers for input summarization. How-

ever, we differ on the embedding of the nitrogenous basis, the type of pooling layers, 

and the transformer encoder.  

Expecto [25] (Zhou et al., 2018) is a Convolutional Deep Neural Network for pre-

dicting tissue-specific gene expression levels in humans. Unlike Xpresso, it requires 

additional biological information related to chromatin, defining different experimental 

conditions.  

Enformer [5] (Avsec et al., 2021) is a state-of-the-art transformer-based architecture 

for encoding even longer DNA sequences. Although Enformer and FNetCompression 

share several architectural parts, e.g., pooling and transformer blocks, the former was 

devised to predict sequences of biological tracks.  

FNet [20] (Lee-Thorp et al., 2021) replaces the self-attention sublayers, which pay a 

quadratic complexity, with a standard, non-parametrized and linearithmic two-dimen-

sional Fast Fourier Transform achieving 92-97% accuracy of BERT [11], but training 
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80% faster on GPU and 70% faster on TPU. We build on FNet to introduce 

FNETCOMPRESSION and add further compression layers to enhance efficiency. 

 

3 Datasets 

Aiming for a fair comparison, we test FNETCOMPRESSION in existing gene-expression 

prediction setups. Specifically, we use the dataset of sequences introduced in Xpresso 

[3], which counts 18,377 genes. For each gene, Xpresso releases: 1. the DNA sequence 

(20,000 bp long); 2. the half-life features (that estimate the time required for degrading 

50% of the existing mRNA molecules [3]) which are embedded in a vector of 8 real 

numbers for each gene; 3. the expression value, which is the label to be predicted. 

Moreover, both the validation and test set are obtained by sampling at random 1000 

genes from the train set. These DNA sequences are arrays of nitrogenous bases ex-

tracted from the human reference genome. Additionally, the neighborhood of the Tran-

scription Start Site (TSS) contains the most useful information for the prediction of 

gene expression [15]. Therefore, all the sequences are extracted and centered with re-

spect to the TSS and contain the 10kbp upstream and downstream of it.  

The locations of about 15k TSS have been downloaded from the FANTOM5 con-

sortium's UCSC data hub (Lizio et al.) [21]. For the remaining genes, Xpresso is con-

sidered as TSS, among all the transcripts for each gene, the start coordinate of the one 

with the longest Open Reading Frame [23], followed by the longest 5' Untranslated 

Gene Region, followed by the longest 3' Untranslated Gene Region [7]. 

The gene expression values were retrieved from the Epigenomics Roadmap Consor-

tium [9]. In particular, the values were retrieved in a tabular format of normalized ex-

pression values for protein-coding genes across 56 tissues and cell lines obtained by 

RNA-seq data. The preprocessing foresees the averaging among the tissues, ending up 

with one expression value per gene. After the aggregation steps, the values are then 

processed with a log transformation as follows: 

 ŷ = 𝑙𝑜𝑔10(𝑦 + 𝑝𝑠𝑒𝑢𝑑𝑜𝑐𝑜𝑢𝑛𝑡) (1) 

to reduce the right skew of the labels' distribution. The pseudocount value is set to 0.1. 

In addition to Xpresso's dataset, we perform experiments on a Controlled Test Bench 

(CTB) that removes the half-life features but relies on longer sequences, i.e., 65,536 

bp. The TSS locations are downloaded by the FANTOM5 consortium's UCSC data hub 

(Lizio et al.) [21], and for the genes that are not covered, we decided to take the start 

coordinate of the longest transcript [1].  

CTB uses the same Xpresso target labels but different splits, built as follows. Chro-

mosomes 8 and 10 were used for the test and validation splits, respectively, and the 

remaining chromosomes were used for the training set. Genes have different lengths, 

and extracting a fixed-size window of base pairs can result in extracting the information 

of multiple genes. Stratifying on chromosomes prevents any overlap between training 



Compressing Long Sequences with Fourier Transformers for Gene Expression Prediction 5 

and test sequences. The resulting CTB training, validation, and test sets count 16,832, 

683, and 618 sequences, respectively. 

 

4 Proposed Method 

This paper presents FNETCOMPRESSION, a novel method for gene expression level pre-

diction. FNETCOMPRESSION uses a convolutional sequence embedding and a transformer 

encoder. The latter is composed of a non-parametric 2D Discrete Fourier Transform 

[6,20], a subsequent low-pass filter to reduce the sequence length up to 95%, and an 

MHA layer for optimizing the final information routing.1 The model takes as input 

DNA sequences tens of thousands of nitrogenous bases long (and optionally the half-

life features vector, concatenated after the “Tanh pooler”) and gives as output a real 

number that quantifies the gene expression level. 

 

4.1 Sequence Embedding 

As standard transformers handle sequences shorter than a thousand items [24], we first 

need to embed the input into a shorter sequence.  

Unlike prior work using one-hot encoding [3,5], we use an initial embedding layer 

to represent DNA bases as dense vectors. Next, two 1D convolutional layers with dif-

ferent kernel sizes (kernel1=6, kernel2=9) transform the sequence. Note that different 

kernels capture different local patterns from the sequence. Convolutional outputs are 

concatenated and projected via a dense layer to recombine the information, and a skip-

connection [12] is used to facilitate gradient backpropagation. Next, we apply a 1D Av-

erage Pooling, i.e., the first compression step, Batch Normalization [14], and sum abso-

lute sinewave Positional Encodings [24]. Note that empirical experiments revealed 

Batch Normalization to be crucial for sequence embedding. We hypothesize this layer 

improves numeric stabilization before the addition of positional information, ensuring 

proper weighing of semantic and positional information. 

 

4.2 DFTCompression 

The output of the sequence embedding stage is fed to the DFTCompression block, 

which learns long-range patterns and further compresses the input sequences.  

First, we apply a 2D DFT and retain only the real part [20]. By a first approximation, 

the resulting sequence represents the same signal in the “frequency” domain. Using this 

time-frequency intuition, we apply a low-pass filter (i.e., the second and most promi-

nent compression step) as follows. We shift the zero-frequency component of the se-

quence to the center of the sequence and cut out symmetrically the outermost positions. 

 
1 Code and data are available at https://github.com/vittoriopipoli/FNetCompression.   

https://github.com/vittoriopipoli/FNetCompression


6  V. Pipoli et al. 

Our results have shown that we can push this compression to remove up to 95% of the 

sequence while retaining most of the prediction accuracy. The output of the compres-

sion block is prepended with a special token and fed to a MHA layer. Using starting 

special tokens is commonplace in Computer Vision and Natural Language Processing, 

as such tokens are often used to summarize sequences. The final part of the network 

consists of a “Tanh pooler”, composed of a linear layer and a Tanh activation function 

that takes in input the special token, two dense layers with a ReLU activation function 

each, and a final linear layer with one neuron that represents the output of our regression 

model. 

 

5 Results 

We evaluated the learning capability of FNETCOMPRESSION compared to Xpresso's 

model. Then, we tested generalization to longer sequences by reducing the pooling size 

on Xpresso's dataset and using the long sequences of our CTB. We compared 

FNETCOMPRESSION to four different baseline configurations: 1) the sequence embedder 

without any transformer encoder block, 2) FNet_1_0 which has one DFT block and no 

MHA blocks, 3) FNet_1_1 which has one DFT block and one MHA (i.e., with no com-

pression, like [20]), and 4) a Transformer with two encoder blocks. All these models 

are obtained by removing the DFTCompression block from the backbone depicted on 

the left in Figure 1 and modifying the blocks of the totem pole that follow the concate-

nation of the special token. Moreover, we provide the study of the computational com-

plexity paid by the models, the attention maps, and gradient x input analysis.  

Confidence intervals have been computed with 14 runs per experiment, a confidence 

level of 0.95, the unbiased standard deviation estimator, and t-student distribution. 

 

5.1 Training details 

All the methodologies have been fitted employing the Adam optimizer [17] exploiting 

a warm-up step scheduler [24]. The loss metric adopted is Mean Squared Error (MSE) 

and the test metric is R2. The compression rate of FNETCOMPRESSION is always set to 

95%. All the MHA blocks have four heads. Refer to our GitHub for the rest of the 

hyperparameters. We adopted Google's Tesla T4 and TPU as hardware resources. 

 

5.2 Performances on Xpresso Dataset and CTB 

Here, we compare FNETCOMPRESSION (§4.2) with Xpresso's model [3] on their dataset. 

Xpresso's gene prediction values have been obtained with the authors' code [4]. As 

shown in Table 1 FNETCOMPRESSION and FNet_1_1 provide the best results even if 

FNETCOMPRESSION reduces the input sequence length by 95%. Experiments on the CTB 

https://github.com/vittoriopipoli/FNetCompression
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dataset show that FNETCOMPRESSION outperforms FNet_1_1 with sequences long three 

times Xpresso's. 

 

Table 1. Gene expression R2 on the test set of the Xpresso's dataset and CTB (0.95 confidence 

levels). 

Dataset Method Low_CI Mean_CI Upp_CI 

Xpresso 

Xpresso 0.5593 0.5668 0.5743 

Seq. Emb. 0.5343 0.5422 0.5501 

FNet_1_0 0.5567 0.5604 0.5641 

FNet_1_1 0.6121 0.6183 0.6254 

FNetComp. 0.6076 0.6133 0.6190 

CTB 
FNet_1_1 0.5786 0.5859 0.5931 

FNetComp. 0.5944 0.6006 0.6068 

 

 

5.3 Computational Complexity 

We studied the computational complexity of the tested models. Table 2 reports the re-

sults. FNETCOMPRESSION's speed-up over FNet_1_1 increases with the input sequence 

length, as an expected result of our compression stages. Moreover, FNETCOMPRESSION 

performance remains stable, unlike FNet_1_1. 

We do not report the comparison of execution times on the CTB dataset due to out-

of-memory errors in the testing environment. Preliminary tests on TPU hardware 

proved FNETCOMPRESSION as the fastest model but by a smaller margin. 

 

 

 

 

Fig. 2. Attention weights in FNETCOMPRESSION trained on CTB. Attention values expressed (first 

row) and received (last column) by the special token are magnified and min-max normalized. 
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Fig. 3. Gradient x Input attribution obtained by feeding FNETCOMPRESSION with the CTB test 

gene VPS13B. 

 

 

Table 2. Speed up and performance comparisons of FNETCOMPRESSION and FNet_1_1 with a 

classic Transformer architecture on Xpresso's dataset using a Tesla T4 GPU. 

Method 
Pool 

Size 

2DFFT 

O(nlogn) 

MHA 

O(n2) 

Relative 

Perf. 

Time per 

Batch [s] 

 Speed 

up 

Transformer 

128 

- 156x2 - 36  - 

FNet_1_0 156 0 85% 32  +11% 

FNet_1_1 156 156 93% 34  +6% 

FNetComp. 156 8 93% 32  +11% 

Transforrmer 

32 

- 626x2 - 60  - 

FNet_1_1 626 626 89% 48  25% 

FNetComp. 626 34 93% 32  +87.5% 

 

 

5.4 Attention and Gradient x Input Analysis 

Attention plots can reveal some interesting patterns in transformer architectures' data 

modeling. In particular, the attention patterns of the Multi-Headed Attention block that 

follows the DFTCompression block of our model can be examined. As we can see in 

Figure 2, it is possible to spot vertical patterns in the middle of the matrix. Vertical 

patterns occur when all the elements of a sequence are paying attention to the same 

location. Therefore, most of the elements are paying attention to the regions that embed 

the lowest frequencies. 
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When FNETCOMPRESSION applies a compression factor of 95%, only 5% of the sequences 

in processed by the subsequent Multi-Headed Attention layer. Hence, we computed the 

Gradient x Input to prove that all the elements of the original sequence take part in the 

loss contribution. Results are shown in Figure 3, and it is possible to notice that all the 

nitrogenous bases have a significant contribution, and the signal follows a sinusoidal 

pattern. 

 

5.5 Reproducibility 

To ensure full reproducibility we created a GitHub repository that contains the code to 

run the experiments and instructions to download the dataset. The link to the repository 

is the following: https://github.com/vittoriopipoli/FNetCompression. The data loader 

and the model classes can be found in the “Classes” folder. The hyperparameters of 

the proposed approach are in the folder “Hyperparameters” (one file for each dataset). 

The notebooks for running the experiments are in folders “Workflow_GPU” and 

“Workflow_TPU”, so that the user can choose the hardware that he wishes between 

GPU and TPU. Such notebooks must be downloaded and uploaded on Google Colab to 

be used. All the notebooks contain initial commands that download the dataset from the 

official repository and instantiate the data loader (the first two commands of each 

script). The uploaded notebooks are already run so that the user can already have a 

preview of a possible experiment. The remaining details can be found in the 

“README.md” file. 

 

6 Conclusion 

This work presented a transformer-based [24] model, called FNETCOMPRESSION, for pre-

dicting gene expression levels from raw DNA sequences exploiting a crucial sequence 

compression. The main challenge of this work is to deal with the quadratic complexity 

of the attention mechanism by designing a transformer-based architecture that exploits 

a 2D DFT that can analyze and compress long DNA sequences even with few compu-

tational resources. 

Results proved that FNETCOMPRESSION (§4.2) outperforms Xpresso on their dataset. 

Hence, Xpresso's authors claim to explain up to 59% of the variation of gene expression 

levels, while FNETCOMPRESSION explains up to 61%.  

The comparison between FNETCOMPRESSION and FNet_1_1 shows that 

FNETCOMPRESSION is capturing all the useful information even if it is discarding 95% of 

the sequences. On the other hand, FNet_1_1 becomes unstable when its input length 

grows. Finally, FNETCOMPRESSION is the fastest algorithm of these experiments. For fu-

ture works, we suggest finding better ways to exploit the 2D DFT and compression 

strategies. 

 

https://github.com/vittoriopipoli/FNetCompression
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