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Abstract.  Non-autoregressive neural machine translation (NAT) focuses on im-
proving reasoning efficiency through parallel decoding. However, NAT models 
training method lack improvement compared with the autoregressive translation 
(AT) models, which leads to an imbalance between training efficiency and infer-
ence speed. In this paper, we propose Padding Accelerated Training (PAT) for 
NAT. Specifically, we pad short sentences not with padding tokens but with an-
other real training sentence, and apply Sequence Concatenating attention (SC) to 
obtain the sentence-level blocking matrix to prevent multiple sentences from in-
terfering with each other. Experiments show that PAT is applicable to both sen-
tence-level and document-level machine translation scenarios. While ensuring 
translation performance, PAT improves training speed by more than 2 times in 
multiple experimental tasks. 

Keywords: Machine translation, Non-autoregressive transformer, High Effi-
ciency Training. 

1 Introduction 

Nowadays, transformer framework is widely used in machine translation tasks [1]. Va-
nilla transformer utilizes an autoregressive approach which inevitably results in slow 
decoding speed. To address this issue, several models based on Non-autoregressive 
Transformers (NAT) have been proposed with the aim of speeding up inference through 
parallel decoding [2]. The current mainstream NAT models primarily consist of two 
approaches. The first approach is iterative NAT transformers [3, 4], which adopt a tech-
nique similar to the masked language model (MLM) [5]. In this approach, multiple 
tokens are generated for each iteration to capture the interdependence of words in the 
target sentence. However, this iterative refinement method of generating multiple de-
coding does not yield significant improvements in accelerating reasoning. The second 
method is single pass parallel decoding (or Non-iterative) of NAT. This approach de-
codes and outputs all translations simultaneously, leading to a significant acceleration 
in reasoning. However, due to the assumption of independence, the NAT model fails to 
accurately learn the dependencies between target markers in the actual data distribution. 
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As a result, its accuracy under performs the AT model. To address this issue, improve-
ments on the NAT model are mainly based on refining its target [6] or incorporating 
additional input into the decoder [7]. In [8], the authors reduce the learning space for 
output tokens in four aspects (training corpus, model architecture, training goals and 
learning strategies). A recent work [9] proposed a directed acyclic transformer while 
still introducing additional multi-modal information. 

The current research mainly focuses on how the NAT model achieves a balance be-
tween inference efficiency and decoding quality, but ignores the improvement of train-
ing efficiency. For example, the inference speed of the NAT model is more than ten 
times that of the AT model, but the training speed is not improved. This leads to an 
imbalance between training efficiency and inference efficiency. 

We analyzed the corpus data and found that the long-tail distribution of sentence 
lengths in human language often makes the size of padded inputs bounded by an ex-
ceptionally long sentence. As a result, most sentences in a training batch are much 
shorter than the input size, and thus have to be padded with a large number of padding 
tokens. For example, we found that in WMT14 En→De, the padding tokens account for 
nearly 70% of the model input under standard training setting, and the padding rate can 
be even higher as the batch size increases. In this paper, we present Padding Accelerated 
Training (PAT), a method that eliminates zero padding and replaces it with real se-
quence padding to significantly increase the proportion of real tokens in the training 
data by over 2 times. However, simple sequence concatenation may lead to mutual 
contamination of attention matrices during training. To solve this problem, we intro-
duced a Sequence Concatenating (SC) attention mechanism to obtain blocks of the sin-
gle sequence attention matrices from the concatenated multi-sequence attention matrix 
so as to achieve lossless recognition of single sentence attention. At the same time, SC 
attention mechanism can be transferred from sentence-level translation tasks to docu-
ment-level translation tasks, enabling the application of the NAT model in multi-sce-
nario translation tasks for the first time. Furthermore, we enhanced the glancing trans-
former with PAT to expedite decoding. 

Experiments on WMT14 En↔De and WMT17 En↔Zh datasets show that PAT im-
proves the training efficiency of the NAT model by more than 2 times, and achieves 
the best translation quality in multiple translation directions. Experiments on the docu-
ment-level MT datasets TED, News and Europarl show that PAT can directly apply the 
NAT model to document-level translation tasks and increase the translation speed by 
more than 30 times. To the best of our knowledge, we are the first to design a NAT 
model suitable for multi-scenario translation tasks. 

2 Proposed Approach 

In this section, we describe our proposed PAT-Transformer in detail. We first introduce 
the SC attention mechanism applicable to concatenate sequences, and then describe the 
modified glancing training strategy. 
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Fig. 1. Glancing training model structure based on PAT. Input  represents a multi-sequence 
consisting of  and .  represents the encoder hidden representation, and the Glancing 

module receives  and ground truth , and then adjusts  to .  

2.1 Padding accelerated training 

Sequence concatenation. The purpose of concatenating sequences is to make the se-
quences within the batch as long as possible to reduce the padding rate. With this guid-
ing principle, we propose an efficient sequence concatenating algorithm, as shown in 
Algorithm 1. 

 
Algorithm 1: Sequence concatenation 
 Input: :number of batches in dataset. 
  :Batch= ; 
  for  to  do 
          ; 
           Sort 2D  in  ; 
           for  to  do 
                  if  and  then 
                       pack ; 
                  end 
            end 
   end 

 
Our algorithm is based on the concept of bin-packing but considers both source and 

target attributes. At the start of the algorithm, we identify the longest source and target 
sequences and use them as bins. We do this to flexibly account for the possibility of the 
longest source and target sequences belonging to different sentence pairs and to max-
imize sequence filling. 
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Attention mechanism. In standard attention mechanism, each sequence is designed to 
attend exclusively to its own relevant tokens and should not attend to tokens from an-
other sequence. Without modification of the attention structure, a sequence may expe-
rience interference from other instances during the attention process. To address this 
issue, we propose a masking strategy within the attention mechanism to accommodate 
inputs generated through sequence combinations. The standard attention is: 

  (1) 

where , ,  are called Query ( ), Key ( ), and Value ( ), which are the head 
components of the attention. 

To accommodate sequence combination, we introduce sequence encoding tokens 
that contain information from different instances, and the new mask matrix is composed 
of both sequence encoding tokens and padding tokens. Now, the calculation of attention 
is: 

  (2) 

where  is the query matrix of combinatorial sequence composed of 
the  sequence to the  sequence. The key matrix  and value ma-
trix  are also packed together. 

The SC attention needs a new mask different from that of standard attention. The 
reason for this is that the combined sequence formed from $n$ sequences can be repre-
sented by  matrices (e.g., ) which are obtained via dot-prod-
ucts. As shown in Figure 2, self-attention is executed within every diagonal entry, so 
the SC attention is restricted to  zones of , thereby preventing 
any intermixing between sequences. 
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Fig. 2.  (left)Mask(opt.) in Scaled Dot-product Attention (middle)Scaled Dot-product Attention 
with SC. (right)SC mechanism. 

2.2 Glancing targets 

A typical NAT system uses the conditional independent factorization to maximize the 
following likelihood: 

  (3) 

where  represents the model parameters. Typically, NAT models leverage the Trans-
former encoder-decoder architecture for modeling without employing causality in the 
attention mechanism on the decoder side. However, it has been noted by [2] that in 
sequence generation tasks like machine translation, where the real data distribution does 
not typically support the independence assumption, the failure to capture the depend-
ency between target tokens results in a considerable decrease in the performance of 
NAT. Glancing Transformer (GLAT) [7] is proposed to enhance the ability of NAT 
models to produce high-quality translations in a single-pass parallel decoding. 

As shown in the Figure 1, we adopt glancing training method based on combination 
sequences, which consists of the following steps: 

• Input the combined sequence into the initialization model to obtain the prediction 
; 

• Measure the difference between y and target to obtain glancing sample tokens 
, where  is the a hyper-parameter to more flexibly control the num-

ber of sample tokens,  is the difference between the predicted value and the 

ground-truth, measured by Hamming distance [10]; 
• Reconstruct the encoder output  and replace it with the corresponding target word 

embedding using  to obtain ; 
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• Placing  in the decoder and calculating with the target yields the loss of the re-
maining tokens. 

The objective of the GLAT framework is to reconstruct target tokens that are not di-
rectly visible by leveraging contextual information. Unlike masked language modeling 
[5], GLAT employs an adjustment factor N to dynamically adjust the masking ratio 
based on the quality of the output results rather than masking a fixed proportion of 
target tokens. 

3 Experiments 

3.1 Dataset and Metrics 

We verify the effectiveness of our approach on two datasets. 
The WMT14 NewsTest task for translating English news articles into German sen-

tences (En De) is one of the most widely used public benchmarks in machine trans-
lation. WMT14 contains about 4.5M bilingual corpus, the verification set is new-
stest2013, and the test set is newstest2014. 

The WMT17 Chinese English (Zh En) task requires translation of news arti-
cles written in Chinese to English. The raw WMT17 zh2en training data is comprised 
of 25 million translation examples from three sources: News Commentary, UN Parallel 
Corpus and CWMT Corpus. 

The TED corpus from IWSLT2017 consists of transcriptions of TED talks, with each 
talk corresponding to a document. The sentences in the source and target documents 
are aligned for translation. For testing, we use test2016-2017, and for development, we 
use the remaining documents. 

News is a corpus mainly from News Commentary v11, where the sentences are also 
aligned between the source and target documents. For testing and development sets, it 
uses newstest2016 and newstest2015, respectively. 

Europarl is a corpus extracted from Europarl v7, where the train, development, and 
tests are randomly split. 

To ensure fair comparisons with previous studies, we employ BLEU [11] for 
WMT14En De and WMT17Zh En benchmark evaluations. About document-
level metrics, we report document-level sacreBLEU(d-BLEU) [12], which is computed 
by matching n-grams in the whole documents. 

3.2 Knowledge Distillation 

Knowledge distillation (KD) [2,13] is the most commonly used technology for single 
pass NAT models. We replace the original target samples with sentences generated by 
the pre-trained autoregressive transformer, which can help the target model filter noisy 
samples in the early stage of training. We employ the transformer with the base setting 
in [1] as the teacher for knowledge distillation. 
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Table 1. Results on WMT14 En-De and WMT17 Zh-En. Iter is the number of decoding itera-
tions. Speed up is measured on WMT14En-DE test set. Our work and previous research might 
have employed varying hardware configurations and implementation strategies, making direct 
comparisons of speed-up unfair. 

Models Iter WMT14 WMT17 Speedup 
EN-DE DE-EN EN-ZH ZH-EN Training Inference 

AT Transformer[1] T 27.30 - - - 1.0x 1.0x 
Transformer(ours) T 27.86 31.55 34.82 23.99 1.0x 1.0x 

 DisCo[16] 4 27.34 31.31 34.63 23.83 1.0x 3.5x 
 SMART[17] 10 27.65 31.27 34.06 23.78 1.0x 2.2x 
Iter>1 LevT[3] 6+ 27.27 - - - 1.0x 4.0x 
 Mask-Predict[4] 10 27.03 30.53 33.19 23.21 1.0x 1.7x 
 CMLMC[18] 10 28.37 31.41 - - 1.0x 1.7x 
 Vanilla-NAT[2] 1 19.69 25.63 28.36 15.06 1.0ⅹ 15.5x 
 CTC[19] 1 16.56 18.64 26.33 11.85 1.0ⅹ 14.6x 
 GLAT[7] 1 25.21 29.84 32.08 21.65 1.0ⅹ 15.2x 
 Ful-NAT[8] 1 27.20 31.39 - - 1.0ⅹ 16.8x 
Iter=1 ReorderNAT[20] 1 22.79 27.28 - - 1.0ⅹ 16.1x 
 Flowseq[21] 1 27.32 28.39 - - 1.0ⅹ - 
 NAT-DCRF[22] 1 23.44 27.22 32.18 19.98 1.0ⅹ 10.4x 
 PAT+GLAT 1 27.01 30.36 34.27 23.20 2.5x 15.6x 
 PAT+GLAT+CTC 1 27.55 31.39 34.22 23.51 2.5x 15.5x 

 

3.3 Baselines 

We design our NAT models with the hyperparameters of the base Transformer [1]. For 
regularization, we set the dropout rate to 0.1 and use Adam optimizer with 

.All models are trained for 300k steps using Nvidia A40 GPUs with 
a batch of 64k tokens. The BLEU scores are evaluated on the validation set after each 
epoch, and the average of the top 5 checkpoints is taken to obtain the final model. We 
tune  for linear annealing from 0.55 to 0.35. All models are implemented in fairseq 
[14]. 

3.4 Inference 

During inference, the length prediction component allows the model to generate the 
target sequence by collapsing repeated characters and removing blank symbols from 
the alignment sequence. In this work, our main focus on Connectionist Temporal Clas-
sification (CTC) [15] loss, is able to make accurate predictions even when the input and 
output sequences have different lengths. By leveraging the length prediction compo-
nent, it can efficiently find the most likely target sequence given the input sequence, 
making it a powerful tool for tasks involving variable-length sequences. 

3.5 Sentence-level translation results 

As shown in Table 1, the performance obtained by our model is in the leading position 
among all NAT models and significantly improves the decoding speed. The NAT 
model achieved significant speedup compared to the AT model, but there is still a gap 
in performance. 
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Table 2. Results on raw data(Raw) and knowledge distilled data(KD), we are using a test set 
with a batch size of 1 to evaluate the speedup, "-" indicates that the experimental results are 
abnormal values, and we have analyzed the reasons below. 

Models TED News TED Speedup Raw KD Raw KD Raw KD 

AT Transformer - 26.15 - - 33.38 27.11 1.0x 
+PAT 27.52 27.01 27.38 26.63 34.18 33.01 1.0x 

 Vanilla-NAT[2] - - - - - - 40.8x 
 CTC[19] 21.69 25.01 16.60 24.87 - 31.72 27.1x 
NAT GLAT[7] 19.06 25.83 11.95 22.21 - 30.68 27.0x 
 PAT+GLAT 21.13 25.62 16.21 24.88 27.16 32.29 30.0x 
 PAT+GLAT+CTC 25.12 26.99 22.22 26.52 30.58 32.27 20.5x 

 
Speedup. Speedup contains two indicators. Training indicates the training acceleration 
compared with the standard transformer model, and Inference indicates the acceleration 
of the inference process. Compared with AT models, the acceleration effects of differ-
ent types of NAT models vary greatly. For iterative NAT models, inference speedup 
ranges from 1.7x to 4.0x. For the non-iterative NAT model, the inference acceleration 
can reach a significant 10.0x to 16.8x, which means that the non-iterative NAT model 
has a significant gap in inference speed compared to the iterative NAT model. PAT 
accelerates the inference speed to 15.5x, maintaining the inference acceleration effect 
of the general NAT models. PAT achieves 2.5x accelerated training of the NAT model, 
which means that under the same training settings, the training time is reduced by more 
than half. 
Performance. The translation quality of all NAT models still lags behind the AT mod-
els. Compared with the non-iterative NAT model, PAT enables the NAT model to 
achieve the best performance in multiple directions, further narrowing the performance 
gap with AT models. It is worth noting that an open problem in the NAT model is the 
balance between accelerating decoding and maintaining performance. PAT can achieve 
training acceleration without affecting translation quality. This is the first time that a 
NAT model has achieved further acceleration without compromising performance. At 
the same time, PAT alleviates the disadvantage of the NAT model's acceleration im-
balance in the training and inference phases. PAT achieves the best translation perfor-
mance among all non-iterative NAT models. 

3.6 Document-level translation results 

As shown in Table 2, we verified the experimental results of PAT for document-level 
translation tasks. Document-level translation tasks are closer to real-life scenarios and 
more complex than sentence-level translation tasks. PAT enables the NAT model to be 
applied to both sentence-level and document-level translation tasks for the first time. 
Speedup. Document-level translation is characterized by strong contextual relevance, 
so the input sequence is longer than the sentence-level translation task. Unlike sentence-
level translation tasks, document-level translation tasks do not require a filling strategy, 
so speedup only represents decoding acceleration. Compared with the AT model, the 
decoding acceleration of the NAT model is more than 20x, which shows that the 
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decoding acceleration of the NAT model is more obvious in long sequence tasks. The 
Vanilla-NAT model has the most obvious acceleration effect, reaching 40.8x, and the 
PAT-GLAT decoding acceleration is 30.0x, which is 3.0x higher than GLAT+CTC. 
The inference acceleration effect of PAT+GLAT+CTC is 20.5x, which is slightly 
slower than other NAT models, but still significantly improves the inference speed 
compared with the AT model. 
 

 
Fig. 3. Performance under different source input length on WMT14 EN DE. 

Performance. The input sequence of document-level translation tasks is long, which 
brings challenges to the translation performance and stability of AT and NAT models. 
It is worth noting that for document-level translation tasks, PAT can be used in both 
AT and NAT models. In the AT model, the standard transformer model cannot produce 
effective results on the TED and News data sets, indicating that PAT can overcome the 
long sequence attention challenge and has better stability than the standard transformer. 
Among the experimental results obtained, the PAT+transformer model achieved the 
highest translation quality among all models. For the NAT model, PAT narrows the 
performance gap between the NAT model and the AT model. For example, 
PAT+GLAT+CTC achieves performance close to that of the AT model on the KD data 
of all data sets, while the AT model performs better than the KD data on the Raw data 
of each data set, which shows that knowledge distillation significantly improves the 
performance of NAT models. 

3.7 Breakdown Results 

As shown in Figure 3, we evaluated the impact of different input lengths on model 
performance. Our method performed significantly better than other models in short sen-
tences, and scored the highest in sentence reasoning of different lengths, proving that 
our method has stable parallel decoding capabilities. 
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Table 3. Accuracy [%] of translation prediction for specific contextual phenomena (deixis, lexi-
cal consistency, ellipsis (inflection), and VP ellipsis) between different models on the Eng-
lish)Russian contrastive test set. 

Method deixis el.infl. el.VP lexcoh 
Transformer 50.0 51.5 26.9 45.8 
PAT+Transformer 78.6 80.1 71.5 52.6 
PAT+GLAT+CTC 50.0 53.4 41.2 45.3 

 
To determine if various models effectively use context to resolve discourse incon-

sistencies, we utilize contrastive test sets. These sets evaluate discourse phenomena in 
English-Russian translations, including deixis, lexicon consistency, ellipsis (inflection), 
and ellipsis (verb phrase). Each instance has a positive translation and several negative 
translations that differ by only one specific word. The objective is to assess whether a 
model is more likely to produce an accurate translation than incorrect variations. As 
shown in Table 3, The PAT+Transformer outperforms the NAT models across all four 
discourse phenomena. PAT+GLAT+CTC performs similarly to the Transformer base-
line (without document context) on deixis and lexical cohesion (lexcoh), but outper-
forms it on the ellipsis of inflection (el.infl.) and ellipsis of verb phrase (el.VP). 

4 Conclusion 

In this paper, we propose Padding Accelerated Training (PAT) for NAT. In contrast to 
previous approaches, PAT does not use padding tokens but rather incorporates another 
real training sentence into the padding process. This method preserves the contextual 
information within the sentence and prevents interference between different sentences 
during training. The results demonstrated that PAT achieved the best performance in 
the single-pass decoding NAT models. Compared with the AT baseline model, PAT 
has improved the training speed by 2.5x, achieving the simultaneous acceleration of 
training and inference of the NAT model for the first time. Furthermore, we applied 
PAT to document-level translation tasks. The experimental results demonstrated that 
PAT enabled NAT to achieve multi-scenario translation tasks, thereby narrowing the 
performance gap between the NAT model and the AT model in document-level trans-
lation tasks. 
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