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Abstract. The dissemination of rumors on social media will severely endanger 

political, economic, and social security, which highlights the importance of ru-

mor detection. Current studies mainly focus on capturing content information or 

propagation pattern of message cascade, but most of these methods do not de-

scribe precisely the potential impact among tweets and tweet's influence in mes-

sage cascade. To tackle the above issue, this paper considers the spread of a ru-

mor on social media as the procedure of immune response in organism, where 

the users as immune cells, and the retweets as antibodies. A rumor detection 

model based on Social Immune Network is proposed, named SIN, which is able 

to utilize the instantaneous rate of change in the number of immune cells (users) 

and antibodies (retweets) with certain stance to describe tweet's influence. In this 

process, interactions among different retweets and users with different stances 

can be explored, thereby investigating the potential impact of each tweet. Exten-

sive experiments conducted based on PHEME dataset show that SIN outperforms 

State-Of-The-Art method, with 2.8% higher in F1 value of 84.7%, and 2.9% 

higher in accuracy of 86.2%. 

Keywords: Rumor Detection, Stance Classification, Dynamic Immune Net-

work, Social Immune Network. 

1 Introduction 

With the increasing popularity of social media, the issue of rumor dissemination has 

become increasingly severe. Rumors that are not detected and removed timely could 

bring significant risks to a country's political, economic, and social security. Thus, the 

development of automated rumor detection models has become a prevalent research 

focus globally. 

Due to reliance on manually feature engineering, the traditional machine learning 

methods [30,28,19,31,15] are weak in the generalization ability. Currently, the main 
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solutions for rumor detection are applying deep learning methods [34,26,17,32]. [20] 

developed a tree-structured Recursive Neural Networks, and [2] adopted Graph Con-

volutional Network, to capture content and propagation feature. Although many studies 

used stance labels to aid rumor detection [5,7,1,9], they do not consider the potential 

impact among tweets with different stances which varies with the change of overall 

public opinion environment in message cascade. 

Fig. 1 illustrates an example of a false rumor cascade with four stances on social 

media. A-E are the users who comment on the message cascade indeed. F and G are the 

users who have read the message, but do not comment in the message cascade. They 

may feel tweets are overly intense and this is a poor discussion environment. In addi-

tion, user B appears twice in the message cascade. The first comment (also known as 

retweet) posted earlier, labeled null, and the second comment posted at the end of the 

message cascade, labeled clarify. There is a shift in user stance here. Both situation 

cannot be adequately modeled and represented with existing models and methods. 
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Fig. 1. An instance of a message cascade with four stances on social media. A-E are the users 

who comment, and all comments are labeled with the stance in color. F and G are users who 

have read the message, but do not comment on social media. The solid line and directed arrow 

shows the message propagation path, and dotted line represents potential propagation path. 

To summary, there are still a few issues that have not been resolved: (1) There is a 

lack of methods to describe the users who have read the message, but do not comment 

in the message cascade, influenced by the overall public opinion environment. They do 

not consider the potential impact among tweets and users with different stance. Espe-

cially, in the message cascade with long propagation chains, most existing methods just 

consider the interaction of directly connected tweets, rather than investigating the over-

all impact of the whole message cascade on it. (2) The shift in user stance over time is 

barely focused on with existing methods, and they merely compute the cumulative 

count of tweets of different stances.  

To solve the above problems, we borrow the idea from dynamic immune network 

theory of Varela et al. [27], which describes the dynamic quantity changes of various 

immune molecules in organism. In fact, the spread of a rumor on social media is similar 

to the invasion of a antigen in organism. This paper considers rumor propagation as 

antigen invasion, analogizing social networks as immune network, source tweet as an-

tigens, users as immune cells, and retweets as antibodies. We present a rumor detection 

model based on Dynamic Immune Network theory, named Social Immune Network 

model(SIN), which can utilize the instantaneous rate of change in the number of im-

mune cells (users) and antibodies (retweets) with certain stance to describe tweet's in-

fluence. In this process, interactions among different retweets and users with different 

stances can be explored, thereby investigating the potential impact of each tweet. SIN 

is composed of the Tweet Representation Module, Social Immune Propagation Net-

work Module, Immune CheckPoint Module, and Rumor Detection Module. 

Our main contributions are of three-folds: 

─ We considers rumor propagation as antigen invasion, analogizing social networks as 

immune network, source tweet as antigens, users as immune cells, and retweets as 

antibodies, presenting a rumor detection model based on social immune network. 

─ We take the shift in user stance into account, capturing the potential impact among 

users and tweets with different stance, investigating the overall impact of the whole 

message cascade on each tweet, and modeling the users who have read the message 

but do not comment, thereby obtaining the influence of each tweet for rumor detec-

tion. 

─ Experiments on real-world dataset collected from Twitter have demonstrated that 

our proposed model SIN outperforms state-of-the-art method, with 2.8% higher in 

F1 value of 84.7%, and 2.9% higher in accuracy of 86.2%. 

2 Related Work 

Traditional rumor detection methods mainly adopt machine learning approaches for 

feature extraction and classification. [3] used decision trees for the classification of 68 
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extracted features, including textual, propagation, and user features of the message. [12] 

suggested that there are different cyclical characteristics and fluctuations over time be-

tween rumors and non-rumors, and propose a periodic time series model based on ran-

dom forests. [18] proposed to capture the temporal characteristics of rumor's lifecycle 

based on Support Vector Machines (SVM). These machine learning methods require 

manual extraction of a large number of features, which are often engineering specific 

and lack generalization ability, making it difficult to provide high performance. 

[32] proposed CAMI, which used Convolutional Neural Network (CNN) to extract 

key features from contents, and could effectively identify misinformation early. [33] 

used Graph Convolutional Network (GCN) to model the relationships among source 

tweet, retweets, and users, and combined it with attention to achieve early rumor detec-

tion. [24] used BERT to model the common focus among source tweet and retweets, 

and proposed an attention layer masking strategy. 

More and more scholars utilized the classification of each tweet's stance as an aux-

iliary subtask for rumor detection. [36] modeled the user's stance before the rumor was 

confirmed as true or false. [13] merged the user credibility information with content to 

detect tweet stance for final rumor verification. [29] proposed a hierarchical multi-task 

learning framework, which utilized GCN to classify stance and then exploited the tem-

poral dynamics of stance evolution for rumor verification. There are also some scholars 

using generalized stance information to assist in rumor verification. [4] proposed the 

concept of trigger of each tweet in rumor propagation, aggregating each tweets into 

cascade with their own trigger weights. [8] modeled and predicted social bot behaviors 

among users based on Graph Neural Network for aiding early rumor detection. The 

trigger and robot tag of each tweet can be considered as stance of each tweet, or auxil-

iary information of each tweet, which depict tweets in a more detailed way. 

However, they used the stance information of tweets in a simple way and did not 

explore the underlying relationships among tweets with different stances or their influ-

ence. In this paper, we borrow the dynamic immune network theory [27] to model in-

teractions among each tweet with different stance, exploring potential impact and in-

fluence among them. 

3 Motivation 

The immune network theory of biology was first proposed by Jerne in 1974 and has 

been further developed since then. This theory explains how the immune system devel-

ops through the selective pressure exerted by self-antigens [25]. Since rumor detection 

control and immune system mechanism have similar behavior, our SIN model was in-

spired by the dynamic immune network theory [27]. When antigens such as viruses 

invade an organism, various antibodies gradually become active under the control of 

the immune system, increasing in number and concentration. Antibodies make antigens 

removed by complexes with them. After achieving immune effect, the activity level of 

antibodies gradually decreases. Changes in the number of antibodies can effectively 

describe the process of antigen invasion and the trigger point of the immune response. 

This is similar to the overall reaction process of the social media network when rumor 
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is posted. On social media, users usually have different responses after browsing rumor 

messages, such as questioning, denying, clarifying, or agreeing. The changes in the 

number of users or tweets with different stance can reveal the verification of the rumor 

just like revealing the toxicity of antigens. 

[27] suggested that immune systems are cognitive and presented dynamic immune 

formulas as shows in formula 1, 2, 3. These formulas describe the dynamic changes in 

the number of various immune molecules in the immune system over time, modeling 

several scenes to depict immune system. We introduce each of the several scenes in the 

order of the formulas below. 

 
𝑑𝑓𝑖

𝑑𝑡
= (−𝑘1σ𝑖𝑓𝑖 − 𝑘2𝑓𝑖 + 𝑘3𝑀𝑎𝑡(σ𝑖)𝑏𝑖) (1) 

 
𝑑𝑏𝑖

𝑑𝑡
= (−𝑘4𝑏𝑖 + 𝑘5𝑃𝑟𝑜𝑙(σ𝑖)𝑏𝑖 + 𝑘6) (2) 

 σ𝑖 = ∑ 𝑚𝑖𝑗𝑓𝑗
𝑛
𝑗=1  (3) 

Formula 1 respectively aims to calculate the instantaneous rate of change in the num-

ber of antibodies in the immune network within an organism. 𝑓𝑖 represents the number 

of the 𝑖-th kind of antibody, and 
𝑑𝑓𝑖

𝑑𝑡
 represents the instantaneous rate of change of 𝑓𝑖. 

There are three terms, respectively representing three scenes related to the number of 

antibodies. Term 𝑘1 depicts the scene of the death due to interaction among antibodies, 

and σ𝑖  represents the sensitivity of the immune network to the antibody 𝑖, further elab-

orated introduction of σ𝑖  in the description of formula 3 below. Term 𝑘2 depicts the 

scene of the natural death of antibodies. Term 𝑘3 depicts the scene of the generation of 

antibodies by immune B cells, and 𝑀𝑎𝑡() function signifies the maturation function of 

antibodies, akin to 𝑃𝑟𝑜𝑙(), both smooth threshold functions resembling the sigmoid 

function. 

Formula 2 aims to calculate the instantaneous rate of change in the number of im-

mune B cells. 𝑏𝑖 represents the number of the 𝑖-th kind of immune B cell, and 
𝑑𝑏𝑖

𝑑𝑡
 rep-

resents the instantaneous rate of change of 𝑏𝑖, corresponding one-to-one with the 𝑖-th 

kind of antibody mentioned above. There are also three terms, respectively representing 

three scenes related to the number of immune B cells. Term 𝑘4 depicts the scene of the 

death of immune B cells. Term 𝑘5 depicts the scene of the proliferation of immune B 

cells, and 𝑃𝑟𝑜𝑙() signifies the proliferation function of immune B cells. Term 𝑘6 de-

picts the scene of new immune B cell generation, i.e. the differentiation of hematopoi-

etic stem cells into immune B cells.  

Formula 3 aims to calculate the sensitivity of the immune network to the 𝑖-th kind 

of antibody, denoted as σ𝑖 , and 𝑚𝑖𝑗 represents the sensitivity value of antibody 𝑗 to an-

tibody 𝑖. 
We map Formulas 1, 2, 3 to the social media network, employing the same formulas 

to measure the quantities of users (immune B cells) and retweets (antibodies), named 

social immune network formula. It represents several basic scenes of rumor spread on 

social media, and the specific introductions to the meanings of it are as following. 

Formula 1 in social immune network formula aims to calculate the instantaneous 

rate of change in the number of retweets with stance 𝑖 in the social media network, i.e. 



6  M. Liu et al. 

𝑑𝑓𝑖

𝑑𝑡
. The 𝑓𝑖 represents the number of retweets with stance 𝑖. There are three terms, re-

spectively representing three scenes related to the number of retweets. Term 𝑘1 depicts 

the scene that two retweets lost their reference value due to their conflicts of opinion, 

making it difficult for a third user to obtain valuable information from them. σ𝑖  in the 

term 𝑘1  represents the sensitivity of the social media network to the retweets with 

stance 𝑖. Term 𝑘2 depicts the scene of the natural demise of a retweet that is not noticed 

by other users. Term 𝑘3 depicts the scene that users actively post a comment (retweet), 

and 𝑀𝑎𝑡() function represents the degree of willingness of users to retweet. 

Formula 2 in social immune network formula aims to calculate the instantaneous 

rate of change of the number of users with stance 𝑖 in the social media network, i.e. 
𝑑𝑏𝑖

𝑑𝑡
. 

The 𝑏𝑖 represents the number of users with stance 𝑖. There are also three terms, respec-

tively representing three scenes related to the number of users. Term 𝑘4 depicts the 

scene that users no longer participate in the current discussion. Term 𝑘5 depicts the 

scene of the growth of new users who participate in the current discussion influenced 

by others, and 𝑃𝑟𝑜𝑙() function represents the degree to which the current discussion 

attracts new participants. Term 𝑘6 depicts the scene of the growth of new users who 

spontaneously participate in current discussion.  

Formula 3 in social immune network formula aims to calculate the sensitivity of the 

social media network to the retweets with stance 𝑖, denoted as σ𝑖 , and 𝑚𝑖𝑗 represents 

the sensitivity value of retweets with stance 𝑗 to the retweets with stance 𝑖 . 

4 Proposed Model 

 

Fig. 2. Overall architecture of our proposed model SIN. 

4.1 Problem Definition 

Rumor detection is essentially a supervised classification task. Suppose there is a mes-

sage cascade 𝐶 on social media, which contains 𝑁 + 1 tweets. It includes the source 

tweet 𝑥0 and its relevant retweets 𝑥1,𝑥2,…,𝑥𝑁, and its corresponding rumor publisher 

𝑢0 and users 𝑢1,𝑢2,…,𝑢𝑉. Our rumor detection mission is to first recognize the stance 

𝑌𝑞
𝑠 (𝑠 refers to the task of stance classification) of each retweet k, which can be Null, 

Amplify, Deny, or Clarify, and then get the rumor detection result 𝑌𝑑 (𝑑 refers to the 

task of rumor detection) of the source tweet as True, False, or Unverified. 



 Rumor Detection based on Social Immune Network 7 

We model a rumor detection model based on Social Immune Network, named SIN. 

The overall architecture of SIN is shown in Fig. 2. There are four modules in SIN, 

namely Tweet Representation Module (TR), Social Immune Propagation Network 

Module (SIPN), Immune CheckPoint Module (ICP) and Rumor Detection Module 

(RD). We will provide a detailed description of the construction of each module in the 

following section. 

4.2 Tweet Representation Module 

We directly utilize pre-trained model BertTweet [22] with fine-tuning to encode the 

content of each tweet and take the [CLS] as representation of each tweet and output. 

Then feed the output vector into a simple Feed-Forward neural Network (FFN), and 

use the softmax function to classify the stance of each tweet. 

 𝑡𝑞 = BertTweet(𝑥𝑞) (4) 

 𝑌𝑞
𝑠 = softmax(𝑊𝑡𝑡𝑞 + 𝑏𝑡) (5) 

where 𝑥𝑞  is tweet 𝑞, 𝑡𝑞 is the representation vector of tweet 𝑞, 𝑊𝑡 is weights, and 𝑏𝑡 

is bias. We use the cross-entropy function as the loss function of Stance classification. 

4.3 Social Immune Propagation Network Module 

To model potential impact among tweets and subsequently get tweet's influence, we 

consider users as immune cells, and the retweets as antibodies, we construct SIPN based 

on Social Immune Network Formulas (as shown in formula1, 2, 3). The key point of 

SIPN lies in the acquisition of the sensitivity matrix 𝑀 and the calculation of tweet's 

influence. Their detailed introductions are provided below. 

Acquisition of Sensitivity Matrix M. One of the key points of SIPN is acquisition of 

the sensitivity matrix 𝑀, which is a asymmetric square matrix M ∈ RS×S located in for-

mula 3. 𝑆 is the number of stance in social network. 𝑚𝑖𝑗 represents the sensitivity value 

of tweets with stance 𝑗 towards tweets with stance 𝑖, describing the potential impact 

among tweets with different stances in message cascade. We propose to utilize Hidden 

Markov Model(HMM) [23] to calculate 𝑚𝑖𝑗, using the probability of tweets with stance 

𝑖 triggering tweets with stance 𝑗 to represent the sensitivity value of tweets with stance 

𝑗 towards tweets with stance 𝑖. Accordingly, sensitivity matrix 𝑀 is transition matrix of 

HMM. The transition probability 𝑚𝑖𝑗  from tweet 𝑞 with stance 𝑖 to tweet 𝑞 + 1 with 

stance 𝑗 can be expressed as follow: 

 𝑚𝑖𝑗 = P(𝑠𝑞+1 = 𝑗|𝑠𝑞 = 𝑖) (6) 

where 𝑠𝑞  and 𝑠𝑞+1 refers to the stance of tweet 𝑠𝑞  and tweet 𝑠𝑞+1, 𝑖 and 𝑗 refer to 

their stance. 
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It must be emphasized that the sensitivity matrix 𝑀 is prior knowledge for our SIN 

model, which means 𝑀 is already calculated through HMM before our SIN model start 

training. In other words, 𝑀 does not assist our model to classify the stance of each 

tweet, and it only participates in the calculation of σ𝑖  in formula 3 to model potential 

impact among tweets.  

Notably, different social media platforms will have different discussion atmosphere. 

Thus, there are different potential impacts among tweets with different stances on dif-

ferent social media platforms, which means every social media platform actually has 

its own sensitivity matrix 𝑀. We calculate 𝑀 on Twitter, and the specific experimental 

data are shown in Subsection 5.4: Sensitivity Matrix M. 

Calculation of Tweet’s Influence. The other key point of SIPN is the calculation of 

tweet’s influence, which is described by the instantaneous rate of change in the number 

of users and retweets with certain stance. The modeling process is introduced below. 

Firstly, we calculate the number of users and retweets with different stance in mes-

sage cascade at the time when each retweet is posted, based on the predicted stance of 

each tweet obtained from Tweet Representation Module. Matrix 𝑏 and matrix 𝑓 are ac-

quired, 𝑏, f  ∈ RN ×S, where 𝑁 is the number of retweets, representing 𝑁 time nodes, 

and 𝑆 is the number of stances (The same goes for the following). The formula is as 

below: 

 𝑓𝑞+1 = 𝑓𝑞 + max(𝑌𝑞+1
𝑠 ) (7) 

where 𝑓𝑞 refers to the number of retweets with each stance at the 𝑞-th time node (i.e. 

the time node when the 𝑞-th retweet is posted). 𝑌𝑞+1
𝑠  is the predicted stance of the 𝑞 +

1 retweet, and function max() is to set the maximum value of the vector to 1 and the 

rest to 0. 

Moreover, if the current user has previously posted a retweet, our model will check 

if the stances of the two retweets are the same. If they are different, user's previous 

stance will subtract by one and the new stance will be added by one. Thus, the shift of 

stance of user B in Fig. 1 can be described. 

Secondly, at each time node of retweet posting, SIN utilize social immune network 

formula (as shown in formula 1, 2, 3) to calculate the instantaneous rate of change in 

the number of users and retweets with stance, 
db

dt
 and 

df

dt
.  

In this process, sensitivity matrix 𝑀  and the number of retweets with different 

stances at different time nodes of retweet posting are used to calculate matrix σ, σ ∈
𝑅𝑁×𝑆 and σ𝑞,𝑖 represents the sensitivity of social immune network to the retweet 𝑞 with 

stance 𝑖 at the time node of the retweet 𝑞 posting. Next, in term 𝑘3 and 𝑘5 of social im-

mune network formula, σ participates in operation of maturation function 𝑀𝑎𝑡() and 

proliferation function 𝑃𝑟𝑜𝑙() respectively to calculate the maturity and proliferation 

rates corresponding to σ𝑞,𝑖 value, i.e. the probability of users making tweet who have 

already browsed the message and the probability of attracting more people to browse 

the message. 
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Especially, the phenomenon of user F and G probably being afraid to express oppo-

site views in Fig. 1 can be described through term 𝑘3 and 𝑘5. A poor discussion atmos-

phere can lead to lower maturity and proliferation rates. Term 𝑘1, 𝑘2, 𝑘4 and 𝑘6 also 

respectively represent the different basic scenes of rumor spread on social media, whose 

specific meanings can be found in Section 3: Motivation. 

It is important to note that all 𝑘 in the social immune network formula are trainable 

parameters, and different social media might have their own unique 𝑘 value due to their 

unique discussion atmosphere. The experiments of 𝑘 on Twitter can be found in Sub-

section 5.5: Ablation Study. 

Thirdly, the instantaneous rate of change in the number of users and retweets with 

stance represents the intensity of change in social immune network at that moment. We 

consider that user and retweet that can intensively change the social network environ-

ment have greater influence. Thus, our model assign coefficient λ𝑏  and λ𝑓 to 
𝑑𝑏

𝑑𝑡
 and 

𝑑𝑓

𝑑𝑡
 

respectively, to aggregate both to get the influence of each retweet with each implied 

stance. The calculation formula for the influence vector of 𝑞-th retweet is as follows. 

 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑞 = λ𝑏
𝑑𝑏𝑞

𝑑𝑡
+ λ𝑓

𝑑𝑓𝑞

𝑑𝑡
 (8) 

Fourthly, our model takes the dot product of the influence vector of each retweet 

𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑞  and their respective stance probability prediction vector 𝑌𝑞
𝑠  to perform 

softmax operation, obtaining the final influence of each retweet in the whole cascade 

𝐼𝑞 , 𝐼 ∈ 𝑅𝑁. 

 𝐼𝑞 = 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑞 ⨀ 𝑌𝑞
𝑠  (9) 

where the symbol ⊙ represents the function of Hadamard product [6]. 

Finally, our model multiplies the representations of each retweets in cascade by their 

own influence, and then add them up with the representation of source tweet. 

 ℎ𝑞 = 𝐼𝑞 × 𝑡𝑞 (10) 

 C = 𝑡0 + ∑ ℎ𝑞
𝑁
𝑞=1  (11) 

where 𝑡𝑞 is the representation of the tweet, and 𝐶 is the representation of the cascade. 

𝑁 is the number of retweets in cascade. 

4.4 Immune CheckPoint Module 

We mainly refer to the method of zhou et al. [35] to let our model have the ability to 

detect rumors as early as possible. ICP aims to identify the optimal checkpoint of rumor 

Detection based on deep Q-learning model [21]. 

ICP aggregates the representations of all tweets available in the current state, obtaining 

the state value 𝑠𝑖. 

 𝑠𝑖 = 𝑡0 + ∑ ℎ𝑞
𝑖
𝑞=1  (12) 
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Then ICP directly using a two-layer Feed-Forward neural Network(FFN) on 𝑠𝑖 to 

calculate action value 𝑎𝑖. 𝑎𝑖 represents the action taken by the ICP under state 𝑠𝑖, 𝑎𝑖 ∈
𝑅2 , containing terminate and continue. 

 𝑎𝑖 = FFN(𝑠𝑖) (13) 

𝑄∗(𝑠, 𝑎) is optimal action-value function in ICP, which means the maximum optimal 

expected return obtained after implementing action 𝑎 under state 𝑠. 

 𝑄∗(𝑠, 𝑎) = 𝐸𝑠′,𝜀(𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄𝑖(𝑠′, 𝑎′)|𝑠, 𝑎) (14) 

where 𝑠 refers to the current state, 𝑠′ refers to the next state, 𝑟 is the reward value, and 

γ is the discount rate. 

The 𝑝𝑖  is the probability of predicted value, 𝑝𝑖 ∈ 𝑅2, containing correct and incor-

rect. The ICP model calculates the reward value 𝑟𝑖 for implementing action 𝑎𝑖 under 

state 𝑠𝑖 from the action value 𝑎𝑖 and predicted value 𝑝𝑖 . Our ICP will update the module 

parameters based on the reward value 𝑟𝑖, and 𝑟𝑖 takes the following value: 

 𝑟𝑖 = {
𝑙𝑜𝑔𝑀,   terminate with correct prediction

−𝑃,   terminate with incorrect prediction
−𝜀,                           continue                           

 (15) 

where 𝑀 is the cumulative number of correct predictions for reward model making the 

right choice, 𝑃 is a large value to punish the model for incorrect predictions, and ε is a 

small number of punishing for detection delay. 

4.5 Rumor Detection Module.  

In this module, we directly input the cascade representation 𝐶 calculated by SIPN to 

FFN, and then apply a softmax function to get the prediction results of rumor detection. 

 𝑌𝑑 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑐𝐶 + 𝑏𝑐) (16) 

where 𝑊𝑐 is the weighs, 𝑏𝑐 is the bias, and 𝐶 is the representation of the cascade. We 

use cross-entropy function as loss function. 

5 Experiment 

5.1 Dataset 

We validated the effectiveness of our model on the PHEME dataset annotated with 

trigger information [4], which we consider as stance. PHEME dataset was first estab-

lished by [36], which includes 5 social events from Twitter. Each event contains a var-

ious number of rumor cascades, which has three credibility classifications: True, False, 

and Unverified. In addition, on the tweet-level, each tweet has its own stance label, 

including Null, Amplify, Deny and Clarify. This dataset has totally 1929 cascades and 
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26,871 tweets, which is suitable for our exploration of modeling potential impact 

among tweets and tweet's influence due to its extra special stance annotation and mas-

sive conversation propagation structures. 

5.2 Experimental Setup 

Training Details. We randomly divided the dataset into training, validation, and testing 

sets at a ratio of 8:1:1. The best-performing hyperparameters in the validation set will 

be recorded for testing. Our model is trained using the AdamW optimizer [14]. We use 

BertTweet as our pre-train model and the [𝐶𝐿𝑆] as its output with a dimension of 768. 

The dropout rate is 0.3, the batchsize is set to 8, the maximum number of training 

epochs is 50, and the learning rate for all parameters is set to 2e-5. 

Model Comparison. We applied the following models for comparison with our pro-

posed SIN model. 

SVM: A SVM-based model [18] to capture the temporal characteristics of rumor's 

lifecycle. 

CNN: A CNN-based model [32], which uses convolution kernels to extract key fea-

tures from tweet contents. 

RNN: A RNN-based model [17], which uses time series among tweets to capture 

dynamic information. 

TreeLSTM: A TreeLSTM-based network [11] to encode tweets as binarized constit-

uency trees, learning the pattern of rumor propagation. 

GCN: A GCN-based model [16] to represent rumor cascades as graphs, and extract 

fine-grained features among tweets. 

UGRN: A GRN(Graph Recurrent Networks)-based model [4] to bidirectionally 

model the rumor propagation graph. 

SIN: Our proposed model. 

5.3 Experimental Result 

We conducted stance classification and rumor detection experiments to evaluate the 

performance of our model. The experimental results are shown in Table 1, the last row 

of which, SIN-i, is our ablation experiment with the SIPN removed. Column Random 

represents that the data of each event in the training, validation and testing sets are 

randomly shuffled. Column LOEO represents that the data implement Leave-One-

Event-Out cross validation [10], which means that the rumor detection events in the 

validation and testing sets do not appear in the training set. 
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Table 1. Result of stance classification (Stance) and rumor detection (Detection). Both task 

contain Random and LOEO mode, which are evaluated by Accuracy (Acc.) and Macro-F1 

score (MaF1). Bold: highlights the best performance in each column. 

 

Overall, our model achieves the best results in both Random and LOEO mode in 

terms of stance classification and rumor detection. In particular, SIN outperforms State-

Of-The-Art method in Random mode rumor detection, UGRN [4], with 2.8% higher in 

F1 value of 84.7%, and 2.9% higher in accuracy of 86.2%. This undoubtedly proves 

the effectiveness of SIN model. The model's performance dropped significantly after 

removing SIPN, which indicates that SIPN can capture potential impact among each 

tweet from conversational interactions, thereby modeling tweet's influence throughout 

the whole message cascade. 

In addition, in the LOEO mode, all models dropped dramatically in performance. 

This suggests that there is a large semantic gap among events, and the robustness of 

these models is still dissatisfied. The imbalanced label distribution of event in the vali-

dation or testing set is also one of the important reasons. 

5.4 Sensitivity Matrix M 

We calculated the sensitivity matrix 𝑀 utilizing HMM model [23] on PHEME, obtain-

ing the potential impact coefficient among tweets with different stances on Twitter so-

cial network, as shown in Table 2. 

Acc. MaF Acc. MaF Acc. MaF Acc. MaF

SVM 0.534 0.519 0.527 0.511 0.722 0.708 0.302 0.286

CNN 0.540 0.524 0.516 0.501 0.756 0.741 0.326 0.308

RNN 0.579 0.562 0.574 0.560 0.801 0.785 0.334 0.314

TreeLSTM 0.553 0.538 0.532 0.514 0.768 0.750 0.342 0.317

GCN 0.567 0.548 0.559 0.542 0.794 0.772 0.347 0.322

UGRN 0.593 0.574 0.588 0.570 0.833 0.819 0.361 0.346

SIN 0.594 0.576 0.590 0.571 0.862 0.847 0.401 0.386

SIN-i 0.554 0.537 0.551 0.532 0.811 0.775 0.349 0.323

Method

Stance Detection

Random LOEO Random LOEO
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Table 2. Sensitivity Matrix 𝑀. 

 

It can be seen that Null has the highest probability of transition for all four stances. 

This is because the dataset contains 77.43% of tweets with Null stance. Most people 

comment on social media just to express their emotions and their opinions are often 

ambiguous. Amplify tweets are more likely followed with Amplify retweets and it is the 

same with Deny and Clarify. This is a common phenomenon on social media. For ex-

ample, when someone firmly agrees with something, their standpoint often pass on to 

more people. That is the so-called "post-truth" era. People tend to construct uncon-

sciously information cocoon and get trapped in it, where information tends to develop 

in the same guided direction. 

5.5 Ablation Study 

In order to further explore the modeling effects of our SIN in different scenes during 

rumor propagation on social media, we conducted an ablation study on 𝑘 values of the 

social immune network formula (as shown in formula 1, 2) in this subsection. Specifi-

cally, We removed each 𝑘 values from the formula to investigate their meaning in the 

formula. The results are shown in the following Table 3. 

Table 3. Ablation study of 𝑘1 ∼ 𝑘6. The −𝑘𝑖 represents the removal of the 𝑘𝑖 and its term from 

Social Immune Propagation Network Module. 

 

It is clear that the performance of our SIN model drops most significantly after re-

moving term 𝑘1. This shows that conflicts among retweets with different stances can 

indeed render them unreliable, weakening their respective impact. Removing 𝑘1 makes 

model fail to identify the truly important tweet. The removal of term 𝑘3 also reduces 

the performance of SIN model by a large amount. The reason seems to be obvious that 

the removal of it resulted in SIN model losing the ability to describe the potential impact 

                j

     i
Null Amplify Deny Clarify

Null 0.865 0.068 0.043 0.025

Amplify 0.787 0.100 0.064 0.048

Deny 0.685 0.064 0.125 0.126

Clarify 0.673 0.059 0.097 0.171

Method Acc. MaF

SIN 0.865 0.847

- k1 0.789 0.756

- k2 0.805 0.771

- k3 0.795 0.764

- k4 0.807 0.779

- k5 0.805 0.775

- k6 0.811 0.782
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among retweets and overall public opinion environment. As user F and G in Fig. 1 

mentioned above, the phenomenon cannot be described that they dare not to express 

opposite views because of poor discussion environment. In addition, term 𝑘3 is the only 

positive term in formula 1. The removal of it will lead to the negative calculation value 

of formula 1, which means the influence of each retweet continuously diminishes. This 

is counter-intuitive, so the bad result from removing 𝑘3 is predictable. As for the other 

𝑘 values, the performance of SIN is significantly weakened after they are removed. 

This suggests that every 𝑘 term in the social immune networks formula plays a vital 

role in our SIN model. 

5.6 Early Rumor Detection 

Early rumor detection holds greater significance due to its increasing societal demand. 

By setting different detection deadline, we evaluate the performance of early detection 

of our model, which means there are only tweets that posted before the corresponding 

deadlines available for rumor detection. Experiments show that most models reached a 

relatively stable performance when the detection deadline is 12h. In the PHEME da-

taset, the longest time span of message cascades ranges from 0 to 728 hours. Therefore, 

we set the detection deadlines as 0, 1, 2, 3, 4, 8, 12, 16, 20, 24, and 728 hours, and 

their respective proportions of tweets are 77.4%, 86.2%, 89.7%, 91.7%, 94.80%, 

96.16%, 96.86%, 97.44%, 98.08%, 100%. 

The results are shown in Fig. 3. Overall, deep-learning-based methods are superior 

to machine-learning-based methods. Specifically, our SIN achieves a macroF1 score of 

0.826 when deadline is 1 hour, achieving better early rumor detection performance 

than all other compared models. This suggests that our SIN has better timeliness. In the 

early stages of rumor dissemination, SIN can still model potential impact among tweets 

and tweet’s influence, and be able to accurately detect rumors. 
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Fig. 3. Experiments results of early rumor detection. We set a restrict to the detection time and 

evaluate the performance of early rumor detection with macroF1 score. 

6 Conclusion 

In this paper, we construct a rumor detection model named SIN, based on the social 

immune network. We analogize users as immune cells, and the retweets as antibodies 

to describe the potential impact among tweets and tweet's influence with different 

stances. We get an accuracy of 0.862 which reach the SOTA performance on PHEME 

dataset. 

In the future, we plan to annotate stance information on datasets from other social 

media platforms such as Weibo and Facebook in order to further explore the sensitivity 

matrix 𝑀 and 𝑘 values, and try to find the similarities and differences of public discus-

sion environment that may influence the feature of rumor propagation on different so-

cial media. 
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