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Abstract. To improve detection accuracy, it proposes cross-dimensional infor-

mation extraction and channel sharing (CESNet). The cross-dimensional infor-

mation extraction(CE) module uses max pooling and average pooling to 

strengthen important features in different dimensions, and then interacts across 

channels to focus on regions of interest. Channel sharing(CS) module of involu-

tion, group convolution and efficient channel attention for deep convolutional 

neural networks(ECA-Net). It can reduce the loss of semantic information caused 

by channel reduction during feature fusion. Experiments show that the proposed 

method can work on different networks. Among them, the accuracy of CESNet 

reaches 34.1% in box AP on the COCO dataset. And the detection performance 

of our network is better than other networks.  
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1 INTRODUCTION 

Object detection is a prerequisite for advanced vision tasks and has been applied in 

different tasks, such as intelligent video surveillance [1], content-based image detection 

[2], robot navigation [3], and augmented implementation[4]. However, traditional ob-

ject detection [5-7] needs manual extraction, design, and training. And it is difficult to 

obtain robust features. 

With the development of deep learning, object detection based on convolutional neu-

ral networks (CNN) has been widely used. It consists of three parts: backbone network, 

feature pyramid and detection head. The backbone network is used for the feature ex-

traction of images. The SSD [8] algorithm uses the VGG [9] as the backbone to extract 

features, which effectively reduces the parameters of the network. However, the net-

work depth is only 19 layers, it does not sufficiently extract the features and the detec-

tion accuracy of the algorithm is not high. YOLO-V3 [10] proposes the Darknet53, 

which can balance the accuracy of the algorithm and the number of parameters. Resnet 

[11] network proposes that the deeper the network, the more sufficient the image feature 

extraction is. Therefore, most algorithms use Resnet50 or Resnet101 to extract features. 

However, feature extraction of Resnet requires large capacity, slow running speed, and 
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is not suitable for mobile terminals. In order to transplant the object detection to the 

mobile terminal, Ghostnet [12] proposes to de-redundant features to achieve network 

lightweight. 

Feature pyramid is used to address the multi-scale object detection problem. Lin et 

al. [13] propose the FPN structure, which combines fine-grained spatial information 

from shallow feature maps and deep semantic information. PANet [14] fuses feature 

maps by upsampling and downsampling to reconstruct pyramids with enhanced spatial 

information. NAS-FPN [15] proposes to fuse feature maps of different scales by using 

neural network structure search. BiFPN[16] allows the network to learn the importance 

of different input features by weighted fusion of features. Recursive-FPN [17] feeds the 

fused feature map to the backbone network for feature fusion again. 

The detection head is used to achieve object classification and position regression. 

According to the detection head, the object detection algorithm is mainly divided into 

the one-stage algorithm and the two-stage algorithm. The two-stage algorithm first gen-

erates regions containing objects, and then classifies and regresses the candidate re-

gions. A typical two-stage algorithm such as Faster-RCNN [18], proposes an RPN net-

work to replace the traditional method, generates regional proposals, and then collects 

the input feature maps and proposals through Roi Pooling. After synthesising this in-

formation, the proposal feature maps are extracted and sent to subsequent fully con-

nected layers, which can determine the exact location of the object category and detec-

tion frame. The one-stage algorithm directly gives the final detection result, and there 

is no obvious step for generating candidate boxes. FCOS [19] is a one-stage object 

detection algorithm that predicts objects pixel by pixel. This algorithm completely 

avoids complex calculations related to anchors by eliminating pre-defined anchors, 

thereby reducing model complexity. Since the two-stage algorithm first generates can-

didate regions, and then classifies and refines the candidate regions, it has higher de-

tection accuracy and slower detection speed than the one-stage algorithm. 

To achieve both high detection speed and high detection accuracy in object detection 

models, many researchers have conducted in-depth studies on one-stage object detec-

tion models. Zhang et al. [20] proposed an IOU-aware Classification Score and Vari-

focal Loss, which improves the accuracy of FCOS by 2%. Zhou et al. [21] proposed 

replacing sparse pseudo-boxes with dense predictions as a unified and intuitive form of 

pseudo-label, and introduced a region selection technique, leading to further improve-

ments in the accuracy of FCOS. Liu et al. [22] proposed Joint Confidence Estimation 

and Task-Separation Assignment to address the issue of inaccurate selection and as-

signment in one-stage detectors, resulting in improved accuracy. 

Zhang et al. proposed ATSS [23], which is a one-stage algorithm. It uses Resnet to 

extract features, and reduces feature maps of different sizes to the same channels, then 

uses FPN for feature fusion. The deeper network not only increases the complexity of 

the network but also causes semantic information redundancy. The reduction of channel 

dimension also causes information loss. In this paper, we propose CESNet based on 

ATSS. The main contributions of the algorithm are as follows: 

(1) It proposes a CE module, which uses average pooling and max pooling to extract 

weights of different dimensions, and then fuses across channels. The method can 

strengthen the network's attention to important features and regions of interest. 
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(2) It proposes a CS module which consists of involution, group convolution and 

ECA-Net [24]. Involution can enhance channel independence and spatial invariance. 

By channel grouping, group convolution can reduce the number of parameters. Through 

the extraction of feature weights, ECA-Net strengthens important features. 

(3) The experimental results show that it has little effect on the complexity of the 

network, but significantly improves the network accuracy. 

2 RELATED WORK 

2.1 Attention Mechanism 

In recent years, the attention mechanism has been widely used to enhance the ability of 

feature extraction. It is divided into channel attention mechanisms, spatial attention 

mechanisms and hybrid attention mechanisms. The channel attention mechanism aims 

to show the correlation between different channels, strengthening the important features 

and suppressing useless information. Spatial attention aims to improve the feature rep-

resentation of key regions, enhance specific target regions of interest while weakening 

irrelevant background regions. The hybrid attention mechanism combines the channel 

and the spatial attention mechanism. 

In 2017, SENet [25] performs the Squeeze and Excitation operation to obtain the 

weights of different channels, and then multiply by the original feature map to get the 

final outputs. In 2018, CABM [26] adopted the parallel pooling of avg \& max, which 

proves that using average pooling and max pooling in parallel is better than using single 

pooling for detection. In 2019, SK-Net [27] introduced multiple parallel convolution 

kernel branches with different receptive fields to learn feature map weights at different 

scales, enabling the network to pick out more appropriate multi-scale features. In 2020, 

ECA-Net [24] uses one-dimensional convolution to replace the fully connected layer, 

and it realises the information interaction across channels. In 2021, Triplet [28] estab-

lishes the dependencies between dimensions through residual transformation and 

adopts three-branch cross-dimension interaction to achieve attention alignment. 

In this paper, we propose a CE module. It first performs average pooling and max 

pooling for the two dimensions, respectively. Then it adopts dual-branch cross-dimen-

sional interaction, which alleviates channel and space dependencies. 

2.2 Involution 

Convolution is widely used in convolutional neural networks due to its spatial invari-

ance and channel independence. However, the features between channels are independ-

ent and the parameters are not shared. There is a lot of redundancy in the features. 

Extracting rich semantic spatial information requires large convolution kernels, which 

increases a lot of parameters and the complexity of the network. To solve these prob-

lems, Li et al. [29] proposed an involution, which makes the involution spatial inde-

pendence and channel invariance by reversing the convolution. Compared with the con-

volutional neural network, it eliminates redundancy by sharing parameters between 



4  Qian Long.Gaihua.Wang.Kehong Li 

different channels and does not bring many parameters due to the increase of the con-

volution kernel. 

Therefore, this paper proposes a CS module to replace the original convolution. The 

input obtains the channel independence and spatial invariance of the vector through the 

involution operation. Then it uses the group convolution to reduce the number of pa-

rameters and uses the 1*1 convolution to reduce the channel dimension. Finally, chan-

nel attention is enhanced through ECA-Net. 

3 OUR APPROACH 

It proposes CESNet based on the ATSS [23] network. The network structure is shown 

in Fig.1. 

 

Fig. 1. Illustration of the proposed CESNet. 

CESNet consists of a backbone, neck and heads. The backbone adopts Resnet50 with 

attention, which adds the hybrid attention to layer2, layer3 and layer4. The specific 

structure of the backbone is shown in Table 1. The Neck uses a CS module, then uses 

FPN for feature fusion, and finally uses 3*3 convolution to eliminate redundancy. 

Heads are used for object detection to achieve object classification and regression. It 

adopts FocalLoss, GIoULoss and CrossEntropyLoss for classification loss, regression 

loss and confidence loss. 
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Table 1. The structure of Resnet50 and our backbone. 

Backbone Resnet50 Resnet50+attention 

Conv1 

7*7, 64, stide=2 7*7, 64, stide=2 

3*3, max, pool, stride=2 3*3, max, pool, stride=2 

Layer1 

[[1*1, 64], [[1*1, 64], 

[3*3, 64], [3*3, 64], 

[1*1, 256] * 3] [1*1, 256] * 3] 

Layer2 [[1*1,128], [3*3,128], [1*1,512]] *4 

[[3*3,128], [attention], [1*1,512]] *1 

[[1*1,128], [3*3,128], [1*1,512]] *3 

Layer3 [[1*1,256], [3*3,256], [1*1,1024]] *6 

[[1*1,256], [3*3,256], [attention], 

[1*1,1024]] *1 

[[1*1,256], [3*3,256], [1*1,1024]] 

*5 

Layer4 [[1*1,512], [3*3,512], [1*1,2048]] *3 

[[1*1,512], [3*3,512], [attention], 

[1*1,2048]] *1 

[[1*1,512], [3*3,512], [1*1,2048]] 

*2 

output layer1, layer2, layer3, layer4 layer1, layer2, layer3, layer4 

 

3.1 CE MODULE 

The CE module is shown in Fig.2. Let X donate the input feature map, its size is [B, C, 

H, W], where B, C, H, W indicates the batch size, channel size, spatial height, and width, 

respectively. 

 

Fig. 2. The proposed CE module. 
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First, the weights of different dimensions are extracted by max pooling and average 

pooling respectively. The expression of pooling is shown in Equations 1, 2, 3 and 4. 

 X1 = FAVGH X, X1 ∈ R[B, C, 1, W] (1) 

 X2 = FMAXH X, X1 ∈ R[B, C, 1, W] (2) 

 X3 = FAVGW X, X1 ∈ R[B, C, W, 1] (3) 

 X4 = FMAX WX, X1 ∈ R[B, C, W, 1] (4) 

Where FAVGH indicates average pooling for spatial height dimensions, FMAXH indicates 

max pooling for spatial height dimensions, FAVGW indicates average pooling for width 

dimensions and FMAXW indicates max pooling for width dimensions. Then X1, X2 and X3, 

X4 are spliced in different dimensions to obtain X5 and X6, Where Concat indicates con-

catenating in the same dimension. 

After that, it uses 1*1 convolution to compress channels for X5 and X6 respectively 

and uses Batch Normalization and FSwich to encode vertical and horizontal information. 

Then split them to get X1
', X2

', X3
' and X4

'. The expression is shown in Equations 5 and 

6. 

 X1′, X2
′ = FsplitFSwishFBNWaX5, X1

′, X2
′ ∈ R [B, C, 1, W] (5) 

 X3
′, X4

′ = FsplitFSwishFBNWaX6, X3
′, X4

′ ∈ R [B, C, H, 1] (6) 

Where Wa indicates 1*1 convolution, FBN indicates Batch Normalization, FSwish in-

dicates the Swish activation function, and Fsplit indicates the split operation. Then the 

dimension weights X1
”, X2

”, X3
” and X4

” are obtained by 1*1 convolution and Sigmoid 

activation function. 

Finally, in order to capture the cross-channel information and increase the rich se-

mantic features, the different dimension weights are multiplied by the input. The ex-

pression is shown in Equations 7, 8 and 9. 

 output1 = X” 2 ⊙ X” 3 ⊙ X, output1 ∈ R [B, C, H, W] (7) 

 output2 = X” 1 ⊙ X” 4 ⊙ X, output2 ∈R [B, C, H, W] (8) 

 output = output1 + output2 + X, output ∈R [B, C, H, W] (9) 

Where ⊙ indicates multiplication. 

3.2 CS MODULE 

The CS module is shown in Fig.3. Let X donate the input feature map, its size is [B, C, 

H, W]. 
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Fig. 3. The proposed CS module. 

In order to increase the channel sharing of feature vectors. First, it operates on the 

input using involutions without changing the dimensionality of the input. Next, it uses 

group convolution, which not only reduces the number of parameters, but also further 

extracts features, and the output vector size is [B, C, H, W]. To reduce the number of 

channels of the input vector, it uses 1*1 convolution. And the output vector size is [B, 

256, H, W]. Then we use ECA-Net to strengthen the network’s attention to important 

features. The skip connection is added to the main branch. The final output is [B, 256, 

H, W]. 

4 EXPERIMENTS 

This part of the experiment is to validate our proposed module and compare our pro-

posed network. Before that, we introduce the datasets, experimental environment and 

experimental strategy used in the experiment. 

Datasets: The PASCAL VOC datasets use PASCAL VOC 2007 and PASCAL VOC 

2012. They have a total of 21 categories, 16551 training images and 16492 testing im-

ages. The MS COCO2017 dataset has a total of 80 categories and 118,287 images. It 

covers the most common objects in life and is a rich object detection dataset. 

Experimental environment: CPU: Intel Xeon E5-2683 V3@2.00GHz; RAM: 32 

GB; Graphics card: Nvidia GTX 1080Ti; Hard disk: 500GB. Software: MMdetec-

tion2.6; PyTorch1.6.0; Torchvision=0.7.0; CUDA10.0; CUDNN7.4. 

Experimental strategy: It crops all the images to 512*512 for training, uses the 

SGD optimizer, and sets the learning rate to 0.001, momentum to 0.9, and weight decay 

to 0.0001. The learning rate adopts a step adjustment strategy, and the iteration period 

is 12 epochs. PASCAL VOC datasets adopt mAP as the evaluation index. MS 

COCO2017 dataset adopts average precision (Average-Precision, AP), AP50, AP75, 

APS, APM, and APL to evaluate the detection accuracy. 

4.1 Ablation study 

In this section, ablation experiments will be performed on the PASCAL VOC datasets 

and MS COCO 2017 dataset. The CE module experiments and CE module experiments 

test the influence of the CE module and CS module on different networks. 

CE module experiments 
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Although Resnet101 has higher accuracy, it requires more time and memory for 

training. Considering our equipment, all backbones use Resnet50. And the neck adopts 

FPN. In order to verify the effectiveness of the CE module, we conducted comparative 

experiments on four different networks. The experimental results are shown in Table 2 

and Table 3. 

As shown in Table 2. The AP of FCOS increased by 0.5%, and it improved signifi-

cantly on APM and APL, which increased by 0.8% and 1.2%, respectively. The AP of 

VFNet increased from 33.6% to 34.7%. Although its APL decreased by 0.4%, its small 

objects improvement effect was obvious, APS increased by 1.4%, and APM increased 

by 1.6%. The AP of FoveaBox has increased from 28.5% to 29.2%, and its effect on 

large objects is obvious. APM increases from 32.2% to 33.4%, and APL increases from 

43.8% to 45.1%. The AP of ATSS increased by 0.8%, and APM increased especially, 

from 35.3% to 37.3%. This illustrates the effectiveness of our proposed attention mech-

anism. It can help the backbone network to fully extract the semantic features of the 

image and improve the detection accuracy of the algorithm. The structure extracts 

weights through average pooling and max pooling, which can maximize the network’s 

attention to important features and weaken the attention to non-important features. The 

mutual interaction of height and width further enhances the spatial attention to the ob-

ject's area of interest. 

Table 2. The influence on MS COCO2017 dataset of CE module different networks. × indi-

cates that there is no attention mechanism. √ indicates that there is a CE module. 

Model 
Atten-

tion 
AP AP50 AP75 APS APM APL 

FCOS[19] × 28.7 45.3 29.9 10.2 32.1 44.1 

FCOS[19] √ 29.2 46.1 30.4 10.5 32.9 45.3 

VFNet[20] × 33.6 49.9 34.9 13.4 36.8 51.9 

VFNet[20] √ 34.7 50.4 37.1 14.8 38.4 51.5 

Fovea-

Box[30] 
× 28.5 46.4 29.9 10.3 32.2 43.8 

Fovea-

Box[30] 
√ 29.2 47.1 30.4 10.5 33.4 45.1 

ATSS[23] × 32.1 48.7 34.1 13.2 35.3 50.1 

ATSS[23] √ 32.9 49 35.1 14.1 37.3 48.9 

For PASCAL VOC datasets, as shown in Table 3. The mAP of ATSS improves from 

76.4% to 77.3%. FoveaBox’s mAP improved by 0.6%. The improvement effect of 

FCOS is obvious, and its mAP has increased from 73.1% to 74.8%. The mAP of VFNet 

is improved from 77.1% to 77.4%. And it also has a great improvement for different 

categories, such as bicycle, bottle, cat, and dog. Although it degrades in some catego-

ries, such as aeroplane and tvmonitor, it is mainly due to the lack of samples or incom-

plete objects in these categories. This proves that the attention mechanism can also 

improve the detection accuracy of the network on PASCAL VOC datasets, further con-

firming the effectiveness of the structure. 
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Table 3. The influence on PASCAL VOC datasets of CE module on different networks. × indi-

cates that there is no attention mechanism. √ indicates that there is a CE module. 

Class 
ATSS[23]  FoveaBox[30] FCOS[19] VFNet[20] 

× √ × √ × √ × √ 

aero-

plane 
79.7 79 79.5 78.6 78.7 77.6 83 81 

bicycle 81.3 83.4 80.9 82.4 78.6 80.2 82.1 83 

bird 79.3 80.4 77.8 78 79.9 78.4 78.9 79.6 

boat 67.7 68.6 64.8 66.9 66.2 66 69.6 69.2 

bottle 60.6 61.6 61.9 64.1 58.1 59 62.5 62 

bus 81.3 80.9 81.9 81.3 79.4 81.5 82.5 83.7 

car 85.9 86.1 84.4 84.4 83.6 84.1 85.8 85 

cat 86.8 88 88.6 87.5 86.8 87.5 86.7 88 

chair 61.8 59.4 59.5 59.6 58.1 58.9 59.6 60.7 

cow 80.8 81.5 80.1 83 74.8 79 82.5 84.2 

dining-

table 
66.4 68.3 66.2 70.8 61.1 63.9 65.7 70 

dog 84.8 86.8 85.7 85.2 83.9 85.6 84.8 85.6 

horse 84.3 85.1 82.5 84.7 71.6 77.5 85.5 85.5 

motor-

bike 
81.6 84.2 81.7 80.9 73.6 77 82.2 80.2 

person 81.7 82.2 81.4 81.5 79.3 79.6 81.9 81.7 

pot-

tedplant 
46.2 48.8 49.2 52.6 47.4 51.1 50.5 48.8 

sheep 77.7 82.3 79.2 79.4 76.7 77.7 82 81 

sofa 76.7 74.5 69 71.6 69.6 72.9 72.3 75.1 

train 85.2 83.9 82.3 78.3 78.5 81.5 84.8 86.3 

tvmoni-

tor 
78.4 80.5 76.7 74.5 76.7 76.6 78.4 77.5 

mAP 

/% 
76.4 77.3 75.7 76.3 73.1 74.8 77.1 77.4 

It compares the effect of the CE module on feature visualization. In Fig.4, column 

(a) represents the input image, and columns (b) and (d) represent the heat without the 

CE module and with the CE module, respectively. Columns (c) and (e) represent the 

heat map acting on the input image. 

Fig. 4. Feature visualization on MS COCO2017 dataset. 
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From the two columns (b) and (d), we can clearly find that when the attention mech-

anism is not added, the high spots in the heat map are scattered. After adding the atten-

tion mechanism, the highlights in the heat map focus on the target of the original image. 

This shows that the CE module can help the network strengthen the extraction of im-

portant features and pay more attention to the region of interest in the image. 

CS module experiments 

In order to study the effect of the CS module on detection accuracy. It conducts CS 

module ablation experiments on 4 different networks. The experimental results are 

shown in Table 4 and Table 5. 

As shown in Table 4. The mAP of ATSS improved by 1.3%. FoveaBox’s mAP in-

creased from 75.7% to 76.6%. The mAP of FCOS increased by 1.5% from 73.1%. The 

mAP of VFNet increased from 77.1% to 77.9%. And it has great improvement for com-

mon types such as bicycle, bird, bus, car, cat, dog and person. This proves that the CS 

module can also improve the detection accuracy of the network on the PASCAL VOC 

dataset, further confirming the effectiveness of the structure. 
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Table 4. The influence on PASCAL VOC datasets of CS module on different networks. Conv 

indicates that there is a 1*1 convolution. Re indicates that there is a CS module. 

Class 
ATSS[23] FoveaBox[30] FCOS[19] VFNet[20] 

Conv Re Conv Re Conv Re Conv Re 

aero-

plane 
79.7 80 79.5 79.5 78.7 79.2 83 80 

bicycle 81.3 84.4 80.9 84.7 78.6 78.5 82.1 82.7 

bird 79.3 81.5 77.8 80.7 79.9 81.6 78.9 80.8 

boat 67.7 71.6 64.8 66.5 66.2 70.2 69.6 70.5 

bottle 60.6 66.1 61.9 63.9 58.1 59.2 62.5 64 

bus 81.3 82.4 81.9 80.6 79.4 80.1 82.5 83.5 

car 85.9 86.2 84.4 85.9 83.6 84.8 85.8 86.3 

cat 86.8 87.7 88.6 87.7 86.8 87.2 86.7 88.7 

chair 61.8 60.7 59.5 59.7 58.1 59.1 59.6 60.5 

cow 80.8 79.4 80.1 80.8 74.8 78 82.5 83.9 

dining-

table 
66.4 68 66.2 67.9 61.1 63.3 65.7 69.4 

dog 84.8 85.4 85.7 86.2 83.9 84.1 84.8 86.8 

horse 84.3 84.8 82.5 83 71.6 78 85.5 85.7 

motor-

bike 
81.6 83.5 81.7 80.6 73.6 75 82.2 81.5 

person 81.7 82.4 81.4 81.9 79.3 80.2 81.9 82.4 

pot-

tedplant 
46.2 51.5 49.2 52.2 47.4 48.9 50.5 50.9 

sheep 77.7 79.4 79.2 80.5 76.7 76.3 82 82.3 

sofa 76.7 76 69 71 69.6 72.5 72.3 75.4 

train 85.2 83.2 82.3 81.8 78.5 78.9 84.8 85.6 

tvmoni-

tor 
78.4 78.9 76.7 78 76.7 77.9 78.4 77.3 

mAP 

/% 
76.4 77.7 75.7 76.6 73.1 74.6 77.1 77.9 

As Table 5 shows. The AP of FCOS increased by 0.5%, APS, APM and APL increased 

by 0.5%, 0.6% and 0.8%, respectively. The AP of VFNet increases from 33.6% to 

34.1%, APS increases by 1% and APM increases by 0.9%. The AP of FoveaBox is im-

proved by 0.9%, and it has a significant improvement for objects of different sizes, APS 

is improved by 0.8%, APM is improved by 1%, and APL is improved by 1.5%. The AP 

of ATSS increased by 0.7%, and APM increased from 35.3% to 36.4%. This shows that 

the residual-like structure can indeed improve the accuracy of the network. Directly 

reducing the channel dimension through the 1*1 convolution layer will result in a large 

loss of extracted features. Involution’s channel sharing effectively reduces the loss of 

semantic information caused by the decline of network channels. The skip connection 
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of the residual-like structure also increases the depth of the network, and the ECA-Net 

also strengthens the attention to important features and reduces redundancy. 

Table 5. The influence on PASCAL VOC datasets of CS module on different networks. Conv 

indicates that there is a 1*1 convolution. Re indicates that there is a CS module. Fovea-Box[30] 

is a completely anchor-free object detection architecture.  

Model Neck AP AP50 AP75 APS APM APL 

FCOS[19] Conv 28.7 45.3 29.9 10.2 32.1 44.1 

FCOS[19] Re 29.2 46 30.7 10.7 32.7 44.9 

VFNet[20] Conv 33.6 49.9 34.9 13.4 36.8 51.9 

VFNet[20] Re 34.1 50.1 36.3 14.4 37.7 51.1 

Fovea-

Box[30] 
Conv 28.5 46.4 29.9 10.3 32.2 43.8 

Fovea-

Box[30] 
Re 29.4 47.4 30.8 11.1 33.2 45.3 

ATSS[23] Conv 32.1 48.7 34.1 13.2 35.3 50.1 

ATSS[23] Re 32.8 49.4 35 13.5 36.4 50.0 

4.2 Compare with classic networks 

It compares the impact of each module on the original network. From Table 6, the AP 

of the original network is only 32.1%. The AP of the network reaches 32.9% with the 

CE module. After adding the CS module, the AP of the network reaches 32.8%. After 

adding the CE module and CS module at the same time, the AP of the network reaches 

34.1%, and its AP75 of, APS and APM are all the highest. This shows that the combina-

tion of two different modules can also effectively improve the accuracy of the network. 

Table 6. The effect of different modules on the network.  Attention indicates that there is a 

CE module. Re indicates that there is a CS module. 

Model Module AP AP50 AP75 APS APM APL 

 Res50 32.1 48.7 34.1 13.2 35.3 50.1 

ATSS[23] 
Res50+ attention 

Res50+ Re 

32.9 

32.8 

49.0 

49.4 

35.1 

35.0 

14.1 

13.5 

37.3 

36.4 

48.9 

50.0 

 Res50+ attention + Re 34.1 52.3 35.3 15.5 38.4 49.9 

It tests the influence of different modules on the network complexity. As shown in 

Table 7. The original network parameters are 32.16M and the Flops is 51.75G. Its mAP 

in PASCAL VOC datasets is 76.4%. When the CE module is added, the amount of 

network parameters increases by 0.03M, the Flops increase by 0.01G, and the mAP 

increases by 0.9%. When the CS module is added, the amount of network parameters 

increases by 2.35M, the Flops increase by 1.82G, and the mAP increases by 1.3%. 

When these two modules are added at the same time, the amount of network parameters 

increases by 2.38M, the Flops increase by 1.83G, and the mAP increases by 1.5%. 
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Although these two modules increase the complexity of the network, the influence of 

the amount of parameters and the Flops on the network is acceptable. 

Table 7. The influence of different modules on network parameters, calculation amount and 

mAP. attention indicates that there is a CE module. Re indicates that there is a CS module. 

Model Module Parameter Flops mAP 

 Res50 32.16M 51.75G 76.4 

ATSS[23] 
Res50+ attention 32.19M 51.76G 77.3 

Res50+ Re 34.51M 53.57G 77.7 

 Res50+ attention + Re 34.54M 53.58G 77.9 

It compares the proposed network with other classic networks. As shown in Table 8. 

Our network has a high AP of 34.1%, which is higher than all other networks in accu-

racy. And AP50, AP75, APS and APM are all the highest. Although its APL is lower than 

that of ARSL, its accuracy is higher than other networks. Its APS is as high as 15.5%, 

which shows that it has a good detection effect on small objects. SSD have the lowest 

Flops, which shows that they require the least amount of computational resources and 

can be well deployed in places with poor computational resources. Although our model 

is 55% higher in Flops, it improves by 33% in accuracy, which indicates that it can 

better detect the objects and reduce the security risk in real applications. Meanwhile, 

53.58G also belongs to one of the lower computational resources, which can be widely 

applied. 

Table 8. Comparison of the proposed method with other classic networks on the MS 

COCO2017 dataset. Retinanet[31] is a single-stage target detection model that proposes Focal 

Loss to solve the positive and negative category imbalance. 

Model AP AP50 AP75 APS APM APL Flops 

Faster-RCNN[18] 28.3 45.0 30.4 12.0 31.0 41.7 187G 

FCOS[19] 28.7 45.3 29.9 10.2 32.1 44.1 180G 

SSD[8] 25.6 44.0 26.2 9.1 29 38.9 34.36G 

Retinanet[31] 30.5 47.3 32.2 10.8 35.2 48.4 215G 

Yolov3[10] 24.6 42.6 25.1 8.2 26.8 36.5 52.09G 

FoveaBox[30] 28.5 46.4 29.9 10.3 32.2 43.8 185G 

ATSS[23] 32.1 48.7 34.1 13.2 35.3 50.1 51.75G 

VFNet[20] 33.6 49.9 34.9 13.4 36.8 51.9 173G 

Dense Teacher[21] 33.8 50.4 35.2 14.0 35.6 49.6 193G 

ARSL[22] 33.9 51.6 35.0 12.9 37.1 52.7 188G 

The proposed method 34.1 52.3 35.3 15.5 38.4 49.9 53.58G 

Fig.5 shows the detection effect of different networks. Faster-RCNN has obvious 

redundancy in detection. The first, second and third pictures detect many redundant 

objects, and the second picture does not accurately return the position of the car. FCOS 

has missed detection. The TV and the person on the right are not detected in the first 
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picture, and the laptop is also missing in the third picture. The first and third images of 

FoveaBox have redundant detections, and the fourth image mistakenly detects a cat as 

a bear. ATSS also falsely detected the fourth image as a bear. Our proposed network 

can not only detect the target accurately but also has a low false detection and redun-

dancy rate. Compared with other networks, its detection accuracy is better than these 

networks. 

 

Fig. 5. Comparison of detection effects of different networks. All images have the confidence 

threshold set to 0.3. 

Fig.6 shows the detection effect of our network on different occasions. It accurately 

detects when there is only a single object in the picture, such as bicycles, cats and buses, 

despite the different sizes of the objects. When the shadow of the dog and the dog ap-

pear at the same time, the network can accurately detect the dog regardless of its 

shadow. The network was also able to detect dogs when the object was affected by 

background light. When the objects in the picture are incomplete, the network can de-

tect people based on their legs and birds based on their heads. And when there are 

multiple objects in the picture, it can detect people and ships separately. For dense 

crowds, it can not only detect obvious people but also detect occluded objects. It is not 

difficult to see that the network proposed in this paper can accurately complete the 

detection task, and can also achieve good results in disturbed scenes. 



 CESNet 15 

 

Fig. 6. Qualitative results of the proposed method. This model achieves 34.1% in AP. All im-

ages have the confidence threshold set to 0.3. 

5 CONCLUSION 

In this paper, we propose the CESNet. The core modules of the network are as follows: 

CE module and CS module. The CE module shows the correlation between different 

channels, strengthens important features and suppresses nonimportant features. The CS 

module effectively reduces the semantic loss caused by feature vector channel dimen-

sionality reduction. 

Ablation experiments verify the effectiveness of our proposed modules. These mod-

ules have little effect on the complexity of the network. Under the same configuration, 

our algorithm improves 2.0% AP, 3.6% AP50, 1.2% AP75, 2.3% APS and 3.1% APM, 

respectively. In future work, we will explore the effects of spatial attention and channel 

attention on the CE module, respectively. We will also compare the performance of the 

CS module and the residual structure. In addition, our proposed module is a plug-and-

play module, which can be quickly added to many single-stage object detection meth-

ods and improve the accuracy effect very quickly. 
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