
On Finding Short Addition Chains for Large Integers

Xiaopeng Zhao1(), Zhusen Liu2 and Jiawei Qian3

1 School of Computer Science and Technology, Donghua University, Shanghai 201620, China
zxp@dhu.edu.cn

2 Zhejiang Lab, Hangzhou, Zhejiang 311121, China
liuzs@zhejianglab.com

3 School of Information Management, Shanghai Lixin Institute of Accounting and Finance,

Shanghai 201209, China
jwqian@stu.ecnu.edu.cn

Abstract. The addition chain for a given exponent 𝑛 is an increasing sequence

of positive integers: its first term is 1, and each subsequent term is obtained by

adding the previous two terms (which can be the same), so that the last element

of the sequence is equal to 𝑛. Constructing the shortest addition chain for a fixed

exponent 𝑛 is the most efficient method for computing 𝑥𝑛 in some group under

multiplication. Therefore, the addition chain plays a crucial role in modern cryp-

tography. It can improve the computational efficiency of cryptographic algo-

rithms that require fast exponentiation, such as RSA, ElGamal, Paillier, and ECC,

etc. However, the problem of finding the shortest additive chain is NP-Complete.

Moreover, the existing evolutionary algorithms cannot work well for finding

short addition chains for large integers. This paper integrates genetic algorithms

with the window method to obtain an efficient strategy for the addition chain

problem involving large integers. We do experiments on an RSA-1536 modulus

to verify the efficiency and practicability of our algorithm.

Keywords: Addition chains · Genetic algorithms · Window method · Exponent

iation · Cryptography

1 Introduction

Exponentiation is the most fundamental operation in modern cryptography. Various

cryptographic algorithms, such as RSA, ElGamal, Paillier, and ECC, require the com-

putation of power exponentiation, i.e., modular exponentiation and scalar multiplica-

tion. Constructing the shortest addition chain for a fixed exponent 𝑛 is the most efficient

method for computing 𝑥𝑛 in some group under multiplication. Therefore, the efficient

implementation of modern cryptographic systems cannot be separated from the design

of the shortest addition chain. This highlights the significant practical implications of

research on addition chains. On the other hand, an addition chain itself is also an inter-

esting mathematical research object, and the exploration of the shortest addition chain

also holds great theoretical significance. First, we give the formal definition of an ad-

ditive chain:

mailto:zxp@dhu.edu.cn

2 X. Zhao et al.

Definition 1. An additive chain of length 𝑟 for a positive integer 𝑛 is a sequence of

positive integers as follows:

1 = 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑟 = 𝑛;

Among them, for each 𝑖 = 1,2, … , 𝑟, there exist positive integers 𝑗, 𝑘 satisfying

 𝑎𝑖 = 𝑎𝑗 + 𝑎𝑘 𝑘 ≤ 𝑗 < 𝑖. (1)

If for each 𝑖 in (1) we have 𝑗 = 𝑖 − 1, we call this addition chain a star chain.

For example, in volume 2 of Knuth’s book, “The Art of Computer Programming”

[1], an example is given where 1 → 2 → 3 → 6 → 7 → 14 → 15 is a 6-length addition

chain, while the shortest addition chain for 15 is of length 5, e.g., 1 → 2 → 3 → 6 →
12 → 15. We use ℓ(𝑛) to represent the length of the shortest addition chain for 𝑛.

The problem of determining the exact value of ℓ(𝑛) was first proposed by H. Dellac

in 1894. In the same year, E. de Jonquières [2] introduced a factorization method for

constructing addition chains, which tells us that

ℓ(𝑚𝑛) ≤ ℓ(𝑚) + ℓ(𝑛)

Afterward, numerous researchers conducted extensive studies on asymptotic bounds of

ℓ(𝑛). One of the well-known conjectures about the lower bound of ℓ(𝑛) is

 ℓ(𝑛) ≥ ⌊log2(𝑛)⌋ + ⌈log2(𝜇(𝑛))⌉, (2)

where 𝜇(𝑛) represents the number of 1s in the binary representation of 𝑛. Although A.

Schönhage [3] has proved that

ℓ(𝑛) ≥ ⌈log2(𝑛) + log2(𝜇(𝑛)) − 2.13⌉

in 1975, improving this result is very challenging. In this paper, we use (2) as a standard

to measure the quality of the resulting additive chain of 𝑛. It is worth mentioning that

the famous Scholz-Brauer conjecture

ℓ(2𝑛 − 1) ≤ 𝑛 + ℓ(𝑛) − 1.

remains unresolved. This conjecture is related to the construction of the shortest star

chain. For the study of the upper bound, as early as 1939, A. Brauer [4] gave an upper

bound for ℓ(𝑛), and later, Yao [5] made corresponding improvement to Brauer’s result.

The problem of finding the shortest addition chain is an NP-Complete problem [6].

In the last century, research on additive chains has produced dozens of algorithms, in-

cluding binary methods [1], Brauer’s method [4], window or 𝑚-ary methods [1], Bos-

Coster heuristics [7], factoring methods [1], continued fraction/Euclid methods [8],

On Finding Short Addition Chains for Large Integers 3

Knuth’s power tree methods [1], genetic algorithms [9,10], BGMW algorithms [11],

Yacobi’s data compression methods [12], Bocharova-Kudryashov’s data compression

methods [13] and so on. In 2016, Clift [14] calculated the shortest additive chain for all

positive integers less than 236. Later, Clift proved that ℓ(2𝑛 − 1) = 𝑛 + ℓ(𝑛) − 1 for

any ℓ(𝑛) ≤ 8 (see [14]).

1.1 Related Work

The window or 𝑚-ary method was proposed in [1]. In 1989, Bos and Coster [7] de-

scribed four heuristic methods for making an addition sequence of a set of numbers,

namely Approximation, Division, Halving and Lucas. However, the report shows that

the weight function in each method does not give really satisfactory results. Recently,

Ding et al. [15] introduced a cross window method and its variant for improving the

window method.

In 2016, Picek et al. [9, 10] proposed a genetic algorithm with new crossover and

mutation operators to shorten the length of the addition chains for a given exponent.

They also investigated values up to 2255 − 21 and the results indicate that the proposed

approach is a very promising alternative to deal with this problem.

1.2 Our Contributions

According to our experiments, the existing genetic algorithms for finding short addition

chains are not good at handling (extremely) large integers, such as the commonly used

RSA moduli in cryptography. In this paper, we integrate genetic algorithms with the

window method to obtain an efficient strategy for the addition chain problem involving

(extremely) large integers. Specifically, on the basis of tuned genetic algorithm, we

give the implementation of MakeSequence algorithm, which is to construct an addition

chain containing a specific set of integers. Through the experiment of an RSA-1536

modulus, we confirm the efficiency and practicability of our proposed algorithm.

2 Preliminaries

In this section, we briefly introduce the window method and the genetic algorithm for

finding short addition chains. These two methods will be important in the study of our

proposed algorithm in Section 3.

2.1 Window Method

The window or 𝑚-ary method was proposed in [1]. The basic idea of this method is to

represent the large integer in binary and split it into pieces, called windows. When the

window size is equal to 1, it will degenerate into the binary method. Take the large

integer 26235947428953663183191 as an example, and set the window size to 5. Con-

sider splitting its binary representation of length 75 as

4 X. Zhao et al.

If we have constructed an addition chain of length 12 containing all the above non-zero

windows, e.g.,

1 → 2 → 3 → 4 → 5 → 7 → 11 → 16 → 21 → 23 → 25 → 29 → 31,

then we can take the first window 1101 and repeatedly square it. For each window, we

only need to make one addition to put it into place. Thus, the total length of the resulting

addition chain is 12 + 71 + 13 − 1 = 95.

2.2 Genetic Algorithm

In this section, we introduce the genetic algorithm for constructing addition chains pro-

posed by Picek et al. [9] (with minor changes according to our experiments). Figure 1

shows the outline. The initialization algorithm (see Algorithm 1) generates an additive

chain through random summation. The tail element is highly likely to be selected with

the aim of quickly reaching the vicinity of 𝑛. Meanwhile, this algorithm also offers

abundant diversity. By calling the initialization algorithm multiple times, we obtain the

initial population. The fitness function for an addition chain is chosen to be its length.

Fig. 1. Outline of genetic algorithm

Output: An addition chain 𝑒 = {𝑒0, 𝑒1, . . . , 𝑒𝑘 = 𝑛} for 𝑛

1: Set 𝑒0 = 1, 𝑒1 = 2, and 𝑒2 to 3 or 4 uniformly at random.

2: Double the tail element with probability 10%, until it exceeds 𝑛/2.

3: while the tail element of 𝑒 is not equal to 𝑛 do

4: Randomly choose among the following operations to get the next element and

ap pend it to 𝑒, provided that it does not exceed 𝑛.

(1) Add two randomly chosen elements from 𝑒.

Algorithm 1 Initialization algorithm

Input: A positive integer 𝑛

On Finding Short Addition Chains for Large Integers 5

(2) Add the tail element to a randomly chosen element from 𝑒.

(3) Loop forward from the tail element until you find the largest element

that can be added with the tail element.

(4) Find two elements in 𝑒 such that their sum is 𝑛.

5: end while

6: return 𝑒

The pseudocode for the one-point crossover operator is provided in Algorithm

2. It is expected that this crossover operator will produce offspring with a shorter

length. Figure 2 illustrates the execution process of the crossover operator with 𝑛 =
15 and 𝑟𝑎𝑛𝑑 = 3. The pseudocode for the mutation operator is shown in Algorithm

3.

Fig. 2. An Example of Algorithm 2

Input: A positive integer 𝑛 and parent addition chains 𝑃1, 𝑃2 for 𝑛

Output: Offspring addition chain 𝑒 = {𝑒0, 𝑒1, . . . , 𝑒𝑘 = 𝑛}

1: procedure 𝑅𝑒𝑝𝑎𝑖𝑟𝐶ℎ𝑎𝑖𝑛(𝑒, 𝑛)

2: Delete duplicate elements in the

chain.

3: Delete elements larger than 𝑛 in the

chain.

4: Check whether the elements are arranged in ascending order, if not, sort them.

5: while the tail element of 𝑒 is not equal to 𝑛 do

6: Randomly choose among the following operations to get the next element

and

 append it to 𝑒, provided that it does not exceed 𝑛.

(1) Add two randomly chosen elements from 𝑒.

(2) Add the tail element to a randomly chosen element from 𝑒

Algorithm 2 Crossover operator

6 X. Zhao et al.

(3) Loop forward from the tail element until you find the largest ele-

ment that can be added with the tail element.

(4) Find two elements in 𝑒 such that their sum is 𝑛.

7: end while

8: end procedure

9: 𝑟𝑎𝑛𝑑 ← 𝑟𝑎𝑛𝑑𝑜𝑚(3, 𝑘 − 1)

 10: for 0 ≤ 𝑖 ≤ 𝑟𝑎𝑛𝑑 do

 11: 𝑒𝑖 = 𝑃1𝑖

 12: end for

 13: for r𝑎𝑛𝑑 + 1 ≤ 𝑖 ≤ 𝑘 do

 14: Find the lexicographically smallest pair (𝑝𝑎𝑖𝑟1, 𝑝𝑎𝑖𝑟2) such that 𝑃2𝑖
=

𝑃2𝑝𝑎𝑖𝑟1
+ 𝑃2𝑝𝑎𝑖𝑟2

and 𝑒𝑝𝑎𝑖𝑟1
+ 𝑒𝑝𝑎𝑖𝑟2

≤ 𝑛. If it does not exist, break the inner for

loop.

 15: 𝑒𝑖 = 𝑒𝑝𝑎𝑖𝑟1
+ 𝑒𝑝𝑎𝑖𝑟2

 16: end for

17: 𝑒 ← 𝑅𝑒𝑝𝑎𝑖𝑟𝐶ℎ𝑎𝑖𝑛(𝑒, 𝑛)

18: return 𝑒

Input: A positive integer 𝑛 and an addition chain 𝑒 = {𝑒0, 𝑒1, . . . , 𝑒𝑘 = 𝑛} for 𝑛

Output: A Mutation addition chain 𝑒′ = {𝑒′0, 𝑒′1, . . . , 𝑒′𝑘 = 𝑛}

1: 𝑟𝑎𝑛𝑑 ← 𝑟𝑎𝑛𝑑𝑜𝑚(2, 𝑘 − 1)

2: 𝑟𝑎𝑛𝑑2 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)

3: if 𝑟𝑎𝑛𝑑2 == 1 then

4: 𝑒𝑟𝑎𝑛𝑑 = 𝑒𝑟𝑎𝑛𝑑−1 + 𝑒𝑟𝑎𝑛𝑑−2

5: else

6: 𝑟𝑎𝑛𝑑3 ← 𝑟𝑎𝑛𝑑𝑜𝑚(2, 𝑟𝑎𝑛𝑑 − 1)
7: 𝑒𝑟𝑎𝑛𝑑 = 𝑒𝑟𝑎𝑛𝑑−1 + 𝑒𝑟𝑎𝑛𝑑3

8: end if

9: 𝑒′ ← 𝑅𝑒𝑝𝑎𝑖𝑟𝐶ℎ𝑎𝑖𝑛(𝑒, 𝑛)

10: return 𝑒

3 Finding Short Addition Chains for Extremely Large

Integers

Although the genetic algorithm described in Section 2.2 can quickly generate short ad-

dition chains for a wide set of exponent sizes, our experiments show that it is

Algorithm 3 Mutation operator

On Finding Short Addition Chains for Large Integers 7

challenging to obtain satisfactory solutions for (extremely) large integers, such as the

commonly used RSA moduli in cryptography, and the algorithm takes a notably long

time. The main reason is that the solution space of the problem is too extensive, making

it difficult for genetic algorithms to converge to a global optimal or satisfactory solu-

tion. In view of this, we shall integrate genetic algorithms with the window method

described in Section 2.1 to obtain an efficient strategy for the addition chain problem

involving large integers.

The key to solving the addition chain problem using the window method is to con-

struct an addition chain containing a specific set of integers, known as the

MakeSequence algorithm. Algorithm 4 presents our design based on the genetic algo-

rithm in Section 2.2.

Algorithm 4 MakeSequence

Input: Positive integers 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑘

Output: An addition chain containing 𝑎1, … , 𝑎𝑘

1: Call the genetic algorithm in Section 2.2 to generate multiple short addition chains

for 𝑎1, and put the top 𝑟1 addition chains into the bucket 𝐵1.

2: for 2 < 𝑖 < k do

3: For each addition chain 𝑒 in 𝐵𝑖−1, replace 𝑒 with 𝑅𝑒𝑝𝑎𝑖𝑟𝐶ℎ𝑎𝑖𝑛(𝑒, 𝑎𝑖).

4: On the basis of the initial population 𝐵𝑖−1, call the genetic algorithm in Section

2.2 to generate multiple short addition chains for 𝑎𝑖 containing 𝑎1, … , 𝑎𝑖−1.

5: Put the top 𝑟𝑖 optimal individuals into the bucket 𝐵𝑖 .

6: end for

7: Output the individual with the shortest length in bucket 𝐵𝑘.

4 Experimental Results

All the following experiments are conducted on a personal computer equipped with an

Intel i5 processor (2.30GHz), 8GB RAM, and Windows 10 OS. All the algorithms in-

troduced earlier are coded in C++, and the development environment is Visual Studio

2017. The GMP library is used for large number operations, and its version is 6.0.0.

The specific parameter settings are as follows: the number of generations is 600, the

initial population size is 2000, the number of crossovers is 500 per generation, and the

number of mutations is 10 per generation.

To test the effectiveness of the genetic algorithm described in Section 2.2, we eval-

uate some of the datasets in [10], as shown in Table 1. The orange font indicates that

the genetic algorithm has found the optimal solution for this test, which is the shortest

addition chain. The “difficult” value 𝑛 = 2255 − 21 is a commonly used parameter for

implementing elliptic curve cryptography algorithms. For this value, approximately 50

independent runs can obtain an addition chain of length 267 (slightly better than the

result given in [10]).

8 X. Zhao et al.

Table 1. Exponents up to 2255 − 21

𝑛 ℓ(𝑛) Binary method Window method Genetic Algorithm

 (optimal) Optimal Average

488705 23 26 27 23 23.53

1273909 25 29 30 25 25.87

3399779 25 31 31 25 26.87

5425679 27 32 32 28 28.23

9264263 28 34 34 28 29.63

20279147 29 39 36 30 31.07

51950083 30 34 36 30 31.20

115216741 31 39 38 32 33.60

159963579 33 41 39 34 35.20

310469637 33 36 39 34 34.23

1073740801 35 49 41 35 35.26

17182318319 N/A 49 46 42 46.77

2127 − 3 N/A 251 163 136 141.49

2255 − 21 N/A 506 323 267 277.25

Next, we use an RSA-1536 modulus (the prime factorization of 𝑛 is unknown)

𝑛 =

18476997032117414743068356202001644030185493386634101714717857

7491065169671116124985933768430543574458561606154457179405222

9

7177325246609606469460712496237204420222697567566873784275623

8

9508764678440933285157496578843415088475528298186726451339863

3

6493190808467199043187438128336350279547028265329780293491615

5

8118810498449083195450094839377522725705257859194499387007369

5

7556884369338127796130892303256969525326162082367649031603655

1

371447913932347169566988069

to test the effectiveness of the algorithm proposed in Section 3. The MakeSequence

algorithm we designed has a very good effect. We use the window method with size 15

to solve the problem and construct an addition chain of length 170 that contains 95

On Finding Short Addition Chains for Large Integers 9

windows (with a maximum value of 32151) by Algorithm 4. The length of the addition

chain we constructed is much smaller than the upper bound given by Yao [5]:

ℓ(𝑎1, 𝑎2, ⋯ , 𝑎95) ≤ log2(32151) + (2 +
4

√log2(32151)
)

95 ⋅ log2(32151)

log2(log2(32151))

≈ 1120

In about two hours, we find the resulting addition chain of length 1786. which is avail-

able at https://pan.baidu.com/s/1Qjyjsg8VUY8aE7b6HQ3J6Q (password: e2m5).

5 Conclusion and Future Research

In this paper, we give an effective method for finding short addition chains for (ex-

tremely) large integers. This method is based on the organic combination of the window

method and genetic algorithm. Through the experiment of an RSA-1536 modulus, we

confirm the efficiency and practicability of our proposed algorithm. In fact, the bottle-

neck of our method is how short the addition chain can be found by the optimal window

method. Therefore, the future work is to study how to apply genetic algorithm to other

extended window methods, such as the cross window method in [15].

Acknowledgments. We are grateful to the referee for carefully reading our manuscript and for

his/her valuable comments. This work was supported in part by the Shanghai Science and Tech-

nology Commission 23YF1401000, in part by the Fundamental Research Funds for the Central

Universities under Grant 2232022D-25, and in part by the China Postdoctoral Science Founda-

tion (No. 2023M733265).

References

1. Donald, E.K.: The Art of Computer Programming, vol. 2: Seminumerical Algorithms. Ad-

dison-Wesley, Reading (1981)

2. De Jonquieres, E.: Question 49 (h. dellac). L’Intermédiaire Math 1(20), 162–164 (1894)

3. Schönhage, A.: A lower bound for the length of addition chains. Theoretical Computer Sci-

ence 1(1), 1–12 (1975)

4. Brauer, A.: On addition chains. Bulletin of the American mathematical Society 45(10), 736–

739 (1939)

5. Yao, A.C.-C.: On the evaluation of powers. SIAM J. Comput. 5(1), 100–103 (1976)

6. Downey, P.J., Leong, B.L., Sethi, R.: Computing sequences with addition chains. SIAM J.

Comput. 10(3), 638–646 (1981) https://doi.org/10.1137/0210047

7. Bos, J.N., Coster, M.J.: Addition chain heuristics. In: Proc. Advances in Cryptology -

CRYPTO ’89. Lecture Notes in Computer Science, vol. 435, pp. 400–407. Springer, Hei-

delberg (1989). https://doi.org/10.1007/0-387-34805-0_37

8. Brlek, S., Castéran, P., Habsieger, L., Mallette, R.: On-line evaluation of powers using Eu-

clid’s algorithm. RAIRO-Theoretical Informatics and Applications 29(5), 431–450 (1995)

9. Picek, S., Coello, C.A.C., Jakobovic, D., Mentens, N.: Evolutionary algorithms for finding

short addition chains: Going the distance. In: Proc. 16th European Conference - EvoCOP

https://pan.baidu.com/s/1Qjyjsg8VUY8aE7b6HQ3J6Q
https://doi.org/10.1137/0210047
https://doi.org/10.1007/0-387-34805-0_37
https://doi.org/10.1007/0-387-34805-0_37

10 X. Zhao et al.

2016. Lecture Notes in Computer Science, vol. 9595, pp. 121–137. Springer, Cham (2016).

https://doi.org/10.1007/978-3-319-30698-8_9

10. Picek, S., Coello, C.A.C., Jakobovic, D., Mentens, N.: Finding short and implementation-

friendly addition chains with evolutionary algorithms. Journal of Heuristics 24(3), 457–481

(2018)

11. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast exponentiation with pre-

computation (extended abstract). In: Proc. Advances in Cryptology EUROCRYPT ’92. Lec-

ture Notes in Computer Science, vol. 658, pp. 200–207. Springer, Heidelberg (1992).

https://doi.org/10.1007/3-540-47555-9_18

12. Yacobi, Y.: Fast exponentiation using data compression. SIAM Journal on Computing

28(2), 700–703 (1998)

13. Kunihiro, N., Yamamoto, H.: Window and extended window methods for addition chain

and addition-subtraction chain. IEICE TRANSACTIONS on Fundamentals of Electronics,

Communications and Computer Sciences 81(1), 72–81 (1998)

14. http://wwwhomes.uni-bielefeld.de/achim/addition chain.html

15. Ding, Y., Guo, H., Guan, Y., Song, H., Zhang, X., Liu, J.: Some new methods to generate

short addition chains. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(2), 270–285 (2023)

https://doi.org/10.46586/TCHES.V2023.I2.270-285

https://doi.org/10.1007/978-3-319-30698-8_9
https://doi.org/10.1007/978-3-319-30698-8_9
https://doi.org/10.1007/3-540-47555-9_18
https://doi.org/10.1007/3-540-47555-9_18
http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
https://doi.org/10.46586/TCHES.V2023.I2.270-285

