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Abstract. Container damage is diverse and includes small-scale object damage 

(e.g., holes, dents, scratches). This paper proposes an improvement to the 

YOLOv5 model based on the Transformer self-attention mechanism for con-

tainer damage detection. To effectively capture global relationships in damage 

images, two layers of Swin Transformer blocks are incorporated into the back-

bone network of YOLOv5. The PANet in YOLOv5 Neck has been optimized to 

BiFPN. Enhanced ability to fuse multi-scale features in damaged images while 

reducing computational complexity. Furthermore, use the Focaler-IoU Loss 

Function to improve the balance of features extracted from different samples in 

the dataset. Experimental results on the COCO and Tianjin Port official con-

tainer damage datasets validate that the improved model achieves an mAP of 

95.4%, demonstrating superior performance compared to commonly used ob-

ject detection algorithms such as YOLOv5 and YOLOv8.  

Keywords: Container damage detection, Improved YOLOv5, Transformer, 

BiFPN, Focaler-IoU Loss 

1 Introduction 

Containers are an essential part of modern logistics, serving as cargo carriers. Due to 

the continuous increase in global container transportation volume, containers are often 
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subjected to impacts, compression, friction, and adverse weather conditions during 

long-distance transportation, loading, and stacking processes. Surface damage, such 

as holes, dents, cracks, and corrosion, can severely affect the safety, stability, and 

usability of containers [1-3]. Therefore, timely detection of container damage is cru-

cial for ensuring the safe transportation of goods. However, there are currently issues 

with container damage detection technology, including poor detection accuracy and 

high missed detection rates for small-scale object damage like holes, dents.  This pa-

per discusses the challenges in container damage detection tasks and proposes an  

Improved YOLOv5 model using Transformer self-attention mechanism for container 

damage detection. Experimental results demonstrate that the proposed model can 

achieve promising results. The main contributions can be summarized as follows: 

1. To effectively capture the global and long-range relationships of damaged contain-

er images, we introduce the SwinT_CSP module into the backbone network of 

YOLOv5, which combines the Swin Transformer window self-attention module 

with the CSP Bottleneck. This enhances the model's feature extraction capability 

and its ability to detect small-scale object such as holes, dents, and cracks in dam-

aged images. 

2. The incorporation of the BiFPN [4]  in the neck enhances the multi-scale feature 

fusion capability in damaged images, reducing computational complexity and in-

formation loss. The use of the Focaler-IoU [5] function helps the model better bal-

ance feature extraction for different samples in the dataset. 

3.  Utilize K-Means clustering on the dataset to obtain 9 initial anchor boxes that are 

more suitable for the container damage dataset. During training, we introduce a 

multi-scale training method and label smoothing algorithm to enhance the model's 

generalizability. 

2 Related Works 

Container damage detection technologies typically include optical character recogni-

tion, laser scanning, and 3D imaging [6]. Since most container damages are manifest-

ed in appearance, using computer vision methods to detect damaged images can en-

hance detection accuracy and efficiency. 

Nakazawa et al. [7] proposed a three-dimensional automatic detection device that 

sets different threshold values for segmenting holes and cracks using traditional image 
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segmentation algorithms, based on the differences in light reflection between dam-

aged areas such as holes and cracks, and damages like paint, dirt, and dents. However, 

this method can only detect holes and cracks with weak light reflection, and has low 

accuracy. Son et al. [8] introduced the Capsize-Gaussian-Function to detect damage in 

containers. Based on this research, Son and Kim [9] utilized image preprocessing and 

Canny edge detection techniques to estimate the damage on the surface of containers 

and verified it on the Busan Port dataset. However, this algorithm only suitable for 

locating damaged images with clear boundaries and cannot effectively detect other 

types of damage, such as blurring. To address the issue of unclear identification 

caused by the blurred surface of damaged containers, Kim et al. [10] proposed a con-

tainer automatic recognition system based on the ART2 self-supervised learning algo-

rithm. However, this method also has the drawback of only detecting single types of 

damage. Compared to traditional computer vision methods, deep learning models 

offer significant advantages in feature learning and recognition accuracy efficiency. 

Emil [6] investigated an automatic detection method for identifying damages to con-

tainer corner castings using Faster R-CNN, MobileNet, and ResNet. Zixin et al [11] . 

proposed a model for detecting multiple types of container damage using transfer 

learning and MobileNetV2. The algorithm was capable of identifying various types of 

container damages such as dents, holes, rust, etc., but there is still significant room for 

improvement in detection accuracy. Zhiming et al. [12] presented a deep learning-

based detection algorithm that can identify container numbers even under complex 

lighting conditions and background contamination. Furthermore, literature on road 

damage detection based on deep learning also provides some insights into damage 

detection for this paper. Wang et al. [13] used Faster R-CNN as the recognition 

framework to accomplish road damage detection. Guo and Zhang [14] proposed an 

improved road damage detection algorithm MN-YOLOv5 based on YOLOv5. They 

extracted the main features of the MobileNetV3 network to replace the backbone 

network of YOLOv5 and introduced a lightweight coordinate attention module. Com-

pared to the original model, the mAP was improved by 2.5%, and the F1 score was 

increased by 2.6%. The above studies demonstrate the broad application prospects of 

damage detection algorithms based on deep learning.  

In recent years, there has been a growing trend of applying Transformer [15] to 

computer vision tasks. Carion et al. proposed an end-to-end object detection model 

based on Transformer, named DETR [16]. It is the first object detection framework to 

successfully integrate Transformer as the central building blocks in the detection pipe-
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line, and its performance is comparable to Faster R-CNN. The Visual Transformer 

model ViT [17], proposed by Dosovitskiy et al., fully adopts the standard structure of 

Transformer. Building upon the design principles of ViT, Liu et al. introduced Swin 

Transformer [18], which utilizes shifted windows for self-attention computation and 

integrates cross-window information of images. The ViT-FRCNN [19] model com-

bines ViT with FRCNN for large-scale object detection tasks. There is also a mask-

based Visual Transformer (MVT) [20], which improves the detection robustness of 

object detection models on complex background images. 

In summary, computer vision-based container damage detection methods common-

ly suffer from low accuracy in detecting small-scale object damage and exhibit speci-

ficity and singularity. It notes that container damage can take various forms and that 

focusing on specific types may not meet inspection requirements for actual damage 

scenarios.  

The improved model enhances the average precision of container damage detection 

and reduces the missed detection rate, which is of great significance for promoting the 

intelligent development of port transportation. The specific detection process of the 

model is illustrated in Figure 1. 

 

Fig. 1. Container damage detection process 

3 Improved YOLOv5  

The YOLO series is an advanced object detection framework widely used in com-

puter vision for real-time object detection tasks due to its outstanding speed and accu-

racy. YOLOv5 is a widely used and classic framework. The latest YOLOv8 model is 

essentially an improvement of YOLOv5, with both using the same backbone network. 

YOLOv8 has improved training speed and detection accuracy compared to YOLOv5, 
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but the Frames Per Second (FPS) has decreased. Moreover, the Anchor-Base method 

in YOLOv5 has a higher recall rate in small-scale object detection tasks compared to 

the Anchor-Free method in YOLOv8. For container damage detection tasks such as 

detecting holes and cracks, the Anchor-Base method performs better. Therefore, this 

paper proposes improvements based on the YOLOv5 framework. Experimental re-

sults show that the performance of the improved model is not inferior to YOLOv8. 

The structure of the improved model is shown in Figure 2. 

 

Fig. 2. Improved YOLOv5 network structure diagram  

3.1 Transformer Integration in Backbone  

In container damage detection, there are instances of small-scale object damages like 

holes, dents, which occupy a small proportion in the image and are densely distribut-

ed. Therefore, this paper adds the Transformer self-attention mechanism to the convo-

lution module of the YOLOv5. This helps the model better learn the feature represen-

tation of damaged images and improves its ability to detect small targets. 

In computer vision, one application of Transformer [错误!未找到引用源。] is to 

partition the image into fixed-size blocks (patches), obtain embedding representations 

for each block through linear transformations (patch embeddings), and then feed these 

embeddings into the Transformer for feature extraction and classification. However, 

relying solely on attention mechanisms and disregarding convolutions causes the 

model to lose the natural advantages of convolutions, including translation equivari-

ance and locality. Therefore, when combining Transformer for container damage 
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detection tasks, it is essential to consider how to leverage the strengths of both convo-

lutions and Transformer to enhance the model's performance and efficiency. 

Based on the above considerations, this paper introduces Swin Transformer and 

CSP Bottleneck into the backbone of YOLOv5, achieving a fusion of the Transformer 

architecture and convolution modules. Swin Transformer, based on the ideas of the 

ViT model, incorporates a shifted window mechanism, enabling the model to learn 

information across windows, saving computational resources while focusing on both 

global and local information. 

 

Fig. 3. (a) Swin Transformer architecture; (b) Two consecutive Swin Transformer blocks.  

This paper combines Swin Transformer to improve the YOLOv5 model. mainly in-

tegrating the window self-attention calculation of the Swin Transformer block with 

convolution operations. Swin Transformer block has two structures, as shown in Fig-

ure 3(b). The only difference between the two structures is one uses the W-MSA 

structure, while the other uses the SW-MSA structure. As shown in Figure 4. 

The W-MSA module divides the feature map into non-overlapping windows and 

performs multi-head self-attention within each window. This approach reduces com-

putational costs compared to performing multi-head self-attention directly on the 

entire global feature map. 

Ω(𝑀𝑆𝐴) = 4ℎ𝑤𝐶2 + 2(ℎ𝑤)2𝐶 (1) 

Ω(𝑊 − 𝑀𝑆𝐴) = 4ℎ𝑤𝐶2 + 2𝑀2 (2) 

Where ℎ is the height of the feature map, 𝑤 is the width of the feature map, 𝐶 is the 

number of channels of the feature map, and 𝑀 is the size of window_size. 

When using the W-MSA module, self-attention calculations are performed only 

within each window. Therefore, the Shifted Windows Multi-Head Self-Attention 
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(SW-MSA) module is utilized, which is essentially an offset version of the W-MSA, 

as illustrated in Layer 𝑙 + 1 in Figure 4.  

 

Fig. 4. Shift window method for calculating self-attention in Swin Transformer architecture 

Figure 5 shows the combination of the Swin Transformer block with the CSP Bot-

tleneck. This approach reduces computational costs, allowing the model to learn more 

feature representations from container damage images. 

 

Fig. 5. The combination of Swin Transformer block and CSP Bottleneck (SwinT_CSP) 

3.2 BiFPN feature fusion 

The container image contains many small-scale object damage scenarios, such as 

holes, depressions, as well as larger affected areas like rust and deformation. There-

fore, a mechanism is required to handle damage targets of different scales and sizes. 

In YOLOv5, the PANet feature fusion network has only one top-down and one bot-

tom-up path, which limits its ability to fully utilize different scale feature information. 
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To address this issue, the BiFPN feature pyramid network has been introduced in the 

neck part of YOLO.  

BiFPN integrates bidirectional cross-scale connections and fast normalized fusion. 

The feature fusion process is described by Equation 3. 

𝑃𝑙
𝑡 = 𝐶𝑜𝑛𝑣 (

𝑤1 ∙ 𝑃𝑙
𝑖𝑛 + 𝑤2 ∙ 𝑅𝑒𝑠𝑖𝑧𝑒(𝑃𝑙+1

𝑖𝑛 )

𝑤1 + 𝑤2 + 𝜖
)

𝑃𝑙
𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑣 (

𝑤1
′ ∙ 𝑃𝑙

𝑖𝑛 + 𝑤2
′ ∙ 𝑝𝑙

𝑡 + 𝑤3
′ ∙ 𝑅𝑒𝑠𝑖𝑧𝑒(𝑃𝑙−1

𝑜𝑢𝑡)

𝑤1
′ + 𝑤2

′ + 𝑤3
′ + 𝜀

 )

(3) 

Where 𝑃𝑙
𝑡 is the intermediate feature of the 𝑙-th layer of the top-down path, 𝑃𝑙

𝑜𝑢𝑡  is the 

output feature of the 𝑙-th layer of the bottom-up path, and Resize is a downsampling 

or upsampling operation.  

The incorporation of the BiFPN feature pyramid network into the YOLOv5 mod-

el's neck structure improves the model's ability to fuse multi-scale features. This re-

sults in better detection performance for low-resolution damaged objects by capturing 

more information about the affected areas in images. 

3.3 Focaler-IoU loss function 

During training, YOLOv5 mainly includes three types of losses: bounding box loss 

(lossrect), confidence loss (lossobj), and classification loss (lossclc). Therefore, the 

loss function of the YOLOv5 network is defined as Equation 4: 

𝐿𝑜𝑠𝑠 = 𝑎 × 𝑙𝑜𝑠𝑠𝑜𝑏𝑗 + 𝑏 × 𝑙𝑜𝑠𝑠𝑟𝑒𝑐𝑡 + 𝑐 × 𝑙𝑜𝑠𝑠𝑐𝑙𝑐 (4) 

YOLOv5 utilizes the CIoU loss to calculate the bounding box loss. In the task of 

container damage detection, from the analysis of the scale of detection objects, rust, 

deformation, etc., can be considered as simple samples, while extremely small-scale 

object such as hole damages can be regarded as difficult samples due to the challenge 

of precise localization. The CIoU loss function considers the overlap area of bounding 

box regression, center point distance, and aspect ratio. However it does not address 

the issue of balancing simple and difficult samples, limiting its effectiveness in con-

tainer damage detection tasks. Therefore, the Focaler-IoU loss function is chosen to 

replace CIoU, allowing the model to focus on samples of different difficulty levels. 
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The Focaler-IoU loss function reconstructs the IoU loss using a linear interval 

mapping method, allowing it to focus on different regression samples in various de-

tection tasks. This is represented by Equation 5: 

𝐼𝑜𝑈𝑓𝑜𝑐𝑎𝑙𝑒𝑟 = {

0, 𝐼𝑜𝑈 < 𝑑
𝐼𝑜𝑈 − 𝑑

𝑢 − 𝑑
, 𝑑 ≪ 𝐼𝑜𝑈 ≪ 𝑢

1, 𝐼𝑜𝑢 > 𝑢

(5) 

Where 𝐼𝑜𝑈𝑓𝑜𝑐𝑎𝑙𝑒𝑟  is the reconstructed Focaler-IoU, [𝑑, 𝑢] ∈ [0, 1]. By adjusting 

the values of 𝑑 𝑎𝑛𝑑 𝑢, 𝐼𝑜𝑈𝑓𝑜𝑐𝑎𝑙𝑒𝑟  can focus on different regression samples. Its loss 

function is defined by Equation 6: 

𝐿𝐹𝑜𝑐𝑎𝑙𝑒𝑟−𝐼𝑜𝑈 = 1 −  𝐼𝑜𝑈𝑓𝑜𝑐𝑎𝑙𝑒𝑟 (6) 

4 Experiments 

4.1 Dataset 

A dataset of container images was collected based on the official dataset provided by 

Tianjin Port and photos of containers captured. To expand the data set, data enhance-

ment techniques such as horizontal mirroring and the addition of Gaussian noise were 

applied. The dataset was divided into training, validation, and testing sets in an 8:1:1 

ratio to ensure sufficient samples for training, effective validation, and objective accu-

racy in testing evaluations. Figure 6 illustrates examples of data augmentation. 

 

Fig. 6. Container image data enhancement legend 

The dataset consists of four main categories of container damage: Hole, Edge, 

Dented, and Trans, as shown in Figure 7.  
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Fig. 7.  4 illustrations of different types of damaged containers 

4.2 Experimental environment 

The experimental environment and parameter settings adopted in this study are 

presented in Table 1, ensuring the reproducibility and reliability of the experimental 

results. Key information includes the operating system, CPU, GPU, programming 

language, memory, and number of training epochs, among others.  

Table 1. Experimental environment configuration and parameter settings 

Configuration items Configuration parameters 

Operating system Ubuntu 20.04.5 LTS 

CPU intel(R)Core(TM)i5-13600K 

GPU NVIDIA GeForce RTX3060 

Compiled language Python 3.8.12 

Running memory 32GB 

Epochs 300 

4.3 Training strategy 

1. KMeans clustering 

In container damage detection tasks, the model not only needs to detect the types of 

damage but also to learn the position and size of the damage. The prior anchor box 

mechanism divides the space where objects of different scales and aspect ratios are 

located into multiple subspaces. The initial anchor boxes for the YOLOv5 model only 

applicable to the COCO dataset. KMeans clustering is applied to the container dam-

age dataset to recluster and obtain new anchor boxes suitable for the dataset. A com-

parison of the two sets of anchor boxes is illustrated in Figure 8. 
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Fig. 8.  Visual comparison of two anchor box sizes 

2. Multi-scale training  

In container damage detection tasks, such as detecting small-scale object like holes, 

the backbone network generates feature maps several times smaller than the original 

image during the feature extraction stage. This often results in difficulty for the detec-

tion network to capture detailed feature descriptions. Therefore, During training, eve-

ry few iterations, a random scale was chosen for training. By inputting larger and 

varied sizes of images during training, the detection model's robustness to different 

sizes of container damage targets was somewhat improved. 

3. Label smoothing 

In container damage detection, the label smoothing regularization strategy is em-

ployed to prevent overfitting due to the presence of noise in the training data and the 

inability to ensure that all samples in the dataset are correctly labeled. This strategy 

perturbs the target variables to impose constraints on the model, preventing overfit-

ting and improving the model's generalization ability and robustness. 

4.4 Experimental results 

To evaluate the effectiveness of the improved YOLOv5 model objectively, employed 

several metrics for model evaluation, including precision, recall, and accuracy 

(mAP@0.5). mAP is one of the most important evaluation metrics in the field of ob-

mailto:mAP@0.5
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ject detection. It is the average of the area under the PR curve calculated for all cate-

gories at different Intersection over Union (IoU) thresholds. mAP@0.5 refers to the 

mAP value when the IoU threshold is set to 0.5. 

Trained the improved YOLOv5 model on the Tianjin Port container dataset and 

obtained the following training results: 

 

Fig. 9.  Training results of the Tianjin Port container damage dataset 

Figure 9 shows that the YOLOv5 model reaches a converged state during training 

and performs well on the Tianjin Port container damage dataset, achieving prediction 

accuracy and mAP values both exceeding 90%.  

To further evaluate the improved YOLOv5 model, it was compared with common-

ly used object detection algorithms, including YOLOv3, YOLOv4, YOLOv5 and 

YOLOv8. The comparison metrics include precision, recall, and mAP values. The 

specific results are presented in Table 2. 

Table 2. Comparison of training results of Tianjin Port container damage data set 

Algorithm Backbone Precision Recall mAP50 

Faster-RCNN ResNet-101 78.9% 79.4% 76.1% 

SSD VGG-16 69.6% 71.3% 70.8% 

YOLOv3 Darknet53 70.2% 78.4% 72.3% 

YOLOv4 CSPDarknet53 83.7% 81.1% 82.4% 

YOLOv5 CSPDarknet53 85.3% 82.5% 88.6% 

YOLOv5 CSPDarknet53+CBAM 94.3% 86.2% 93.7% 

YOLOv8 CSPDarknet53 96.1% 93.6% 94.8% 

Improved YOLOv5 CSPDarknet53+ 

SwinT_CSP 

95.8% 96.3% 95.4% 
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Based on the comparison of experimental results, it is evident that the improved 

YOLOv5 model achieves the highest mAP value, reaching 95.4%. Indicating the 

model's excellent capability in detecting damaged targets. 

Figure 10 illustrates a visual comparison of the improved YOLOv5 model with 

other advanced detection models. It can be observed that the improved YOLOv5 

model and YOLOv8 exhibit the highest detection accuracy.  

 

Fig. 10. Comparison between the improved YOLOv5 model and other advanced models 

In the improved YOLOv5 model, it mainly combines three modules: SwinT_CSP, 

BiFPN, and Focaler-IoU. In order to further analyze the impact of each module on the 

container damage detection results, an ablation experiment was designed. Using the 

YOLOv5 model as the baseline, each module was added separately for experiments. 

The results are shown in Table 3.  

Table 3. Single Variable Ablation Experiment Results Comparison 

Algorithm Precision Recall mAP50 

YOLOv5(base) 85.3% 82.5% 88.6% 

YOLOv5 + SwinT_CSP 89.5% 87.2% 90.2% 

YOLOv5 + BiFPN 87.2% 84.8% 89.5% 

YOLOv5 + Focaler-IoU 86.8% 83.9% 89.0% 

Improved YOLOv5 95.8% 96.3% 95.4% 
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To evaluate the generalization ability of the improved YOLOv5 model, testing was 

performed on the MS COCO official dataset. This dataset includes more than 330,000 

images and annotations for 80 categories, making it one of the most authoritative 

benchmark datasets in the field of object detection. The specific results are presented 

in Table 4, which demonstrates the model's excellent performance. 

Table 4. Comparison of training results on MS COCO dataset  

Algorithm Backbone mAP50 

Faster-RCNN ResNet-101 55.7% 

SSD VGG-16 50.4% 

YOLOv3 Darknet53 57.9% 

YOLOv4 CSPDarknet53 61.7% 

YOLOv5 CSPDarknet53 63.6% 

Improved YOLOv5 CSPDarknet53+ SwinT_CSP 64.1% 

5 Conclusion 

This paper proposes an improved YOLOv5 container damage detection algorithm 

based on the Transformer mechanism to address the issues of the singularity of cur-

rent container damage detection methods and the difficulty in detecting small dam-

aged areas in containers. By integrating the window self-attention calculation of Swin 

Transformer with convolution operations into the Backbone, the model's feature ex-

traction capability is enhanced, thereby improving the detection ability of complex 

small-scale object damage. In the Neck, the BiFPN is used instead of the PANet 

structure to improve the multi-scale fusion capability of the detection head. The Fo-

caler-IoU loss function is employed to focus on damaged samples of different scales, 

enhancing the model's robustness. Ablation experiments were designed to demon-

strate the positive impact of each module on container damage detection tasks. To 

validate the effectiveness and generalization ability of the model, experiments are 

conducted on both the Tianjin Port official damaged container dataset and MS COCO. 

The improved model achieves an mAP of 95.4% on the container dataset, meeting the 

requirements of port container damage detection tasks. 

The study still faces several issues. The dataset mainly comprises damaged con-

tainer images from Tianjin Port, which may result in sample selection bias and limit 

the universality of the research. Although the accuracy of container damage detection 

has improved, assessing the severity of multiple damaged areas in containers still 
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requires enhancement. In the next stage, the main tasks include incorporating more 

damaged container images from other ports to enhance the diversity of the dataset. 

Efforts will also be made to improve the model's object detection capability by em-

ploying multi-modal data fusion techniques to enhance its performance in detecting 

the severity of damages. 
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