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Abstract. With the increasing popularity of mobile devices that support spatial 

positioning, numerous location-based service (LBS) systems have been put into 

place and widely adopted by users of mobile devices. Reverse nearest neighbor 

(RNN) queries are essential supporting techniques in these systems. A new and 

useful variant of RNN queries has emerged recently, known as reverse nearest 

neighbourhood concept for road networks (RNNH-RN), to discover the neigh-

bourhood that finds the query point is the nearest facilities among all other facil-

ities. However, existing research has primarily focused on spatial queries, and to 

the best of our knowledge, there is no technique available for computing queries 

that incorporate social network information. The questions people currently ask 

about road networks are not applicable to road social networks directly. In this 

paper, we introduce the reverse nearest neighbourhood query based on road so-

cial networks(RNNH-RS), where a neighbourhood is a set of at least m objects, 

ensuring that the maximum road network distance between any objects is at most 

d, and the objects within the neighbourhood have at least k, familiar acquaint-

ances. We validated the flexibility and effectiveness of the proposed query 

through experiments on a real-world road social network dataset.  

Keywords: Road social network, Reverse nearest neighbor, Social influence, 

Spatial databases. 

1 Introduction 

Many location-based service (LBS) systems, such as Baidu Maps and Google Maps, 

have been adopted and widely embraced by mobile users due to the growing use of 

mobile devices with GPS technology.An increasing number of individuals are utilizing 

these services, as these services facilitate the easy sharing, recording, and enhancement 

of their lifestyles. In these services, spatial queries have played a significant role. The 

reverse nearest neighbourhood query (RNNH) proposed by Nasser Allheeib in 2021 is 

a significant research direction in spatial queries and is intended to find a group of 

neighborhoods that is influenced by the query point. A neighbourhood is defined as a 

collection of at least m POIs such that the euclidean distance between any pair of these 

objects is at most d. RNNH-RN is the RNNH in road networks, and get the result neigh-
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borhoods based on road networks rather than Euclidean space. The relationship be-

tween any member and the RNNH-RN result neighbourhood is scaled solely based on 

the road network distance. This method is inaccurate in a case such as that shown in 

Figure 1. 
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Fig. 1. A motivating example. 

As shown in Fig.1, consider twelve students A to L shown as red circles, four schools 

q, f1, f2, f3 , where each school tends to attract students for enrollment. The edge between 

two student represents social relation of them. For the q, the neighborhoods NH1 and 

NH2 are the outputs of RNNH-RN. All students in these two neighborhoods are more 

likely to go to school q. Let us consider the student C, the reason why this student 

chooses to go to school q instead of school f3 is the distance of this student to the neigh-

bourhood NH1(the distance to the nearest student B inside the NH1) is less than the 

distance to f3. However, if there not exist any social relationship between student C and 

any member of the NH1 (for example, they do not know each other, are not friends, not 

colleagues, or not in any similar situations),the student C may be influenced by f3 more 

than NH1(such as f3 has better price or transportation), and chooses to go to school f3. 

This example motivates us to consider a novel type of query on RNNH, namely 

RNNH based on road- social networks (RNNH-RS), and to propose efficient processing 

algorithms. Specifically, the RNNH-RS  incorporates social relation compared to the 

RNNH-RN: Given point p of the RNNH-RS result neighbourhood NH-RS, the road 

network distance between NH-RS and p should be small enough, and at least k mem-

bers of the NH-RS have social relationships with p.   

Below we summarize the contributions we make in this paper: 

1. Introducing the idea of neighbourhoods in road social networks and formally out-

lining the Reverse nearest neighbourhood query based on road social networks (RNNH-

RS). 

2. We propose a basic algorithm to implement RNNH-RS. 

3. We propose an optimization algorithm based on an efficient road network index 

GT-NVD and an early termination strategy to complete query processing. 
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4. Providing a comprehensive empirical study to offer insights into the effectiveness 

and efficiency of our proposed algorithms. 

2 Related work 

Nasser first proposed Reverse Nearest Neighbourhood query (RNNH), but it only con-

siders queries in Euclidean space[1]. He proposed reverse nearest neighbourhood query 

on road networks, yet they don't account for social connectivity[2].Reverse query 

(RNN) finds interest points that have a given query point q as their nearest neighbor. 

The earliest paper proposing the Reverse Nearest Neighbor (RNN) query was published 

by F Korn in 2000, introducing an algorithm based on the R-tree to solve the RNN 

query problem [4]. Paper [5] presents an efficient method to handle RNN queries in 

arbitrary-dimensional spaces and provides performance analysis and experimental re-

sults to validate its effectiveness. It proposes an algorithm based on indexing and prun-

ing techniques to accelerate the execution of RNN queries [6]. The paper [7] investi-

gates efficient algorithms for RNN queries with arbitrary shape preferences. It proposes 

a method based on spatial partitioning and indexing techniques to handle RNN queries 

with complex shape preferences. The paper [8], published in 2007, introduces a novel 

query type known as reverse top-k query, along with the concept and algorithm of the 

query. Some existing works have also proposed methods for pruning top-k que-

ries[9][10][11][12]. 

Geosocial querying is an application method that combines geographic information 

with social interaction. It allows users to search, share, and communicate information 

about specific locations or geographic places on a map, typically through mobile appli-

cations or online platforms[13] [14][15].The paper [16] designs a time-constrained in-

cremental personalized proximity search by considering spatial, social, and temporal 

information to retrieve cohesive shared groups. The paper [17] investigates the problem 

of computing radius-bounded k-core, aiming to find communities that satisfy social and 

spatial constraints. The paper [18] introduces keyword queries on geosocial top-k road 

networks and geosocial skyline keyword queries. Some studies focus on finding com-

binations of relationships that are closely related[19][20][21] .  

3 Preliminaries 

 

In this paper, the road network is an undirected weighted graph 𝐺𝑟 =  (𝑉𝑟 , 𝐸𝑟  ), where 

𝑉𝑟  is a set of vertices, and 𝐸𝑟 = {(𝑣𝑟
𝑖 , 𝑣𝑟

𝑗
)|𝑣𝑟

𝑖 , 𝑣𝑟
𝑗

∈ 𝑉𝑟 ∧ 𝑣𝑟
𝑖 ≠ 𝑣𝑟

𝑗
} is a set of edges. Ver-

tex 𝑣𝑟
𝑖𝜖𝑉𝑟  represents an intersection or the endpoint of a road, and each edge 𝑒𝑟 =

(𝑣𝑟
𝑖 , 𝑣𝑟

𝑗
 )∈𝐸𝑟  represents a road segment that connects vertices 𝑣𝑟

𝑖  and 𝑣𝑟
𝑗
 and each edge 

𝑒𝑟 = (𝑣𝑟
𝑖 , 𝑣𝑟

𝑗
 ) has a weight (e.g., distance), which is a positive value. Given a start ver-

tex 𝑣𝑟
𝑖  and a destination vertex 𝑣𝑟

𝑗
, the sum of weights of individual edges on the short-

est path is referred to as the road network distance between 𝑣𝑟
𝑖  and 𝑣𝑟

𝑗
, denoted as 
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𝑑𝑖𝑠𝑡(𝑣𝑟
𝑖 , 𝑣𝑟

𝑗
 ) . A set of points of users 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛} , a set of facilities 𝐹 =

{𝑓1, 𝑓2, … , 𝑓𝑛}, a query facility 𝑞 ∈ 𝐹 reside in 𝐺𝑟 . 

 

Table 1. Symbols and descriptions 

Symbol Meaning 

𝐺𝑟(𝐺𝑠) Road network (social network) 

𝑑𝑖𝑠𝑡(𝑣𝑟
𝑖 , 𝑣𝑟

𝑗
 ) The network distance of the shortest path between 𝑣𝑟

𝑖  and 𝑣𝑟
𝑗
 

F，P A set of facility points, a set of user points 

𝑑 
The road network distance between a member point 𝑝𝑖 and the near-

est member point 𝑝𝑗 in the group does not exceed 𝑑 

𝑚 Number of users in the neighborhood 

𝑘 Each user in the neighborhood can have up to 𝑘 unfamiliar people 

𝑁𝑉𝐶𝑞 Voronoi unit of query point 𝑞 

𝑑𝑅𝑆𝐻(𝑝𝑖 , 𝑁𝐻 − 𝑅𝑆) Minimum distance between point 𝑝𝑖  and neighbourhood 𝑁𝐻 − 𝑅𝑆 

𝑁𝐻 − 𝑅𝑆𝑖 Neighborhood composed of a set of points 

𝑣𝑙𝑖𝑠𝑡 𝑆𝑒𝑡 𝑜𝑓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑢𝑠𝑒𝑟 𝑝𝑜𝑖𝑛𝑡𝑠 

 

Social network is modeled as an unweighted and undirected graph𝐺𝑠 =  (𝑉𝑠, 𝐸𝑠  , 𝐿𝑠), 

where 𝑉𝑠 is the set of vertices (representing users), 𝐸𝑠 ⊆ 𝑉𝑠 × 𝑉𝑠 is the set of edges (i.e., 

social relationships), and 𝐿𝑠 is a mapping set defined on the vertices 𝑣𝑠 in 𝑉𝑠. 𝐿𝑠( 𝑣𝑠) 

specifies the attributes of 𝑣𝑠 (e.g., location). In our definition, 𝐿𝑠( 𝑣𝑠) provides a map-

ping of each user's location in the road network. 

A road-social network is a pair of graphs 𝐺 = (𝐺𝑟，𝐺𝑠), where 𝐺𝑟  represents the 

road network and 𝐺𝑠 represents the social network. Each vertex 𝑣𝑠
𝑖 ∈ 𝐺𝑠 is associated 

with a vertex 𝑣𝑟
𝑖  or a spacial point 𝑠𝑝𝑖  in 𝐺𝑟 , indicating that the user 𝑣𝑠

𝑖  is currently in 

location 𝑣𝑟
𝑖  or 𝑠𝑝𝑖 , i.e., 𝐿𝑠( 𝑣𝑠

𝑖) =  𝑣𝑟
𝑖  𝑜𝑟 𝑠𝑝𝑖. 

In the road social network, there are two types of objects with geographic and social 

labels, namely, the set of facility points 𝐹 and the set of user points 𝑃. The geographic 

locations of these user points and facility points correspond to nodes in 𝐺𝑟 , and the 

social relationships of user points correspond to edges in 𝐺𝑠. 

Definition 1. Network Voronoi cell of query q: Given a graph 𝐺,a set of facility 

points 𝐹, a query facility point 𝑞 ∈ 𝐹, and a set of user points 𝑃, n Network Voronoi 

cell of  𝑞, denoted as 𝑁𝑉𝐶𝑞, consists of  𝑝𝑖 (𝑝𝑖 ∈ 𝑃) which considers the query facility 

𝑞 as the nearest facility based on the road network distance (e.g., shortest-path).i.e., 

∀𝑝𝑖 ∈ 𝑁𝑉𝐶𝑞，𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞) ≤ 𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑓), ∀𝑓 ∈ 𝐹\𝑞. 

We divide the road network graph into various small regions; each region contains 

a set of road segments that share the nearest facility points. This structure is referred to 
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as the Network Voronoi Diagram (NVD). In the NVD, these small regions are called 

network Voronoi cells, and the facility points are generating points. Consider the da-

taset given in Figure 2. The network Voronoi cell for query point 𝑞  is 

{𝑝4, 𝑝5, 𝑝6, 𝑝11, 𝑝12, 𝑝13, 𝑝14}. Given its structure and definition, several fundamental 

properties of NVD can be derived. First, the Voronoi diagram has many network Vo-

ronoi cells. Each network Voronoi cell has a generating point located at the center of 

the network Voronoi cell. Considering other properties of the Voronoi diagram, if point 

𝑝𝑖  is in the network Voronoi cell of 𝑞, then the distance from point 𝑝𝑖  to point 𝑞 is not 

greater than the distance from point 𝑝𝑖  to other network Voronoi cells. For more prop-

erties, the distance from any point on the edge of the network Voronoi cell to the query 

point is equal to the distance to another generating point adjacent to the network Voro-

noi cell. 
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Figure. 2. Voronoi diagram of query point q 

Definition 2. Road-Social Neighbourhood: Given graphs 𝐺, three parameters 𝑚 ,𝑑 

and 𝑘, a Road-Social neighbourhood refers to a region consisting of at least 𝑚 member 

points of 𝐺𝑠 where (1) the road networks distance between a member point 𝑝𝑖  and the 

nearest member point 𝑝𝑗 in the region does not exceed 𝑑 ;(2) at least 𝑘(𝑘 <= 𝑚) mem-

ber points have social relationships with 𝑝𝑖  . The road-social neighbourhood is denoted 

by 𝑁𝐻 − 𝑅𝑆(𝑑, 𝑚, 𝑘). 

The neighbourhood 𝑁𝐻 − 𝑅𝑆(𝑑, 𝑚, 𝑘) =  {𝑝1, 𝑝2, … , 𝑝𝑚} ∈ 𝑃  represents a neigh-

bourhood with 𝑚 members and a distance parameter of 𝑑, where 𝑑 represents the max-

imum road distance between the member points of 𝑁𝐻 − 𝑅𝑆(𝑑, 𝑚, 𝑘), 𝑘 represents 

that in the neighborhood, each user point can have at most k unfamiliar member points. 

For simplicity, we use 𝑁𝐻 − 𝑅𝑆 to represent 𝑁𝐻 − 𝑅𝑆(𝑑, 𝑚, 𝑘). 

To illustrate the concept of road-social neighbourhoods, Figure 3 gives an example 

of road-social neighbourhoods queries in spatial databases. Figure a is a road network, 

and Figure b is a social network diagram. The positions of user points on the social 

network will be projected onto the road network. In the figure, there are three road-

social neighbourhoods {𝑁𝐻 − 𝑅𝑆1, 𝑁𝐻 − 𝑅𝑆2, 𝑁𝐻 − 𝑅𝑆3}, with a minimum number 

of m for each neighbourhood of 3; The distance between each user point and the nearest 

point in the neighbourhood is less than 3; And each user point knows at least 2 other 

users in the same neighborhood. 

Definition 3. Road-Social Neighbourhood Distance: Given a Road-Social Neigh-

bourhood 𝑁𝐻 − 𝑅𝑆(𝑑, 𝑚, 𝑘) and a point 𝑝𝑖 , where 𝑝𝑖  is a point of user or facility, the 
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road-social neighbourhood distance refers to the distance on the road network between 

the point 𝑝𝑖  and the closest point in the road-social neighbourhood 𝑁𝐻 − 𝑅𝑆(𝑑, 𝑚, 𝑘). 

It is denoted by 𝑑𝑅𝑆𝐻(𝑝𝑖 , 𝑁𝐻 − 𝑅𝑆). 

In Figure 3, where 𝑑𝑅𝑆𝐻(𝑝12, 𝑁𝐻 − 𝑅𝑆1) is the distance between 𝑝12 and the nearest 

member point 𝑝13 of 𝑁𝐻 − 𝑅𝑆1, that is, the road network distance between 𝑝12  and 

𝑝13. 

Definition 4. Reverse Spatial-Range Nearest Neighbourhood Query in Road So-

cial Networks （𝐑𝐍𝐍𝐇 − 𝐑𝐒 ） : Given graphs 𝐺, a set of facility points 𝐹, a set of 

user points 𝑃 , a query point 𝑞 ∈ 𝐹 , three constraints 𝑑, 𝑚 and 𝑘 , a reverse nearest 

neighbourhood query on road-social network (RNNH-RS) return all road-social neigh-

borhoods {𝑁𝐻 − 𝑅𝑆𝑖}  such that: (i) the road network distance of a point 𝑝𝑗 ∈

𝑁𝐻 − 𝑅𝑆𝑖  to its nearest neighbour point 𝑝𝑘 ∈ 𝑁𝐻 − 𝑅𝑆𝑖 is less than or equal to 𝑑,i.e., 

dist(𝑝𝑗，𝑝𝑘) < 𝑑 ;(ii) ∀𝑝𝑗 ∈ 𝑁𝐻𝑖，𝑑𝑅𝑆𝐻(𝑝𝑗，𝑁𝐻 − 𝑅𝑆𝑖) ≤ dist(𝑝𝑗，𝑓𝑝𝑗) , where 

𝑓𝑝𝑗 is the nearest facility point to 𝑃𝑗 in 𝐹, and dist(𝑝𝑗，𝑓𝑝𝑗) is the road network dis-

tance; (iii) |𝑁𝐻 − 𝑅𝑆𝑖| ≥ m;(iv) 𝑁𝐻 − 𝑅𝑆𝑖  identifies the query facility point 𝑞 as the 

nearest facility point among all facility points in  𝐹 , i.e., 𝑑𝑅𝑆𝐻(𝑞，𝑁𝐻 − 𝑅𝑆𝑖) ≤
𝑑𝑅𝑆𝐻(f，𝑁𝐻 − 𝑅𝑆𝑖), 𝑓 ∈ 𝐹\𝑞; (v) ∀𝑝𝑗 ∈ 𝑁𝐻 − 𝑅𝑆𝑖 , there exist at least 𝑘 elements of 

𝑁𝐻 − 𝑅𝑆𝑖  , 𝑝𝑗1
, 𝑝𝑗2

, 𝑝𝑗2
, … , 𝑝𝑗𝑘

 which have social relationships with 𝑝𝑗  respectively , 

i.e., there is edge between 𝑝𝑗  and each 𝑝𝑗𝑖
(1 ≤ 𝑖 ≤ 𝑘)  in the 𝐺𝑠 , it is denoted by 

RNNH − RS(𝑞, 𝑑, 𝑚, 𝑘 , 𝑃, 𝐹). 

Here, 𝑘  represents the degree of social relationships among group members. In 

RNNH − RS, a smaller 𝑘 will make users in the 𝑁𝐻 − 𝑅𝑆𝑖  less familiar, while a larger 

𝑘 will make users in the 𝑁𝐻 − 𝑅𝑆𝑖 more familiar with each other. 
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Figure. 3. An example of an RNNH-RS query 

Put simply, the RNNH-RN query is a snapshot query that retrieves road-social neigh-

bourhoods {𝑁𝐻 − 𝑅𝑆𝑖} that consider the query point as the nearest of all the other 

facilities in graphs 𝐺𝑟  and 𝐺𝑠. In Figure 3, the RNNH-RS query is initiated by q with a 

distance constraint d set to 3, the minimum number of user points in the road-social 

neighbourhood m set to 3, and the social constraint k set to 2. It will return the neigh-

bourhood set {𝑁𝐻 − 𝑅𝑆1, 𝑁𝐻 − 𝑅𝑆2, 𝑁𝐻 − 𝑅𝑆3} composed of red user points above. 

 



 Reverse Nearest Neighbourhood 7 

4 Algorithm 

This section explains our solution and the method used for processing a reverse nearest 

neighbourhood query based on road social networks (RNNH-RS) query. In response to 

the problem characteristics of RNNH-RS queries, this section first proposes a baseline 

method based on Dijkstra algorithm, and then proposes an optimization algorithm based 

on GT-NVD index. 

4.1 Baseline method 

This section introduces a baseline algorithm for computing road network distances 

based on Dijkstra's algorithm. 

Data preprocessing

Filtering phase

Verification phase

Result

 

Figure. 4.  Baseline algorithm flowchart 

From Figure 4, it can be seen that the baseline algorithm is divided into three stages: 

data preprocessing, filtering, and verification.  

Data preprocessing phase.   

In the data preprocessing phase, adjacency tables were created for social networks 

and road networks respectively, in order to more effectively manage data and improve 

algorithm efficiency. Given the wide distribution of user points in social networks, the 

algorithm standardizes their longitude and latitude coordinates into a two-dimensional 

plane space, and maps the position of each user point to the nearest intersection or road 

segment in the road network, in order to calculate the road distance. When the data 
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processing of the road social network dataset is completed, the baseline algorithm en-

ters the filtering phase. 

 

Filtering phase.   

The aim of the filtering process’s goal is to prune and optimise the processing of the 

data point, and then remove a large number of meaningless points. In this phase, we 

prune the search space instead of accessing all the objects and nodes. In the filtering 

stage, we use the Voronoi diagram to trim some meaningless points. In the Voronoi 

diagram, all user points are closer to the query point q than other facility points. There-

fore, there is no need for a separate verification procedure because every object in 𝑁𝑉𝐶𝑞 

(Nearest Voronoi Cell to q) has to be a component of the RNNH-RS response. If 𝑁𝑉𝐶𝑞 

is empty, then q does not have a reverse nearest neighbor neighborhood. 

 Verification phase.  

 For the verification phase, the neighbourhood 𝑁𝐻 − 𝑅𝑆 must satisfy the social con-

straint 𝑘. To ensure that each selected user point 𝑝𝑖  has good social connectivity with 

the user points in the neighbourhood 𝑁𝐻 − 𝑅𝑆𝑖 , we propose the following conditions 

based on the paper on social spatial ordering. 

Definition 5. Familiarity conditions within the neighbourhood (FNH): When ex-

tracting a user point 𝑝𝑖  from the search space, we only choose the vertex if it satisfies 

the FNH. We add the vertex to 𝑁𝐻 − 𝑅𝑆𝑖 . FNH is described in formula 2 below. 

To effectively consider the social network, this condition assumes that 𝑝𝑖  is added 

to 𝑁𝐻𝑖  first, and then it checks whether the social connectivity of the new group 

𝑁𝐻 − 𝑅𝑆𝑖 ∪ 𝑝𝑖 meets the standard 𝑘.  

𝐹(𝑁𝐻 − 𝑅𝑆𝑖 ∪ 𝑝𝑖) =  
1

𝑁𝐻 − 𝑅𝑆𝑖 ∪ 𝑝𝑖

∑ |𝑁𝑝𝑖
|

𝑝𝑖∈𝑁𝐻−𝑅𝑆𝑖∪𝑝𝑖

(1) 

Specifically, let 𝐹(𝑁𝐻 − 𝑅𝑆𝑖 ∪ 𝑝𝑖) represent the internal familiarity of the neighbor-

hood, where 𝑁𝑝𝑖
 is the neighbor set of 𝑝𝑖  in 𝑁𝐻 − 𝑅𝑆𝑖 ∪ 𝑝𝑖 . For each user point in 

𝑁𝐻 − 𝑅𝑆𝑖 ∪ 𝑝𝑖 , internal familiarity denotes the average number of users known in 

𝑁𝐻 − 𝑅𝑆𝑖 ∪ 𝑝𝑖. If vertex 𝑝𝑖  satisfies the following 𝐹𝑁𝐻 criteria, it is allowed to be se-

lected and added to 𝑁𝐻 − 𝑅𝑆𝑖: 

𝐹(𝑁𝐻 − 𝑅𝑆𝑖 ∪ 𝑝𝑖) ≥ |𝑁𝐻 − 𝑅𝑆𝑖 ∪ 𝑝𝑖| −
𝑡(|𝑁𝐻 − 𝑅𝑆𝑖 ∪ 𝑝𝑖|)

𝑚 − 1
− 1 (2) 

Here, the hat symbol  𝑡 denotes a filtering parameter, with an initial value set to 𝑡 =
𝑚 − 𝑘 − 1. 

In layman's terms, when 𝑡 = 𝑚 − 1, the neighbourhood allows all users to be unfa-

miliar with each other. In this scenario, distance-based search is the optimal strategy. 

In fact, in this case, the FNH condition becomes 𝐹(𝑁𝐻 − 𝑅𝑆𝑖 ∪ 𝑝𝑖) ≥  −1. On the 

other extreme, when 𝑡 = 0 , the FNH condition becomes 𝐹(𝑁𝐻 − 𝑅𝑆𝑖 ∪ 𝑝𝑖) ≥
|𝑁𝐻 − 𝑅𝑆𝑖 ∪ 𝑝𝑖| − 1, and every user in 𝑁𝐻 − 𝑅𝑆𝑖 ∪ 𝑝𝑖  needs to be acquainted with all 

users in 𝑁𝐻 − 𝑅𝑆𝑖 ∪ 𝑝𝑖 .It is worth noting that FNH introduces a filtering parameter 𝑡 

rather than directly incorporating 𝑘 to correctly handle values of 𝑡 within the range of 

0 < 𝑡 < 𝑚 − 1[19]. 
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The baseline algorithmic explanation is presented in Algorithm 1. Here, we demon-

strate the procedure with an example. 

 

 

For example, in Figure 3, an 𝑅𝑆 − 𝑅𝑁𝑁𝐻 query is initiated by 𝑓2, where 𝑘 = 2，𝑚 =

3，𝑑 = 3. Initially, �̂� = 0. Since 𝑝16 is the vertex with the minimum spatial distance 

to 𝑓2, and 𝐹(𝑁𝐻 − 𝑅𝑆𝑖 ∪ 𝑝16) =
0

1
≥ 1 −

0×1

2
− 1 satisfies FNH, 𝑁𝐻 − 𝑅𝑆1 is initial-

ized, and 𝑝16 is added to 𝑁𝐻 − 𝑅𝑆1. 𝑝16 is marked as visited. Then, a range query is 

performed on 𝑝16  with a range of 𝑑 , resulting in the query results 

{𝑝15, 𝑝13, 𝑝14, 𝑝12, 𝑝2}, which are placed in the 𝑣𝐿𝑖𝑠𝑡 queue. Next, the algorithm selects 

Algorithm 1: Baseline 

Input： User points，  F Facility points，query point q ∈ F，Three constraint con-

ditions (𝑑  is distance constraint, 𝑚  is cardinality constraint, and 𝑘  is social con-

straint) 

Output： Neighbourhood 𝑁𝐻 − 𝑅𝑆𝑖 set 

1. Calculate 𝑁𝑉𝐶𝑞 (user point closest to 𝑞)// Filtering phase 

2. Put it into pile h 

3. while  h is not empty  do 

4.            de-heap an entry 𝑝𝑖; 

5.            if  isNotVisited(𝑝𝑖) then 

6.                mark 𝑝𝑖  as visited; 

7.                if   Checkfamiliarity(𝑝𝑖) then// Verification phase 

8.                      initialize 𝑁𝐻 − 𝑅𝑆𝑖 ← {𝑝𝑖}; 

9.                      𝑑𝐻(𝑞, 𝑁𝐻 − 𝑅𝑆𝑖) ← dist(q, 𝑝𝑖) ; 

10.                      vList ← Range(𝑝𝑖 , 𝑑); 

11.                      while   vList is not empty   do 

12.                                  de-heap an entry 𝑝𝑗; 

13.                                  if  𝑝𝑗 ∈ 𝑁𝑉𝐶𝑞 ∧  Checkfamiliarity(𝑝𝑗)  then 

14.                                           mark 𝑝𝑗 as visited ; 

15.                                        𝑁𝐻 − 𝑅𝑆𝑖 ← append(𝑝𝑗); 

16.                                           vList ← Range(𝑝𝑗 , 𝑑); 

17.                                 else if  dist(𝑝𝑗 , 𝑁𝐻 − 𝑅𝑆𝑖) ≤ dist(𝑝𝑗 , 𝑓𝑝𝑗
)  then 

18.                                        if 𝑑𝐻(𝑞, 𝑁𝐻 − 𝑅𝑆𝑖) ≤ dist(𝑝𝑗 , 𝑓𝑝𝑗
) ∧

 Checkfamiliarity(𝑝𝑖)  then 

19.                                              𝑁𝐻 − 𝑅𝑆𝑖 ← append(𝑝𝑗); 

20.                                              vList ← Range(𝑝𝑗 , 𝑑); 

21.                                              mark 𝑝𝑗 as visited ; 

22.                       if    |𝑁𝐻 − 𝑅𝑆𝑖| ≥ m  then 

23.                              RNNH-RS← append(𝑁𝐻 − 𝑅𝑆𝑖); 

24.   return   Neighbourhood 𝑁𝐻 − 𝑅𝑆𝑖 set ; 
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the user point 𝑝15 from the list and calculates 𝐹(𝑁𝐻 − 𝑅𝑆1 ∪ 𝑝15) =
0

2
< 2 − 1, which 

does not satisfy FNH. Therefore, 𝑝15 is marked and discarded. 

The algorithm proceeds to check the next point, 𝑝13 , and calculates 𝐹(𝑁𝐻1 ∪

𝑝13) =
1

2
× 2 = 1 ≥ 2 −

0×2

2
− 1 . Since 𝑝13  is in 𝑁𝑉𝐶𝑞 , it is added to 𝑁𝐻 − 𝑅𝑆1 , 

marked as visited, and then a range query is performed on 𝑝13 with a range of 𝑑. The 

query results {𝑝16, 𝑝15, 𝑝14, 𝑝12, 𝑝2} are added to the 𝑣𝐿𝑖𝑠𝑡 queue, and the list 𝑣𝐿𝑖𝑠𝑡 is 

updated. The algorithm then selects 𝑝14  from the 𝑣𝐿𝑖𝑠𝑡 , calculates 𝐹(𝑁𝐻 − 𝑅𝑆1 ∪

𝑝14) =
1

3
× 6 = 2 ≥ 3 −

0×3

2
− 1 . Since 𝑝14  is in 𝑁𝑉𝐶𝑞 , it is added to 𝑁𝐻 − 𝑅𝑆1 , 

marked as visited. Next, retrieve 𝑝12 and 𝑝2 from the list 𝑣𝐿𝑖𝑠𝑡 in sequence, and find 

that neither satisfies FNH, so discard them. At this point, 𝑁𝐻 − 𝑅𝑆1 contains 3 user 

points, meeting the condition, so the first neighbourhood 𝑁𝐻 − 𝑅𝑆1 for query point 𝑞 

is generated. 

4.2 Optimization method 

To solve the RNNH-RS query problem, we first proposes a query method based on the 

Dijkstra algorithm. However, when querying two points that are far apart, its query 

efficiency is quite low. In this section, we propose a new index called GT-NVD, which 

is composed of the G-tree index and Network Voronoi Diagrams (NVD), aiming to 

further enhance query speed. Checking each possible user point based on social con-

straints is expensive. Therefore, in order to effectively prune unnecessary search space, 

the upper bound of social constraints for each possible user point growing from each 

road-social neighbourhood is obtained in this section, and an early termination strategy 

is proposed. And proposed an optimization algorithm called query optimization meth-

ods(QOM). 

Index scheme.  

As depicted in Figure 6, the backbone of GT-NVD is a G-tree, which recursively 

divides the road network into subnetworks. We employ state-of-the-art hierarchical tree 

structures to construct GT-NVD. Initially, the road network 𝐺𝑟  is set as the root and 

divided into f equally sized subgraphs, each serving as a child node of the root.Each 

subgraph of the road network, denoted as 𝐺𝑟
𝑖 = (𝑉𝑟

𝑖, 𝐸𝑟
𝑖 , 𝐵𝑟

𝑖), is represented by a tree 

node 𝑇𝑖 ,where 𝑉𝑟
𝑖 represents a set of vertices in graph 𝐺𝑟

𝑖 , 𝐸𝑟
𝑖  represents a set of edges 

in graph 𝐺𝑟
𝑖 ,and 𝐵𝑟

𝑖  is a set of boundary vertices.Each tree node is associated with a 

Network Voronoi Cell (NVC), which is constructed to partition the road network based 

on the locations of road network nodes within the road network 𝐺𝑟
𝑖 .The NVC is a data 

structure that partitions 𝐺𝑟
𝑖  into disjoint regions, such that each region corresponds to a 

specific facility point 𝑓 ∈ 𝐹  and the set of user points 𝑝 ∈ 𝑃 with f as their nearest 

neighbor(NN). 

Figure 5 illustrates an example of the NVD constructed based on 𝐹 =
{𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5}.The road network 𝐺𝑟

𝑖  is partitioned into 5 Voronoi network cells, with 

each NVC containing a facility point and the nearest user point to the facility point. By 
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utilizing the NVC, the nearest facility point 𝑓 ∈ 𝐹 for any user point 𝑝 ∈ 𝑃 can be ob-

tained. The nearest facility point for user point 𝑝1 is 𝑓2,as 𝑝1 belongs to the NVC of 𝑓2. 

Therefore, the non-leaf node 𝑇𝑖  of GT-NVD is represented as 

(𝐺𝑟
𝑖 , 𝑃𝑡, 𝐵𝑖 , 𝑁𝑁𝑖),where 𝐺𝑟

𝑖  is the subgraph indexed by 𝑇𝑖 , 𝑃𝑡 is a set of pointers point-

ing to the child nodes of 𝑇𝑖 , 𝐵𝑖  is a set of boundary points, and 𝑁𝑁𝑖 associates each 

𝑏 ∈ 𝐵𝑖  with the corresponding nearest neighbors (NN) of the NVC. For instance, in 

Figure 6, for the tree node 𝑇1,𝐵1 = {𝑝11}.According to NVC𝑓3
,it is known that the near-

est neighbor (NN) of 𝑝11 is 𝑓3,so 𝑁𝑁𝑝11
= 𝑓3 is stored in 𝑁𝑁1.The leaf node 𝑇𝑗 is rep-

resented as (𝐺𝑟
𝑗
, 𝐵𝑗 , 𝑉𝑟

𝑗
, 𝑁𝑁𝑗),where 𝑉𝑟

𝑗
 is the set of vertices in 𝐺𝑟

𝑗
, 𝑁𝑁𝑗 associates each 

vertex 𝑣 ∈ 𝑉𝑟
𝑖 with the corresponding nearest neighbors (NN), and the remaining ele-

ments are the same as those in non-leaf nodes. 
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Figure. 5. Illustration of NVD structures. 
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(a) Recursive road network partition by G-tree                                  (b) GT-NVD 

Figure. 6. GT-NVD. 

In summary, given two vertices (𝑢, 𝑣), to calculate 𝑑𝑖𝑠𝑡(𝑢, 𝑣). If (𝑢, 𝑣) is in the same 

leaf node, we first calculate their minimum common ancestor and all vertices on the 

path from the leaf node containing u to the leaf node containing v, then use dynamic 

programming to compute 𝑑𝑖𝑠𝑡(𝑢, 𝑣). If (𝑢, 𝑣) are not in the same leaf node, there are 

two cases: if the path from u to v does not include vertices outside the leaf nodes, we 

directly calculate the shortest network distance using the Dijkstra algorithm, which is 

efficient enough due to the small size of leaf node subgraphs. If the shortest path from 
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u to v includes vertices not in the same leaf node as (𝑢, 𝑣), then the shortest network 

distance between u and v must involve two boundaries. We calculate it by adding the 

distance from u to the boundary and the distance from v to the boundary. 

So the GT-NVD index can be used to calculate the shortest path on the road network, 

reducing the time required to calculate the distance between two points; When calcu-

lating the distance between user point 𝑝𝑖  and his nearest neighbor, the NN in the index 

can also be directly referenced for calculation, which improves the calculation speed. 

Early termination strategy.   

The optimization method also proposes an upper bound on the social intimacy of 

each possible neighbourhood growing from 𝑣𝑙𝑖𝑠𝑡, in order to effectively prune unnec-

essary search space. Every feasible neighbourhood cannot satisfy social restrictions if 

the upper bound shows that on average, each user knows less than 𝑘 other user points. 

Therefore, when the following conditions are met, the algorithm stops processing 

𝑁𝐻 − 𝑅𝑆𝑖: 

Theorem 1: Given a road-social neighbourhood 𝑁𝐻 − 𝑅𝑆𝑖 to be processed and a set 

𝑣𝑙𝑖𝑠𝑡 of candidate user points, if the upper bound Ub of the social intimacy of neigh-

bourhood 𝑁𝐻 − 𝑅𝑆𝑖 is less than 𝑘, the processing is stopped and the road-social neigh-

bourhood 𝑁𝐻 − 𝑅𝑆𝑖 is discarded. 

Proof. Specifically, the edges in any solution growing from 𝑁𝐻 − 𝑅𝑆𝑖  can be di-

vided into three categories: 1) the set of edges 𝐸𝑛  connecting any two vertices in 

𝑁𝐻 − 𝑅𝑆𝑖  , 2) the edges of edges 𝐸𝑣 connecting any two vertices selected from 𝑣𝑙𝑖𝑠𝑡, 

and 3) the set of edges 𝐸𝑛𝑣 connecting any two vertices in 𝑁𝐻 − 𝑅𝑆𝑖  and the vertices 

selected from 𝑣𝑙𝑖𝑠𝑡. 

Formula 3 can be derived, where 𝑁𝑝𝑖
𝐼 is the set of acquainted neighbors of 𝑝𝑖  in 

𝑁𝐻 − 𝑅𝑆𝑖  . 

|𝐸𝑛| =
1

2
∑ |𝑁𝑝𝑖

𝐼 |
𝑝𝑖∈𝑁𝐻−𝑅𝑆𝑖

(3) 

Since the selected vertices in 𝑣𝑙𝑖𝑠𝑡 is not clear now, a good way is to find an upper 

bound on |𝐸𝑣|, the following formula 4. 

𝐸𝑣𝑈𝑏 =
1

2
(𝑚 − |𝑁𝐻 − 𝑅𝑆𝑖|)𝑚𝑎𝑥𝑝𝑖∈𝑣𝑙𝑖𝑠𝑡|𝑁𝑝𝑖

𝑣𝑙𝑖𝑠𝑡| (4) 

In formula 4 𝑁𝑝𝑖
𝑣𝑙𝑖𝑠𝑡  is the set of acquainted neighbors of 𝑝𝑖  in 𝑣𝑙𝑖𝑠𝑡. 𝐸𝑣𝑈𝑏  is an upper 

bound because the vertex with the maximum degree in 𝑣𝑙𝑖𝑠𝑡  is identified, and 

(𝑚 − |𝑁𝐻 − 𝑅𝑆𝑖|) vertices are selected from 𝑣𝑙𝑖𝑠𝑡. 

Similarly, the upper bound of |𝐸𝑛𝑣| , 𝐸𝑛𝑣𝑈𝑏, is described in formula 5 as follows. 

𝐼𝑛𝑡𝑒𝑟𝐸𝑑𝑔𝑒(𝑝𝑖) is the set of edges connecting 𝑝𝑖  in 𝑁𝐻 − 𝑅𝑆𝑖 to any vertices in 𝑣𝑙𝑖𝑠𝑡. 

𝐸𝑛𝑣𝑈𝑏 = ∑ |𝐼𝑛𝑡𝑒𝑟𝐸𝑑𝑔𝑒(𝑝𝑖)|
𝑝𝑖∈𝑁𝐻−𝑅𝑆𝑖

(5) 

Notice that the number of edges in a feasible solution is half of the degree sum of all 

the vertices in the solution, where the degree of a vertex represents the number of ac-

quainted neighbors in the solution. Therefore, with the above three categories of edges, 

algorithm stops processing 𝑁𝐻 − 𝑅𝑆𝑖 when the following condition holds, 
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2

𝑝
(|𝐸𝑛| + 𝐸𝑣𝑈𝑏 + 𝐸𝑛𝑣𝑈𝑏) < 𝑘 (6) 

In the above condition, the average number of other users known by users in each road-

social neighbourhood is less than 𝑘. Algorithm stops processing 𝑁𝐻 − 𝑅𝑆𝑖  if every 

possible solution growing from 𝑁𝐻 − 𝑅𝑆𝑖  via the exploration of 𝑣𝑙𝑖𝑠𝑡 is not able to 

satisfy the Social constraint 𝑘. 

For the social graph with 𝑚 = 3  and 𝑘 = 2 in Figure 7, if 𝑁𝐻 − 𝑅𝑆1 =
{𝑒, 𝑓}, 𝑣𝑙𝑖𝑠𝑡 = {𝑐, 𝑑} , the pruning of social constraint degree stops processing 

𝑁𝐻 − 𝑅𝑆1  because 
2

3
(0 +

1

2
× 1 + 1) = 1 < 2 . In other words, under social con-

straints, moving any vertex from 𝑣𝑙𝑖𝑠𝑡 to 𝑁𝐻 − 𝑅𝑆1 will not produce a feasible solu-

tion. 

 

a

b

c

d

e

f

g

 

Figure. 7. An example of early termination. 

The following is the pseudocode for the QOM algorithm based on GT-NVD index and 

early termination strateg. 
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5 Experiments 

5.1 Experimental setup 

Dataset.  Our experiment studied the real-life social network Brightkite and the real 

road networks San Francisco Road Network(referred to as SF) , as well as the City of 

Algorithm 2:  QOM 

Input： User points，  F Facility points，query point q ∈ F，Three constraint con-

ditions (𝑑  is distance constraint, 𝑚  is cardinality constraint, and 𝑘  is social con-

straint) 

Output： Neighbourhood 𝑁𝐻 − 𝑅𝑆𝑖 set 

1. Initialize GT-NVD index 

2. Calculate 𝑁𝑉𝐶𝑞 (user point closest to 𝑞)// Filtering phase 

3. Put it into pile h 

4. while  h is not empty  do 

5.            de-heap an entry 𝑝𝑖; 

6.            if  isNotVisited(𝑝𝑖) then 

7.                mark 𝑝𝑖  as visited; 

8.                if   Checkfamiliarity(𝑝𝑖) then// Verification phase 

9.                      initialize 𝑁𝐻 − 𝑅𝑆𝑖 ← {𝑝𝑖}; 

10.                      𝑑𝐻(𝑞, 𝑁𝐻 − 𝑅𝑆𝑖) ← dist(q, 𝑝𝑖) ; 

11.                      vList ← Range(𝑝𝑖 , 𝑑); 

12.                      while   vList is not empty   do 

13.                                  de-heap an entry 𝑝𝑗; 

14.                                  if  𝑝𝑗 ∈ 𝑁𝑉𝐶𝑞 ∧  Checkfamiliarity(𝑝𝑗)  then 

15.                                           mark 𝑝𝑗 as visited ; 

16.                                        𝑁𝐻 − 𝑅𝑆𝑖 ← append(𝑝𝑗); 

17.                                           vList ← Range(𝑝𝑗 , 𝑑); 

18.                                 else if  dist(𝑝𝑗 , 𝑁𝐻 − 𝑅𝑆𝑖) ≤ dist(𝑝𝑗 , 𝑓𝑝𝑗
)  then 

19.                                        if 𝑑𝐻(𝑞, 𝑁𝐻 − 𝑅𝑆𝑖) ≤ dist(𝑝𝑗 , 𝑓𝑝𝑗
) ∧

 Checkfamiliarity(𝑝𝑖)  then 

20.                                              𝑁𝐻 − 𝑅𝑆𝑖 ← append(𝑝𝑗); 

21.                                              vList ← Range(𝑝𝑗 , 𝑑); 

22.                                              mark 𝑝𝑗 as visited ; 

23.                                        if    𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 < 𝑚 − 𝑘 − 1  then 

24.                                               Break;// Early termination strategy 

25.                       if    |𝑁𝐻 − 𝑅𝑆𝑖| ≥ m  then 

26.                              RNNH-RS← append(𝑁𝐻 − 𝑅𝑆𝑖); 

27.   return   Neighbourhood 𝑁𝐻 − 𝑅𝑆𝑖 set ; 
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San Joaquin Country Road Network(referred to as TG) and the City of Oldenburg(re-

ferred to as OL).Due to the global distribution of locations within social networks, we 

standardize the latitude and longitude coordinates of user locations in the social network 

into a two-dimensional plane. Subsequently, based on these coordinates, each user are 

mapped to the nearest intersection or road segment in the road network.We denote the 

road social network dataset composed of the social network Brightkite and road net-

work SF as BR+SF. Similarly, the road social network dataset composed of Brightkite 

and TG is represented as BR+TG. BR+OL denotes the road social network dataset 

composed of Brightkite and OL. The specific information of the dataset for road social 

networks is shown in Table 2 and Table 3. 
Table 2. Dataset details 

Name Vertices Edges 

BR 58228 428156 

SF 174956 397415 

TG 18263 23797 

OL 6104 7034 

Table 3. Detailed information table for road social networks 

Name User points Facility points 

BR+SF 58228 174956 

BR+TG 58228 18263 

BR+OL 58228 6104 

 

Algorithm.  As far as we know, the RNNH-RS problem on general road social net-

works has not been studied before. In this paper, we implement and evaluate a baseline 

algorithm 1 based on Dijkstra and a QOM algorithm 2 based on GT-NVD index and 

early termination strategy. We conducted experiments under different settings by var-

ying three parameters: the number of users in the neighbourhood (m), distance con-

straint (d), and social constraint (k).  
Table 4. RNNH-RS experimental parameter settings 

Parameter Range Default value 

𝑑 5-30 5 

𝑚 3-30 3 

𝑘 0-4 0 

 

All programs are implemented in standard C++ and compiled using g++ on Linux. 

5.2 Experimental results and analysis 

Effectiveness comparison.   

The experimental comparison in this section verified the effectiveness of reverse near-

est neighbourhood query based on road social networks(RNNH-RS) based on road so-

cial networks compared to reverse nearest neighbor queries (RNNH-RN) under road 

networks in road social networks. 
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Figures 8 and 9 illustrate the comparison of neighborhoods satisfying social relation-

ship constraints in the BR + TG dataset when the number of user points within the 

neighborhood, m, is set to 5, the neighbourhood distance, d, is set to 30, and different 

values of social constraint k are applied. The comparison is conducted between the 

RNNH-RS and the RNNH-RN. 

 
Figure. 8. The number of neighbourhoods of algorithm when varying k on the BR+TG dataset 

 
Figure. 9.   The number of neighborhoods that algorithm conforms to social relationships 

when varying k on the BR+TG dataset 

From Figure 8, it can be seen that as the social constraint k increases, that is, the number 

of people familiar to users in the neighbourhood increases, the number of neighbor-

hoods returned by RNNH-RS gradually decreases because the social constraint in-

creases, and the number of user points in the search space that meet the social constraint 
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decreases, resulting in fewer neighborhoods; However, RNNH-RN queries do not con-

sider the influence of social constraint k, resulting in an unchanged number of returned 

neighborhoods. 

In Figure 9, it can be seen that the number of neighborhoods that comply with the 

social relationship k is calculated in the neighborhoods returned by RNNH-RN and 

RNNH-RS. When considering the influence of social constraints, as k continues to in-

crease, the number of neighborhoods that comply with the social constraint k in the 

query returned by RNNH-RN decreases compared to the initial number returned in Fig-

ure 8; The number of neighborhoods returned by RNNH-RS remains unchanged com-

pared to the initial number returned in Figure 8, as RNNH-RS queries consider the 

influence of social relationships during computation. However, in the neighborhoods 

returned by RNNH-RN queries, very few neighborhoods that meet the social constraint 

k were found. This indicates that in the results of RNNH-RN queries, if users want to 

consider the impact of social interactions, and RNNH-RN cannot effectively solve the 

problem of solving user social relationships, the RNNH-RS algorithm provides a more 

effective way to solve this problem. So it has been proven that RNNH-RS is more ef-

fective than RNNH-RN. 

Efficiency comparison. 

Figure 10 compares the execution efficiency between Baseline Algorithm 1 and Op-

timized Algorithm 2 by varying the distance parameter d among member points within 

the neighborhood. The comparison is performed across three different datasets, with 

the default values of parameter m set to 3 and parameter k set to 2. 
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(a)BR+SF                                 (b)BR+TG                             (c)BR+OL  

Figure. 10.  Performance comparison of changing parameter d on different datasets 

We evaluated the performance of RNNH-RS queries on real and synthetic datasets, 

setting the value of d to 5, 10, 15, 20, 25, and 30. As shown in the figure 10, we draw 

the following conclusions: The optimized RNNH-RS algorithm has a much faster av-

erage processing time compared to the basic RNNH-RS algorithm. As d increases, the 

query time for both algorithms gradually increases. However, the optimized algorithm 

always consumes less time than the baseline algorithm, indicating that the larger the 

distance constraint d, the more objects can be queried, and filtering is also more time-

consuming. However, Algorithm 2 based on GT-NVD index has a shorter running time, 

so it is more efficient than the baseline based on Dijkstra. 

Figure 11 compares the execution efficiency between Baseline Algorithm 1 and Op-

timized Algorithm 2 by varying the number of members within the neighborhood, de-

noted as m, across three different datasets. The default values of parameter d are set to 

5, and parameter k is set to 2. 
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(a)BR+SF                                (b)BR+TG                              (c)BR+OL  

Figure. 11.  Performance comparison of changing parameter m on different datasets 

We also investigated the impact of the minimum neighbourhood size (m). We found 

that in general, as the value of m increases, the number of neighbourhood queries de-

creases significantly, and the average neighbourhood size also decreases. This is be-

cause when the minimum neighbor count increases, neighborhoods with fewer neigh-

bors are excluded. As shown in the figure 11, with the increasing m , the query time for 

both the baseline algorithm and the optimized algorithm decreases gradually. However, 

Algorithm 2 consistently consumes less time than Algorithm 1. The execution time of 

Algorithm 2, based on the GT-NVD index, is shorter, making it more efficient than the 

baseline based on Dijkstra. 

Figure 12 compares the execution efficiency between Baseline Algorithm 1 and Op-

timized Algorithm 2 by varying the social constraint parameter, denoted as k, across 

three different datasets. The default values of parameter d are set to 5, and parameter m 

is set to 6. 
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(a)BR+SF                                 (b)BR+TG                                     (c)BR+OL  

Figure. 12.  Performance comparison of changing parameter k on different datasets 

As shown in Figure 12, it can be seen that optimization algorithm 2 based on GT-NVD 

index has much shorter execution time than baseline algorithm 1 based on Dijkstra un-

der different datasets and social constraint parameters k. As the value of k gradually 

increases, the running time of the algorithm also gradually decreases. This is because 

when k is 0, all users in the neighbourhood do not need to know each other. User points 

can be placed in the neighbourhood if they satisfy distance constraints, making it easier 

to find user points that meet the conditions. Each user point is checked less frequently 

by FNH. The larger the value of k, the more strict the familiarity check is performed, 

and there are fewer user points that meet social constraints. Moreover, each query in-

volves familiarity checks between users, and only those who meet the standards are 

included in the neighborhood. This leads to the fact that, after the query point has been 

filtered through the filtering phase to produce a candidate user point, the number of 

candidate points satisfying the conditions is small, and therefore fewer user points need 

to be detected afterwards, and the algorithm needs to be executed in less time. However, 

the optimized algorithm always has a shorter runtime than the baseline algorithm. Al-

gorithm 2 based on GT-NVD index has a shorter execution time and is more efficient 

than baseline algorithm 1 based on Dijkstra. 
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6 Conclusion 

In this paper, we define a practical query type, RNNH-RS query, to identify suitable 

neighboring objects for query points on road social networks. To the best of our 

knowledge, there have been no previous solutions for such scenarios in the context of 

reverse nearest neighbor queries on road social networks. We first introduce this prob-

lem and designed an algorithm, including efficient filtering and verification techniques, 

to reduce processing time. Furthermore, the optimized query performance has been im-

proved, requiring less time to find the optimal solution on road social networks. 

Experimental results in real-world road social networks significantly demonstrate 

that our approach is highly scalable and robust in terms of efficiency and effectiveness. 

Possible directions for future work include integrating other user attributes, such as user 

preferences, to filter active participants or to identify the neighbourhood communities 

that have the most significant impact on query points. 
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