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Abstract. Analyzing the genome sequence of the only fish species known to pos-

sess freezing tolerance, Perccottus glenii, is crucial for understanding how organ-

isms adapt to extreme environments. Traditional biological analysis methods are 

time-consuming and have limited accuracy. Therefore, we will employ machine 

learning techniques to analyze the genomic sequences of Perccottus glenii, using 

Neodontobutis hainanens as a comparison group to identify differential genes. 

Firstly, we propose five gene sequence vectorization methods and a method for 

handling super-long gene sequences, and we compare three vectorization meth-

ods: sequential encoding, One-Hot encoding, and K-mer encoding, to identify the 

optimal encoding method. Secondly, we construct four classification models: 

random forest, LightBGM, XGBoost, and decision tree. The dataset used for 

these models is derived from the NCBI database. We determine the optimal K-

value for the K-mer encoding method, and extract and vectorize the gene se-

quence matrix, with the best-performing model, random forest, achieving a clas-

sification accuracy of up to 99.98%. Finally, we use SHAP values to perform 

interpretability analysis on the classification models, and through tenfold cross-

validation and AUC metrics, we identify the top 10 features that contribute the 

most to the model’s classification accuracy, thereby recognizing the differential 

genes for freezing tolerance phenotype in Perccottus glenii. We validate the iden-

tified differential genes using the biological software BLAST. Conclusion: Our 

study demonstrates that machine learning methods can replace traditional manual 

methods for identifying differential genes associated with freezing tolerance phe-

notype in Perccottus glenii. 
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1 Introduction 

Currently, Perccottus glenii is the only fish known to possess freezing tolerance, while 

its closely related species Neodontobutis hainanens does not have the ability to with-

stand cold temperatures. Analyzing the genomic sequences of these two species to iden-

tify the phenotypic genes that contribute to the cold tolerance of Perccottus glenii is of 

great significance for understanding how organisms adapt to extreme environments [1]. 

Through bioinformatics analysis of genomic differences between the two species, 

scientists can gain insights into the mechanisms underlying the cold tolerance of 

Perccottus glenii, providing valuable genetic resources for future research. However, 

bioinformatics analysis has its limitations. For instance, with the advancement of se-

quencing technologies [2,3], the volume of gene sequence data is continually increas-

ing, and the analysis of these large datasets requires efficient computational power and 

storage capacity. Additionally, bioinformatics analysis has limited accuracy when it 

comes to the alignment of large or complex genomes. Overcoming these limitations 

presents a new challenge. Traditional experimental methods for bioinformatics analysis 

of the genomes of these two fish species are time-consuming and labor-intensive, and 

they are limited by the experience and skills of the experimenters. The manual operation 

involved in the analysis process can lead to errors and subjective judgments, resulting 

in limited accuracy for traditional bioinformatics methods in genome alignment. To 

effectively address these issues, efforts are being made to apply machine learning meth-

ods [4] to the analysis of genomic sequences of organisms, with interdisciplinary col-

laboration aimed at solving the current problems faced [5]. 

This article fully leverages the strengths of bioinformatics and computer science, 

combining traditional biological gene sequence analysis with machine learning meth-

ods to collaboratively process large-scale biological gene sequence data [6], automating 

the gene sequence analysis process. This transformation makes the originally cumber-

some and time-consuming analysis simple and efficient, reducing manual intervention 

while improving analytical efficiency. Through machine learning methods, patterns and 

features within gene sequences can be accurately identified [7], achieving higher pre-

diction accuracy and further uncovering key information within gene sequences com-

pared to traditional methods. 

The main contributions of this paper include the use of machine learning methods to 

replace traditional manual methods for the analysis of genomes from different species, 

reducing workload and human error, and enhancing the efficiency and accuracy of ge-

nomic analysis. Our specific contributions include: 

1. Data Analysis: We propose five methods for gene sequence vectorization and con-

duct a comparative analysis of three of these methods to assess their feasibility. 

2. Modeling: We employ four different machine learning models to learn features from 

gene sequences and compare their classification effects to evaluate the feasibility of 

using machine learning for genome comparison. 

3. Biological Interpretability: We perform interpretability analyses on the machine 

learning models, correlating the learned features with their biological significance to 
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explore the potential for machine learning features to enhance biological interpreta-

bility. 

All the code used in this paper is publicly available at https://github.com/TZX888/gen

e-sequence.git for future reference and replication. 

2 Materials and Methods 

2.1 Gene Sequence Encoding Methods 

In order to use machine learning methods on gene sequence datasets, the following five 

gene sequence vectorization methods are proposed [8]. 

Sequential encoding 

In machine learning, Sequential Encoding [9] is a method that maps the individual 

categories of a discrete feature to integer ordinal numbers. This approach is suitable for 

ordered features where there is a sequential relationship between categories but no ex-

plicit quantitative meaning. As illustrated in Fig. 1, ordinal encoding assigns integers 

to categories according to their order. 

Sequential DNA sequence coding is a method proposed by Allen Chieng, Hoon 

Choong, and Nung Kion Lee in their paper [10]. This method encodes nucleotide se-

quences into numerical values, with A represented by 0.25, C by 0.5, G by 0.75, and T 

by 1.00. Any other base is represented by 0.0. While this coding scheme was experi-

mentally found to be effective, the significance of the specific numerical choices for 

this encoding is not readily apparent. 

 

Fig. 1. Sequential Coding Schematic 

One-Hot Encoding 

One-Hot Encoding [11] is one of the most commonly used methods for encoding 

categorical features in machine learning. It works by creating a new binary feature for 
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each category of a discrete attribute. For each sample, only one of these binary features 

is set to 1, indicating the presence of the corresponding category, while all other features 

are set to 0. This method is particularly suitable for attributes with a finite number of 

categories. As shown in Fig. 2, an example of One-Hot Encoding encodes the nucleo-

tides ATCG as [0,0,0,1], [0,0,1,0], [0,1,0,0], and [1,0,0,0], respectively. A sequence of 

1000bp would thus be transformed into a matrix of size 1000*4. Since One-Hot Encod-

ing converts categories into discrete binary vectors, it does not preserve the ordinal 

information between categories. This means that when decoding, it is necessary to 

know the specific meaning of each binary bit, which can be less intuitive in the context 

of DNA sequence encoding. 

 

Fig. 2. One-Hot Encoding Schematic 

K-mer Encoding 

The methods of One-hot encoding and sequential encoding cannot produce vectors 

of consistent length, as they achieve vector uniformity by truncating sequences or pad-

ding with zeros. K-mer encoding [12] is a method that transforms genomic sequences 

into vectors by breaking the sequence into overlapping k-mer fragments and calculating 

the frequency of each k-mer, treating the genomic sequence as natural language pro-

cessing. As shown in Fig. 3, the sequence S1 is split by sliding with K=3. The sequence 

ATCGCA can be divided into ATC, TCG, CGC, GCA. After performing the same op-

eration on the remaining n-1 sequences, the n sequences are segmented to form a set of 

sequences with a length of 3, denoted as N. Taking the union of N forms a gene se-

quence dictionary with unique IDs. In Fig. 3, the gene dictionary is used as the columns 

of a matrix, with the n sequences as the rows, to construct a frequency matrix.[13] The 

matrix calculates the number of occurrences of each sequence’s gene fragment in the 

gene dictionary. K-mer encoding generates a machine learning feature matrix through 

the above method. 
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Fig. 3. k-mer coding schematic 

Figure Embedding 

The vectorized representation of gene sequences utilizes node-to-node co-occur-

rence relationships in a graph, preserving the sequence information within the graph's 

data structure through the k-mer method's continuity. Fig. 4 illustrates the entire process 

of k-mer coding with K=3 as an example, demonstrating how gene sequences are rep-

resented in a graphical format. In the graph, the DNA sequence GTCGACGAC is se-

quentially segmented into neighboring 3-mers, and these neighboring 3-mers are con-

nected to each other. The nodes in the feature extraction graph represent the segments 

after 3-mer segmentation, the edges represent the continuity between the nodes, and the 

weights of the edges between the nodes represent the frequency with which neighboring 

nodes appear consecutively. Once the DNA sequence is represented as a graph using 

the aforementioned method, the feature graph can be transformed into a vector based 

on graph methods and subsequently learned using graph neural network techniques. 

 

Fig. 4. Coding Schematic 

Picture channel coding DNA sequences 

The image channel, in RGB color mode, refers to the separate red, green, and blue 

components. A complete image is composed of three channels: red, green, and blue, 
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which work together to create the full image. The genome sequence can be represented 

as an image using the image channel approach, where the sequence is treated as an 

image consisting of four channels (A, T, C, and G). As shown in Fig. 5, the DNA se-

quences S1, S2, S3 are mapped sequentially into the four channels (A, T, C, G) in pixel 

order. Each DNA sequence can thus be transformed into a four-channel image, allowing 

the prediction problem of DNA sequences to be converted into a classification problem 

for binary images. 

 

Fig. 5. Picture Channel Encoding DNA Sequence Schematic 

The above article proposes five different methods for DNA vectorization, and the clas-

sification efficacy of these methods will be validated in subsequent studies. When deal-

ing with ultra-long gene sequences (spanning billions of base pairs), a key challenge in 

DNA sequence vectorization methods is how to effectively process them. A common 

strategy in machine learning for handling such sequences is truncation. While trunca-

tion offers the advantage of reducing the sequence to a more manageable length, a sig-

nificant disadvantage is the potential loss of valuable data that could be crucial for ac-

curate predictions. Another approach is to represent ultra-long sequences hierarchi-

cally, which aids the model in handling extended sequence data. The core principle of 

this strategy involves breaking down the ultra-long sequences into several levels, with 

each level processing a segment of the sequence. This reduces the sequence length that 

the model needs to handle while preserving the sequence's hierarchical information. 

Additionally, processing ultra-long gene sequences with a Convolutional Neural Net-

work (CNN) can capture local features through sliding convolutional kernels and re-

duce sequence length using pooling layers during data processing. By stacking multiple 

convolutional layers, a CNN can manage ultra-long sequences. However, these meth-

ods may suffer from issues such as information loss and a lack of biological interpret-

ability. To address these concerns, this paper combines the K-mer coding method to 

divide the ultra-long sequences into multiple fixed-length sub-sequences and constructs 

a gene vector dictionary to train each sub-sequence as an independent feature. This 

approach can prevent the loss of gene information, and the experimental results are 

biologically interpretable.  
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2.2 Hardware Configuration 

The entire experimental hardware configuration is as follows: We used two servers with 

the same specifications, each equipped with two AMD EPYC 9654 96-Core Processors, 

totaling 192 cores per server. Each server has a memory capacity of 2TB. 

2.3 Dataset 

For the gene sequence data of Perccottus glenii and Neodontobutis hainanens, this pa-

per downloaded the sequence data of the two fish from the NCBI BioProject database 

under the accession numbers PRJNA818152 (P.glenii) and PRJNA818180 (N.hai-

nanensis), and Perccottus glenii was used as the study subject and Neodontobutis hai-

nanens was used as the control. 

The format of the downloaded dataset is the FASTA format (see Fig. 6), which is an 

ASCII text-based format that can store one or more nucleotide sequences or peptide 

sequence data. In the FASTA format, each sequence data begins with a single line of 

description, followed immediately by one or more lines of sequence data. The next 

sequence data does the same, and the cycle continues. 

 

Fig. 6. FASTA format 

The gene sequence files of Perodontobottus glenii (Gfish) and gene sequence data of 

Neodontobottus hainanens (Hfish) were analyzed, and in Fig. 7, the variable X repre-

sents the number of gene sequences, and the variable y denotes the length of gene se-

quences, and it can be seen that, most of the gene lengths of each genome fluctuate 

within a certain interval, and a small portion of the lengths of the gene sequences be-

longs to the outlier points. 
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Fig. 7. Hfish and Gfish DNA sequence length 

Since the Perccottus glenii genes for frost resistance accounted for only a small por-

tion of the dataset, the sample size of the two categories was unbalanced. The com-

monly used methods to deal with the unbalanced dataset include under-sampling, over-

sampling and other algorithms, in this paper, we adopt Synthetic minorty over-sampling 

technique (SMOTE algorithm[16]) which has good performance and is widely 

used.The basic idea of SMOTE algorithm is to analyze the minorty samples and add 

new samples to the dataset according to the minorty samples artificially, so as to in-

crease the number of samples, and then achieve the overall sample size, thus to achieve 

the overall dataset. The basic idea of the SMOTE algorithm is to analyze the minority 

samples and artificially synthesize new samples based on the minority samples to be 

added to the dataset, so as to increase the number of samples, and then achieve the 

sample balance of the overall dataset [18]. 

2.4 K-mer Encoding K-value Selection 

When performing K-mer encoding on genomic sequence data, the choice of the K-value 

has a significant impact on accuracy. Ideally, K should be large enough for k-mers to 

map to unique positions in the genome. However, an excessively large K can reduce 

the probability of removing erroneous bases represented by low-frequency k-mers (in-

creasing the error rate), decrease k-mer depth (resulting in a less pronounced peak in 

the k-mer frequency distribution), and increase the usage of computational resources. 

Therefore, it is necessary to select an appropriate K-value to balance computational 

complexity and the integrity of sequence information. We used KmerGenie to analyze 

the Gfish and Hfish genomes. Fig. 8 shows the frequency distribution of each k-mer. 

KmerGenie assesses the highest k-value for the total size of the genome as the “optimal 

k-mer”, providing a reference for the subsequent k-value to be used for genomic se-

quence encoding with this sequencing data. From Fig. 8(a), it can be observed that the 

optimal K for the Gfish genome is 19. From Fig. 8(b), it can be seen that the optimal K 

for the Hfish genome is 25, with 19 being the next best choice. Considering computa-

tional resource constraints, we selected K=19 for K-mer encoding. 
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2.5 Comparative Experiment 

The genome sequence 𝑠 = 𝑁1𝑁2 ⋯ 𝑁𝐿 , 𝑁𝑖 ∈ {𝐴, 𝑇, 𝐶, 𝐺} , 𝑖 = 1,2, ⋯ , 𝐿 ,and 𝐿  is the 

length of the sequence. Construct the dictionary 𝐸 = {𝑁1𝑁2 ⋯ 𝑁𝑘},𝑁𝑖 ∈ {𝐴, 𝑇, 𝐶, 𝐺}, 

Dictionary 𝐸 contains 𝑘 sub-elements of 4. If every two neighboring sites of the se-

quence are scanned consecutively from the beginning with k=19, e.g., site pairs 

(1,19), (2,20), ⋯ , (𝐿 − 19, 𝐿) , from which the 𝐿 − 19  feature sequences converted 

from the original sequences can be obtained [14]. The feature sequence segmentation 

is performed on all gene sequences, and the dictionary 𝐸 is the set of full alignments of 

gene sequences of A,T,C,G [15]. 

The 7970 Perccottus glenii gene sequences and 184 Neodontobutis hainanens gene 

sequences after segmentation were processed and randomly divided into a training set 

(5708 sequences) and a test set (2446 sequences) in a 7:3 ratio.Different population 

category genes were tagged manually for supervised learning, and the gene sequences 

 
(a) Frequency distribution of k-mer for Gfish 

 
(b) Frequency distribution of k-mer for Hfish 

Fig. 8. From top to bottom, (a) shows the k-mer frequency distribution of the Perodonto-bottus 

glenii, with the optimal K=19; (b) shows the k-mer frequency distribution of the Neodonto-

bottus hainanens, with the optimal K=27. The red curve represents the observed k-mer curve; 

the blue curve represents the heterozygous k-mer curve; and the green curve represents the 

homozygous k-mer curve. 
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were vectorized using sequential coding, Onehot coding, and K-mer coding, respec-

tively, to make a side-by-side comparison of the three gene coding methods. 

To investigate whether machine learning methods are suitable for stratifying the 

freezing tolerance phenotype of Gobioides broussonnetii and its homologous species 

Perccottus glenii, we selected the optimal encoding method from the three aforemen-

tioned encoding methods. We constructed four different models—Random Forest[19], 

LightGBM[20], XGBoost[21], and Decision Trees[22]—for comparative classification 

testing. Additionally, we conducted parameter optimization to select the model with the 

best predictive performance for subsequent research. 

2.6 Evaluation and Interpretation of Models 

In order to validate the model, this study uses 10-fold cross-validation[23] to judge the 

model. In 10-fold cross-validation, the dataset is split into 10 different subsets, and 9 

are used as the training set each time, and the remaining 1 is used as the test set to 

validate the model performance, and finally, the average performance of the 10 model 

performances is obtained as the result of the 10-fold cross-validation. In addition, we 

also used the learning curve during[24] training to evaluate the model. Finally, the 

model with the best classification result was interpreted by SHAP value[25] and the 

importance ranking of each gene feature was obtained, and then the gene sequences 

were sequentially included in the model and their area under the curve (AUC)[26] was 

calculated according to the importance ranking of the features, and a suitable number 

of gene segments were selected for subsequent studies considering their stability. 

To determine which features are important in stratifying the frost tolerance pheno-

type of Perccottus glenii, this paper uses SHAP to interpret the trained model described 

above.SHAP (SHapley Additive exPlanations[27]) is a method for elucidating the un-

derlying mechanisms of machine learning model predictions, which is based on the 

Shapley value theory from game theory. It quantifies the individual impact of each fea-

ture on the model’s predictive outcomes and provides an analytical framework that can 

explain both the overall predictive behavior of the model and the influence of features 

on individual prediction instances simultaneously. This technique was first proposed 

by Lundberg and Lee in 2017. SHAP is utilized to enhance the interpretability of ma-

chine learning models by treating each feature as a contributor to the model’s predic-

tions. It calculates the SHAP values for each feature through perturbation, determining 

the degree of contribution and thereby interpreting the model. For a single prediction 

instance, the calculation of the SHAP value can be approximated by Equation (1): 

 ∅𝑖 = ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!
𝑆⊆𝐹∖{𝑖}

 
[𝑓𝑠(𝑥𝑠) − 𝑓𝑠(𝑥𝑠 ∪ {𝑥𝑖})]  (1) 

Where ∅𝑖 is the SHAP value for feature 𝑖, 𝐹 is the set of all features, 𝑆 is a subset of 

𝐹  that does not include feature 𝑖 ,𝑥𝑠 , represents the feature values in set 𝑆,𝑓𝑠  is the 

model’s prediction on feature set 𝑆,|𝑆| is the number of features in set 𝑆,! denotes fac-

torial. 

And the entire framework of the SHAP method is depicted in Fig. 9.Using SHAP 

values to interpret the predictions of the test set, features with high SHAP values make 
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significant contributions to the classification predictions. Such features are primarily 

associated with differential genes between the two fish species. The research objective 

is transformed into identifying meaningful biological features through those with high 

SHAP values. In this paper, SHAP is used to interpret the model with the best classifi-

cation performance. The features are ranked from high to low based on their SHAP 

values, and the corresponding gene sequences are identified for verification. 

 

Fig. 9. SHAP framework diagram 

2.7 Evaluation Indicators 

To evaluate the classification performance of the model, metrics such as accuracy, pre-

cision, recall, and F1-score, which are commonly used in classification models, are 

employed. These metrics are calculated using TP (True Positive), FP (False Positive), 

FN (False Negative), and TN (True Negative). Specifically, TP represents the number 

of instances that are correctly classified as positive in both the true and predicted cate-

gories, FP represents the number of instances that are incorrectly classified as positive 

in the predicted category when they are actually negative in the true category, FN rep-

resents the number of instances that are incorrectly classified as negative in the pre-

dicted category when they are actually positive in the true category, and TN represents 

the number of instances that are correctly classified as negative in both the true and 

predicted categories. 

Accuracy measures the proportion of correct classifications, as shown in equation 

(2): 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (2) 

The precision refers to how many of all samples judged positive by the model are truly 

positive, as shown in equation (3): 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3) 

Recall refers to how many of all positive samples are judged positive by the model, as 

shown in equation (4): 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4) 

The F1-score [28] is the reconciled average of precision and recall as shown in equation 

(5): 
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 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

3 Results and Analysis 

3.1 K-mer Encoding Leads to Better Performance 

In the comparative experiment of the three vectorization methods, we utilized gene se-

quences of the species Perccottus glenii and Neodontobutis hainanens as the dataset. 

The gene sequences were vectorized using three methods: ordinal encoding, One-Hot 

encoding, and K-mer encoding, which were transformed into input matrices for ma-

chine learning. Random Forest was selected as the learner to compare the effects of the 

three encoding methods. The confusion matrices for the three encoding methods are 

shown in Fig. 10. Fig. 10(a) presents the confusion matrix results for ordinal encoding 

input into Random Forest, Fig. 10(b) for One-Hot encoding, and Fig. 10(c) for K-mer 

encoding. From Fig. 10, it can be observed that among the three encoding methods, K-

mer encoding yields the best classification performance. As indicated in Table 1, when 

using K-mer encoding as input in the Random Forest model, the accuracy, precision, 

recall, and F1-score are 0.9998, 0.9998, 0.9998, and 0.9998, respectively, demonstrat-

ing the superiority of the K-mer encoding method over ordinal encoding and One-Hot 

encoding. Subsequent experiments will therefore employ K-mer encoding. 

 

(a)Sequential encoding  (b) One-Hot encoding  (c) K-mer encoding  

Fig. 10. From left to right, (a) depicts the confusion matrix for the results of the random forest 

model with sequential encoding input, (b) shows the confusion matrix for the results of the 

random forest model with One-Hot encoding input, (c) presents the confusion matrix for the 

results of the random forest model with K-mer encoding input. 

Table 1. Comparison chart of the classification results of the three coding methods 

Methods tarfets model Accuracy Precision Recall F1-scorce 

Sequential encoding 

Testset 
Random 

Forest 

0.9948 0.9948 0.9948 0.9948 

One-Hot encoding 0.9925 0.9925 0.9925 0.9925 

K-mer encoding 0.9998 0.9998 0.9998 0.9998 
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3.2 Random Forest Models Lead to Better Classification Performance 

Table 2. Comparison of classification results of four different models 

 

In the model comparison experiment, based on the K-mer vectorization method, we 

constructed four different models on the training set: Random Forest, LightGBM, 

XGBoost, and Decision Tree. The confusion matrices for the classification results of 

these models are shown in Fig. 11.Fig. 11(a) depicts the confusion matrix for the clas-

sification results of the LightGBM model, Fig. 11(b) shows the confusion matrix for 

the Random Forest model, Fig. 11(c) presents the confusion matrix for the Decision 

Tree model, and Fig. 11(d) displays the confusion matrix for the XGBoost model. To 

evaluate the performance of these four models, we employed various evaluation met-

rics. The areas under the ROC curves for the Random Forest, LightGBM, XGBoost, 

and Decision Tree models constructed on the test set were 0.9996, 0.9994, 0.9991, and 

0.9879, respectively. Additionally, as shown in Table 2, the table displays the accuracy, 

precision, recall, and F1-scores for the four models, along with the results of 10-fold 

cross-validation. The results indicate that the Random Forest model achieved accuracy, 

precision, recall, and F1-scores of 0.9998, 0.9998, 0.9998, and 0.9998, respectively, on 

the dataset. The results of the 10-fold cross-validation were 0.9489, 0.9515, 0.9492, and 

0.9488, respectively.Subsequently, we conducted a learning curve test on the Random 

Forest model to verify whether the model was overfitting[29]. As shown in Fig. 12, the 

training score remained at a relatively high level, while the validation score gradually 

(a) LightBGM  (b) Random Forest  (c)Decision Tree  (d) XGBoost  

Fig. 11. From left to right, (a) is the confusion matrix for the classification results of the 

LightBGM model, (b) is the confusion matrix for the Random Forest model, (c) is the confu-

sion matrix for the Decision Tree model, and (d) is the confusion matrix for the XGBoost 

model. 

Model Example Accuracy Precision Recall F1-scorce 

XGBoost 
Testset 0.9946 0.9946 0.9946 0.9946 

ten-fold cross validation 0.9490 0.9510 0.9490 0.9490 

Decision Tree 
Testset 0.9990 0.9990 0.9990 0.9990 

ten-fold cross validation 0.9389 0.9388 0.9389 0.9389 

LightBGM 
Testset 0.9977 0.9977 0.9977 0.9977 

ten-fold cross validation 0.9579 0.9580 0.9579 0.9579 

Random Forest 
Testset 0.9998 0.9998 0.9998 0.9998 

ten-fold cross validation 0.9489 0.9515 0.9492 0.9488 
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increased. Although the training set score was close to 1, the cross-validation score 

gradually increased, with the last two points almost coinciding, indicating that there 

was no overfitting at this point. We then further optimized the Random Forest model 

and continued with subsequent analyses. 

 

Fig. 12. Learning Curve for Random Forest Models 

3.3 Interpretable Analysis 

In order to identify the features that make significant contributions to the model’s clas-

sification results, we employed SHAP values to interpret the model. Fig. 14 illustrates 

the ranking of the top 9 features in terms of their importance to the model, with the 

features’ importance to the model’s classification outcomes arranged from highest to 

lowest. The ranking order is determined by the average absolute SHAP value of a fea-

ture within the model. Subsequently, we sequentially added features to the model ac-

cording to this ranking and retrained it, evaluating the model each time with AUC. The 

results revealed that regardless of whether it was in the validation set or cross-valida-

tion, the AUC reached a relatively stable state when the 9th gene segment was included 

as a feature (see Fig. 13). In line with Occam’s Razor principle[30], we ultimately se-

lected the gene segments corresponding to the top 9 ranked features for further research. 

 

Fig. 13. Feature Selection Diagram 
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Fig. 14. SHAP Values in Random Forest Models 

3.4 Discussion of Results 

In this study on the freezing tolerance phenotype of Perccottus glenii based on machine 

learning methods, we first proposed five gene sequence vectorization methods and a 

method for handling super-long gene sequences. We then conducted experiments to 

compare the classification effects of ordinal encoding, One-Hot encoding, and K-mer 

encoding, demonstrating that the K-mer method outperforms the other two encoding 

methods. Subsequently, using the K-mer encoding method, we applied four different 

machine learning models—random forest, LightGBM, XGBoost, and decision tree—

to classify the DNA sequences of the two species. We compared the performance of 

these four models in terms of Accuracy, Precision, Recall, and F1-score on both the test 

set and through 10-fold cross-validation, showing that the random forest model is su-

perior to the other three models. Finally, we used SHAP values to interpret the random 

forest model and successfully identified 9 differential genes significantly associated 

with the freezing tolerance phenotype for further research. To verify the correctness of 

the results, we used the biological software BLAST (Basic Local Alignment Search 

Tool) to align the 9 differential genes to their corresponding positions in the genome, 

confirming the feasibility of identifying differential genes based on machine learning. 

The gene vectorization methods and the handling method for super-long gene se-

quences proposed in this paper offer new insights for gene analysis using machine 

learning. 

4 Conclusion 

In this work, we explored and compared different gene encoding methods that could 

affect the performance of classification models. The results indicated that the K-mer 

encoding method outperforms the other encoding methods tested. We further compared 

the classification performance of different models under K-mer encoding and found 

that the random forest classification model had the best performance. Using SHAP val-
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ues, we effectively interpreted the model features and identified the Top 9 features cor-

responding to differential genes. Finally, we aligned the identified differential genes 

and found their corresponding gene loci in the genome, demonstrating the effectiveness 

of machine learning methods for the identification of differential genes. 

Currently, traditional manual methods for identifying differential genes have several 

limitations, including being time-consuming and labor-intensive, subjective, difficult 

to handle large-scale data, lacking automation, and being limited by prior knowledge. 

In response to these issues, this paper proposes a new method for identifying differential 

genes based on machine learning. By extracting gene sequence features from different 

species using various methods, establishing gene classification models, and conducting 

interpretable analyses, we were able to identify differential genes between species. We 

have proven the effectiveness and practicality of the proposed method in identifying 

differential genes. In the future, we expect this method to be widely applied in genomics 

research and to provide new insights into biodiversity, evolutionary relationships, and 

disease mechanisms. 
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