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Abstract. The addition chain for a given exponent 𝑛 is an increasing sequence 

of positive integers: its first term is 1, and each subsequent term is obtained by 

adding the previous two terms (which can be the same), so that the last element 

of the sequence is equal to 𝑛. Constructing the shortest addition chain for a fixed 

exponent 𝑛 is the most efficient method for computing 𝑥𝑛 in some group under 

multiplication. Therefore, the addition chain plays a crucial role in modern cryp-

tography. It can improve the computational efficiency of cryptographic algo-

rithms that require fast exponentiation, such as RSA, ElGamal, Paillier, and ECC, 

etc. However, the problem of finding the shortest additive chain is NP-Complete. 

Moreover, the existing evolutionary algorithms cannot work well for finding 

short addition chains for large integers. This paper integrates genetic algorithms 

with the window method to obtain an efficient strategy for the addition chain 

problem involving large integers. We do experiments on an RSA-1536 modulus 

to verify the efficiency and practicability of our algorithm. 

Keywords: Addition chains · Genetic algorithms · Window method · Exponent

iation · Cryptography 

1 Introduction  

Exponentiation is the most fundamental operation in modern cryptography. Various 

cryptographic algorithms, such as RSA, ElGamal, Paillier, and ECC, require the com-

putation of power exponentiation, i.e., modular exponentiation and scalar multiplica-

tion. Constructing the shortest addition chain for a fixed exponent 𝑛 is the most efficient 

method for computing 𝑥𝑛 in some group under multiplication. Therefore, the efficient 

implementation of modern cryptographic systems cannot be separated from the design 

of the shortest addition chain. This highlights the significant practical implications of 

research on addition chains. On the other hand, an addition chain itself is also an inter-

esting mathematical research object, and the exploration of the shortest addition chain 

also holds great theoretical significance. First, we give the formal definition of an ad-

ditive chain: 
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Definition 1. An additive chain of length 𝑟 for a positive integer 𝑛 is a sequence of 

positive integers as follows: 

1 = 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑟 = 𝑛; 

Among them, for each 𝑖 = 1,2, … , 𝑟, there exist positive integers 𝑗, 𝑘 satisfying 

       𝑎𝑖 = 𝑎𝑗 + 𝑎𝑘 𝑘 ≤ 𝑗 < 𝑖.                                            (1) 

If for each 𝑖 in (1) we have 𝑗 = 𝑖 − 1, we call this addition chain a star chain. 

For example, in volume 2 of Knuth’s book, “The Art of Computer Programming” 

[1], an example is given where 1 → 2 → 3 → 6 → 7 → 14 → 15 is a 6-length addition 

chain, while the shortest addition chain for 15 is of length 5, e.g., 1 → 2 → 3 → 6 →
12 → 15. We use ℓ(𝑛) to represent the length of the shortest addition chain for 𝑛. 

The problem of determining the exact value of ℓ(𝑛) was first proposed by H. Dellac 

in 1894. In the same year, E. de Jonquières [2] introduced a factorization method for 

constructing addition chains, which tells us that 

ℓ(𝑚𝑛) ≤ ℓ(𝑚) + ℓ(𝑛) 

Afterward, numerous researchers conducted extensive studies on asymptotic bounds of 

ℓ(𝑛). One of the well-known conjectures about the lower bound of ℓ(𝑛) is 

                                       ℓ(𝑛) ≥ ⌊log2(𝑛)⌋ + ⌈log2(𝜇(𝑛))⌉,                                  (2) 

where 𝜇(𝑛) represents the number of 1s in the binary representation of 𝑛. Although A. 

Schönhage [3] has proved that 

ℓ(𝑛) ≥ ⌈log2(𝑛) + log2(𝜇(𝑛)) − 2.13⌉ 

in 1975, improving this result is very challenging. In this paper, we use (2) as a standard 

to measure the quality of the resulting additive chain of 𝑛. It is worth mentioning that 

the famous Scholz-Brauer conjecture 

ℓ(2𝑛 − 1) ≤ 𝑛 + ℓ(𝑛) − 1. 

remains unresolved. This conjecture is related to the construction of the shortest star 

chain. For the study of the upper bound, as early as 1939, A. Brauer [4] gave an upper 

bound for ℓ(𝑛), and later, Yao [5] made corresponding improvement to Brauer’s result. 

The problem of finding the shortest addition chain is an NP-Complete problem [6]. 

In the last century, research on additive chains has produced dozens of algorithms, in-

cluding binary methods [1], Brauer’s method [4], window or 𝑚-ary methods [1], Bos-

Coster heuristics [7], factoring methods [1], continued fraction/Euclid methods [8], 
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Knuth’s power tree methods [1], genetic algorithms [9,10], BGMW algorithms [11], 

Yacobi’s data compression methods [12], Bocharova-Kudryashov’s data compression 

methods [13] and so on. In 2016, Clift [14] calculated the shortest additive chain for all 

positive integers less than 236. Later, Clift proved that ℓ(2𝑛 − 1) = 𝑛 + ℓ(𝑛) − 1 for 

any ℓ(𝑛) ≤ 8 (see [14]). 

1.1 Related Work 

The window or 𝑚-ary method was proposed in [1]. In 1989, Bos and Coster [7] de-

scribed four heuristic methods for making an addition sequence of a set of numbers, 

namely Approximation, Division, Halving and Lucas. However, the report shows that 

the weight function in each method does not give really satisfactory results. Recently, 

Ding et al. [15] introduced a cross window method and its variant for improving the 

window method. 

In 2016, Picek et al. [9, 10] proposed a genetic algorithm with new crossover and 

mutation operators to shorten the length of the addition chains for a given exponent. 

They also investigated values up to 2255 − 21 and the results indicate that the proposed 

approach is a very promising alternative to deal with this problem. 

1.2  Our Contributions 

According to our experiments, the existing genetic algorithms for finding short addition 

chains are not good at handling (extremely) large integers, such as the commonly used 

RSA moduli in cryptography. In this paper, we integrate genetic algorithms with the 

window method to obtain an efficient strategy for the addition chain problem involving 

(extremely) large integers. Specifically, on the basis of tuned genetic algorithm, we 

give the implementation of MakeSequence algorithm, which is to construct an addition 

chain containing a specific set of integers. Through the experiment of an RSA-1536 

modulus, we confirm the efficiency and practicability of our proposed algorithm. 

2  Preliminaries 

In this section, we briefly introduce the window method and the genetic algorithm for 

finding short addition chains. These two methods will be important in the study of our 

proposed algorithm in Section 3. 

2.1 Window Method 

The window or 𝑚-ary method was proposed in [1]. The basic idea of this method is to 

represent the large integer in binary and split it into pieces, called windows. When the 

window size is equal to 1, it will degenerate into the binary method. Take the large 

integer 26235947428953663183191 as an example, and set the window size to 5. Con-

sider splitting its binary representation of length 75 as 
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If we have constructed an addition chain of length 12 containing all the above non-zero 

windows, e.g., 

1 → 2 → 3 → 4 → 5 → 7 → 11 → 16 → 21 → 23 → 25 → 29 → 31, 

then we can take the first window 1101 and repeatedly square it. For each window, we 

only need to make one addition to put it into place. Thus, the total length of the resulting 

addition chain is 12 + 71 + 13 − 1 = 95. 

2.2 Genetic Algorithm 

In this section, we introduce the genetic algorithm for constructing addition chains pro-

posed by Picek et al. [9] (with minor changes according to our experiments). Figure 1 

shows the outline. The initialization algorithm (see Algorithm 1) generates an additive 

chain through random summation. The tail element is highly likely to be selected with 

the aim of quickly reaching the vicinity of 𝑛. Meanwhile, this algorithm also offers 

abundant diversity. By calling the initialization algorithm multiple times, we obtain the 

initial population. The fitness function for an addition chain is chosen to be its length. 

 

Fig. 1. Outline of genetic algorithm 

 

Output: An addition chain 𝑒 = {𝑒0, 𝑒1, . . . , 𝑒𝑘 = 𝑛} for 𝑛 

1: Set 𝑒0 = 1, 𝑒1 = 2, and 𝑒2 to 3 or 4 uniformly at random. 

2: Double the tail element with probability 10%, until it exceeds 𝑛/2. 

3: while the tail element of 𝑒 is not equal to 𝑛 do 

4:   Randomly choose among the following operations to get the next element and 

ap pend it to 𝑒, provided that it does not exceed 𝑛. 

(1) Add two randomly chosen elements from 𝑒. 

Algorithm 1 Initialization algorithm 

Input: A positive integer 𝑛 
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(2) Add the tail element to a randomly chosen element from 𝑒. 

(3) Loop forward from the tail element until you find the largest element 

that can be added with the tail element. 

(4) Find two elements in 𝑒 such that their sum is 𝑛. 

5: end while 

6: return 𝑒 

 
 

The pseudocode for the one-point crossover operator is provided in Algorithm 

2. It is expected that this crossover operator will produce offspring with a shorter 

length. Figure 2 illustrates the execution process of the crossover operator with 𝑛 =
15 and 𝑟𝑎𝑛𝑑 = 3. The pseudocode for the mutation operator is shown in Algorithm 

3. 

 

Fig. 2. An Example of Algorithm 2 

 

Input: A positive integer 𝑛 and parent addition chains 𝑃1, 𝑃2  for 𝑛 

Output: Offspring addition chain 𝑒 = {𝑒0, 𝑒1, . . . , 𝑒𝑘 = 𝑛} 

1: procedure 𝑅𝑒𝑝𝑎𝑖𝑟𝐶ℎ𝑎𝑖𝑛(𝑒, 𝑛)  

2:   Delete duplicate elements in the 

chain. 

3:  Delete elements larger than 𝑛 in the 

chain. 

4:          Check whether the elements are arranged in ascending order, if not, sort them.  

5:          while the tail element of 𝑒 is not equal to 𝑛 do 

6:             Randomly choose among the following operations to get the next element 

and 

    append it to 𝑒, provided that it does not exceed 𝑛. 

(1) Add two randomly chosen elements from 𝑒. 

(2) Add the tail element to a randomly chosen element from 𝑒 

Algorithm 2 Crossover operator 
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(3) Loop forward from the tail element until you find the largest ele-

ment that can be added with the tail element. 

(4) Find two elements in 𝑒 such that their sum is 𝑛. 

7:             end while 

8:   end procedure 

9:   𝑟𝑎𝑛𝑑 ← 𝑟𝑎𝑛𝑑𝑜𝑚(3, 𝑘 − 1) 

  10:    for 0 ≤ 𝑖 ≤ 𝑟𝑎𝑛𝑑 do 

  11:               𝑒𝑖 = 𝑃1𝑖
 

  12:   end for 

  13:   for r𝑎𝑛𝑑 + 1 ≤ 𝑖 ≤ 𝑘 do 

 14:               Find the lexicographically smallest pair (𝑝𝑎𝑖𝑟1, 𝑝𝑎𝑖𝑟2) such that 𝑃2𝑖
=

𝑃2𝑝𝑎𝑖𝑟1
+        𝑃2𝑝𝑎𝑖𝑟2

and 𝑒𝑝𝑎𝑖𝑟1
+ 𝑒𝑝𝑎𝑖𝑟2

≤ 𝑛. If it does not exist, break the inner for 

loop. 

 15:           𝑒𝑖 = 𝑒𝑝𝑎𝑖𝑟1
+ 𝑒𝑝𝑎𝑖𝑟2

 

 16:   end for 

17:   𝑒 ← 𝑅𝑒𝑝𝑎𝑖𝑟𝐶ℎ𝑎𝑖𝑛(𝑒, 𝑛) 

18:   return 𝑒 

 

 

Input: A positive integer 𝑛 and an addition chain 𝑒 = {𝑒0, 𝑒1, . . . , 𝑒𝑘 = 𝑛} for 𝑛 

Output: A Mutation addition chain 𝑒′ = {𝑒′0, 𝑒′1, . . . , 𝑒′𝑘 = 𝑛} 

1:   𝑟𝑎𝑛𝑑 ← 𝑟𝑎𝑛𝑑𝑜𝑚(2, 𝑘 − 1) 

2:  𝑟𝑎𝑛𝑑2 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) 

3:   if 𝑟𝑎𝑛𝑑2 == 1 then 

4:  𝑒𝑟𝑎𝑛𝑑 = 𝑒𝑟𝑎𝑛𝑑−1 + 𝑒𝑟𝑎𝑛𝑑−2 

5:   else 

6:        𝑟𝑎𝑛𝑑3 ← 𝑟𝑎𝑛𝑑𝑜𝑚(2, 𝑟𝑎𝑛𝑑 − 1) 
7:        𝑒𝑟𝑎𝑛𝑑 = 𝑒𝑟𝑎𝑛𝑑−1 + 𝑒𝑟𝑎𝑛𝑑3

 

8:   end if 

9:   𝑒′ ← 𝑅𝑒𝑝𝑎𝑖𝑟𝐶ℎ𝑎𝑖𝑛(𝑒, 𝑛) 

10:   return 𝑒 

3 Finding Short Addition Chains for Extremely Large 

Integers 

Although the genetic algorithm described in Section 2.2 can quickly generate short ad-

dition chains for a wide set of exponent sizes, our experiments show that it is 

Algorithm 3 Mutation operator 
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challenging to obtain satisfactory solutions for (extremely) large integers, such as the 

commonly used RSA moduli in cryptography, and the algorithm takes a notably long 

time. The main reason is that the solution space of the problem is too extensive, making 

it difficult for genetic algorithms to converge to a global optimal or satisfactory solu-

tion. In view of this, we shall integrate genetic algorithms with the window method 

described in Section 2.1 to obtain an efficient strategy for the addition chain problem 

involving large integers. 

The key to solving the addition chain problem using the window method is to con-

struct an addition chain containing a specific set of integers, known as the 

MakeSequence algorithm. Algorithm 4 presents our design based on the genetic algo-

rithm in Section 2.2. 

 

Algorithm 4 MakeSequence    

Input: Positive integers 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑘 

Output: An addition chain containing 𝑎1, … , 𝑎𝑘 

1:   Call the genetic algorithm in Section 2.2 to generate multiple short addition chains 

for 𝑎1, and put the top 𝑟1  addition chains into the bucket 𝐵1. 

2:   for 2 < 𝑖 < k do 

3:         For each addition chain 𝑒 in 𝐵𝑖−1, replace 𝑒 with 𝑅𝑒𝑝𝑎𝑖𝑟𝐶ℎ𝑎𝑖𝑛(𝑒, 𝑎𝑖). 

4:           On the basis of the initial population 𝐵𝑖−1, call the genetic algorithm in Section 

2.2 to generate multiple short addition chains for 𝑎𝑖  containing 𝑎1, … , 𝑎𝑖−1. 

5:         Put the top 𝑟𝑖  optimal individuals into the bucket 𝐵𝑖 . 

6:   end for 

7:   Output the individual with the shortest length in bucket 𝐵𝑘. 

 

4 Experimental Results 

All the following experiments are conducted on a personal computer equipped with an 

Intel i5 processor (2.30GHz), 8GB RAM, and Windows 10 OS. All the algorithms in-

troduced earlier are coded in C++, and the development environment is Visual Studio 

2017. The GMP library is used for large number operations, and its version is 6.0.0. 

The specific parameter settings are as follows: the number of generations is 600, the 

initial population size is 2000, the number of crossovers is 500 per generation, and the 

number of mutations is 10 per generation. 

To test the effectiveness of the genetic algorithm described in Section 2.2, we eval-

uate some of the datasets in [10], as shown in Table 1. The orange font indicates that 

the genetic algorithm has found the optimal solution for this test, which is the shortest 

addition chain. The “difficult” value 𝑛 = 2255 − 21 is a commonly used parameter for 

implementing elliptic curve cryptography algorithms. For this value, approximately 50 

independent runs can obtain an addition chain of length 267 (slightly better than the 

result given in [10]). 
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Table 1. Exponents up to 2255 − 21 

𝑛 ℓ(𝑛) Binary method Window method Genetic Algorithm 

   (optimal) Optimal Average 

488705 23 26 27 23 23.53 

1273909 25 29 30 25 25.87 

3399779 25 31 31 25 26.87 

5425679 27 32 32 28 28.23 

9264263 28 34 34 28 29.63 

20279147 29 39 36 30 31.07 

51950083 30 34 36 30 31.20 

115216741 31 39 38 32 33.60 

159963579 33 41 39 34 35.20 

310469637 33 36 39 34 34.23 

1073740801 35 49 41 35 35.26 

17182318319 N/A 49 46 42 46.77 

2127 − 3 N/A 251 163 136 141.49 

2255 − 21 N/A 506 323 267 277.25 

 

Next, we use an RSA-1536 modulus (the prime factorization of 𝑛 is unknown) 

𝑛 = 

18476997032117414743068356202001644030185493386634101714717857 

7491065169671116124985933768430543574458561606154457179405222

9 

7177325246609606469460712496237204420222697567566873784275623

8 

9508764678440933285157496578843415088475528298186726451339863

3 

6493190808467199043187438128336350279547028265329780293491615

5 

8118810498449083195450094839377522725705257859194499387007369

5 

7556884369338127796130892303256969525326162082367649031603655

1 

371447913932347169566988069 

to test the effectiveness of the algorithm proposed in Section 3. The MakeSequence 

algorithm we designed has a very good effect. We use the window method with size 15 

to solve the problem and construct an addition chain of length 170 that contains 95 
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windows (with a maximum value of 32151) by Algorithm 4. The length of the addition 

chain we constructed is much smaller than the upper bound given by Yao [5]: 

ℓ(𝑎1, 𝑎2, ⋯ , 𝑎95) ≤ log2(32151) + (2 +
4

√log2(32151)
)

95 ⋅ log2(32151)

log2(log2(32151))

≈ 1120 

In about two hours, we find the resulting addition chain of length 1786. which is avail-

able at https://pan.baidu.com/s/1Qjyjsg8VUY8aE7b6HQ3J6Q (password: e2m5). 

5 Conclusion and Future Research 

In this paper, we give an effective method for finding short addition chains for (ex-

tremely) large integers. This method is based on the organic combination of the window 

method and genetic algorithm. Through the experiment of an RSA-1536 modulus, we 

confirm the efficiency and practicability of our proposed algorithm. In fact, the bottle-

neck of our method is how short the addition chain can be found by the optimal window 

method. Therefore, the future work is to study how to apply genetic algorithm to other 

extended window methods, such as the cross window method in [15]. 
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