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Abstract: With the increasing demand for intelligence in human-computer inter-

action, security monitoring, intelligent nursing, and sports analysis, the develop-

ment of human skeletal behavior recognition technology has attracted more at-

tention. However, current methods based on human skeleton recognition encoun-

ter a balance issue between model complexity and accuracy, and struggle to com-

prehensively extract the required features. To address these challenges, this study 

proposes a Feature Fusion Network based on ST-GCN as the backbone network, 

which achieves comprehensive and detailed feature extraction through multiple 

feature fusion operations within the network. The parameter count of FFN is only 

3.35 million. It achieves accuracies of 94.24% and 98.30% on the 2D skeletal 

data of the NTU RGB+D 60 dataset using the cross-subject and cross-view par-

tition criteria, respectively. On the NTU RGB+D 120 dataset, it achieves accura-

cies of 87.31% and 90.95% using the cross-subject and cross-setup partition cri-

teria, respectively, representing a state-of-the-art performance in the field of deep 

learning for skeleton action recognition. 
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1 Introduction 

Skeletal data has drawn considerable attention from numerous researchers due to its 

high robustness to environmental and lighting variations and relatively low computa-

tional demands. Methods for human action recognition based on skeletal data can be 

broadly categorized into four types: those based on Convolutional Neural Networks 

(CNNs)[1-2], Recurrent Neural Networks (RNNs)[3-4], Transformers [5-6], and Graph Con-

volutional Neural Networks (GCNs)[7-12], all of which are continuously evolving. Since 

skeletal data is non-Euclidean, methods based on graph convolution have a natural ad-

vantage in handling such data. Consequently, graph convolution-based approaches are 

gradually becoming the mainstream method for recognizing skeletal actions. 

Yan et al. [7] first proposed a novel skeleton-based action recognition model: ST-

GCN. This work significantly shifted attention towards using GCN for skeleton-based 

action recognition, pioneering the application of graph convolution in skeletal behavior 

recognition. 2s-AGCN[8] introduced an adaptive graph structure adjustment, allowing 
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for automatic updates using the backpropagation algorithm of neural networks; mean-

while, a dual-stream framework was employed to model first and second-order infor-

mation and finally perform score fusion, enhancing the model's stability and flexibility. 

Liu[9] et al. introduced MS-G3D, which constructs a unified spatiotemporal graph con-

taining multiple subgraphs, with each subgraph reflecting the spatial connections of 

keypoints within a single frame; this form of adjacency matrix effectively models rela-

tionships between different keypoints across different frames. Chen[10] et al. developed 

CTR-GCN, a model that customizes dynamic topological structures for each channel, 

achieving in-depth aggregation of features from different channels and learning richer 

topological information. In the same year, Chen[11] and his team proposed MST-GCN, 

which segments feature maps in the channel dimension and applies graph convolution 

and temporal convolution separately for feature extraction, then recombines these seg-

ments using residual connections, significantly enhancing the model's ability to repre-

sent multiscale features. Recently, Zhang[12] et al. proposed SGN, which greatly en-

hances feature expressiveness by incorporating advanced semantic information of 

joints (joint type and frame index). Through spatial max-pooling technique, SGN can 

integrate information from all joints within a single frame, extract key discriminative 

features, further reducing computational complexity, and achieving model lightweight. 

Although predecessors have made significant contributions to skeleton-based action 

recognition using graph convolution, effectively extracting latent information from 

skeletal data remains a challenge. 

2 Related work 

2.1 Enhanced Spatial Feature Graph Convolutional Network (ESF-GCN) 

The extraction of spatial features is crucial for understanding the spatial complexity of 

behaviors and body postures. In the backbone model ST-GCN used in this study, the 

predefined graph structure struggles to adapt to dynamic temporal relationships, limit-

ing the model's ability to comprehend the complex interactions between body parts. 

Therefore, this study modifies the predefined static graph of GCN in ST-GCN to an 

adaptive adjacency matrix, updating the coefficient matrix iteratively through gradient 

descent during training without any sparse constraints. This approach continuously op-

timizes the graph structure during training, rather than relying on predefined static 

graphs, allowing the model to better adapt to dynamic changes in joint relationships. 

Additionally, residual connections are introduced in the GCN part to ensure effective 

utilization of initial node features. Finally, this study introduces spatial shift operations 

(Spatial Shift[13]) parallel to GCN, which do not require adjacency matrices but utilize 

simple graph shifting operations and point-wise convolutions to aggregate neighboring 

node features, instead of conventional graph convolutions. 

In the spatial shift operation, taking a single joint node 𝑣𝑖 (left hand) as an example, 

Figure 1 illustrates the variation between its initial feature vector and the feature vector 

after spatial shift processing. The black circle in the figure represents the original fea-

ture of the central node 𝑣𝑖 (left hand). The colored circles represent its offset features, 

where each original circular feature (channel) corresponds to the same color as the node 
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in its skeletal graph. These offset features are inspired by the non-local shift operation 

in the Shift-GCN[14]. The large blue arrow on the left indicates subtracting the original 

feature vector from the shifted feature vector. Arrows of different colors represent the 

gradient direction of nodes relative to the left hand in the human skeletal graph. Setting 

𝑥0𝑖𝑗  as the original feature of joint node 𝑣𝑖 in the 𝑗𝑡ℎ channel, and 𝑥𝑖𝑗  as the feature of 

the same node after the shift operation in the 𝑗𝑡ℎ channel, derived from the correspond-

ing channel of joint node 𝑣𝑘. Calculating the difference between 𝑥𝑖𝑗  and 𝑥0𝑖𝑗  yields the 

gradient feature of node 𝑣𝑘 relative to 𝑣𝑖. By subtracting the original feature map from 

the shifted feature map, gradient feature maps of all nodes relative to the reference node 

(such as the left hand) can be obtained. 

 

Fig. 1. Spatial Shift operation diagram 

In the original spatial skeletal feature map 𝑋0 ∈ 𝑅𝑁×𝐶, where 𝑁 represents the num-

ber of joint nodes and 𝐶 represents the number of feature channels per node. After spa-

tial shifting, the feature map is represented as 𝑋 ∈ 𝑅𝑁×𝐶. By performing 𝑋 − 𝑋0, we 

can extract gradient features of the entire skeletal graph centered around the reference 

node. Although the connection strength between different joint nodes is assumed to be 

equal by default, the importance of human body joint nodes varies. Therefore, a train-

able mask 𝑀 is introduced to dynamically adjust the importance of each connection by 

applying it to the obtained feature map, which can be expressed as follows: 

 𝑌 = 𝑊(𝑋 − 𝑋0)𝑀 (1) 

In Equation (1), 𝑊 is a weight matrix composed of weight vectors from multiple 

output channels, and 𝑌 is the output of the spatial shift operation. Subsequently, by in-

troducing the parameter 𝛼∈[0,1] to adjust the degree of dependence on the original 

features during training, where a larger 𝛼 value indicates greater importance of central 

difference gradient information. The final expression of the spatial shift module is rep-

resented as Equation (2).  



4 

 𝑌 = 𝑊(𝑋 − 𝛼 ⋅ 𝑋0)𝑀 (2) 

The introduction of spatial shift operation does not lead to a significant increase in 

parameters and floating point operations. Furthermore, the spatial shift operation ena-

bles each node to cover the entire skeletal graph, where the feature of a node after shift-

ing is composed of the features of all other nodes in the graph. Such design enlarges 

the model's receptive field, allowing it to capture a wider range of spatial relationships. 

Additionally, important spatial features are extracted through the GCN section. The 

overall structure of ESF-GCN formed through the fusion of two components is illus-

trated in the upper part of Figure 2 (a). 

  
Fig. 2. (a)Basic block of FFN (b) MSF-TCN network architecture diagram 

 

2.2 Multi-Scale Feature Fusion Temporal Convolutional Network (MSF-

TCN) 

For a comprehensive understanding of behaviors with different durations and complex-

ities, the design of the time feature extraction module is crucial. The backbone network 

used in this study, ST-GCN, employs one-dimensional convolution on the temporal 

dimension with a single kernel size of 9 for temporal modeling. The large kernel covers 

a wide temporal receptive field. While this approach can achieve simple modeling of 

time, it lacks flexibility, resulting in redundant floating point operations and parame-

ters, and insufficiently detailed feature extraction. 

Although researchers[9-10,15] have made some improvements in time convolutional 

networks, such as multi-scale feature extraction, and have achieved significant pro-

gress, further feature exploration and improving model accuracy are still highly neces-

sary. Therefore, this study proposes a Multi-Scale Feature Fusion Temporal Convolu-

tional Network: MSF-TCN. 

The structure of MSF-TCN is illustrated in Figure 2(b), consisting of the following 

components: a "1×1" Conv branch, a Max-Pooling branch, a Mean-Pooling branch, and 

five 1D Conv branches with kernel sizes of 3 and dilation rates ranging from 1 to 5. 

The branches are horizontally connected in order of decreasing receptive field size, with 

representations and their horizontal connections omitted for dilation rates of 3 and 2 in 

the figure. Initially, the module transforms features using a "1×1" Conv and evenly 

divides them into eight groups of channel widths. Each feature group is then processed 

individually. Subsequently, these eight outputs are concatenated together and further 
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processed and outputted by another "1×1" Conv. This new design of temporal convo-

lution not only enhances temporal modeling capabilities but also saves floating point 

operations and parameters by reducing the channel width of each branch. Additionally, 

feature supplementation and fusion are achieved through horizontal connections from 

large to small. 

2.3 Attentional Feature Fusion (AFF) 

Attention mechanism assigns different weights to different parts of the data to process 

information. In many previous works[15-17], attention has been incorporated into respec-

tive networks to capture the intrinsic topology of human behaviors and specific mo-

ments of action occurrence. However, there is still room for improvement in feature 

extraction with the aforementioned attention mechanisms. Therefore, this paper draws 

inspiration from reference[18] and employs the Multi-scale Attention Mechanism (MS-

CAM), whose structure is depicted in Figure 3 (a). The core idea is to achieve channel 

attention at multiple scales by altering the size of spatial pooling. This attention is em-

bedded at the output end of MSF-TCN. The input features are fused with global and 

local attention and then output. Specifically, the structure includes: Local attention con-

structed through two 1×1 convolution layers (Point-wise Conv), a batch normalization 

layer, and an activation function (ReLU), mainly capturing local feature information. 

As for global attention, it first maps features to global information using adaptive aver-

age pooling, then further processes global information through two 1×1 convolution 

layers, a batch normalization layer, and ReLU activation function. In both global and 

local attention, there are two 1×1 convolution layers, with the first layer reducing the 

number of channels and the second layer increasing and restoring the number of chan-

nels, introducing a parameter 'r' to control the degree of channel compression, default-

ing to r=1. The selection of the 'r' parameter needs to balance the relationship between 

parameter reduction and feature expression capability. Therefore, the overall equation 

for MS-CAM is represented as Equation (3). 

 𝐴𝑜 = 𝑋 ⊗ 𝑀(𝑋) = 𝑋 ⊗ 𝜎(𝐿(𝑋) ⊕ 𝐺(𝑋)) (3) 

Where 𝑀(𝑋) ∈ 𝑅𝐶×𝑇×𝑉 represents the attention weights generated by MS-CAM, 

where 𝑉 represents the number of keypoints, 𝐶 represents the number of feature chan-

nels per node, and 𝑇  represents the number of frames. In the equation, ⊕ denotes 

broadcast addition, and ⊗ denotes element-wise multiplication. 
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Fig. 3. Schematic diagram of MS-CAM and AFF structures. (a) Schematic diagram 

of the MS-CAM structure. (b) Schematic diagram of the AFF structure. 

However, for the mentioned modules, after undergoing processing by the MSF-TCN 

module, there is a possibility of losing crucial features, resulting in overfitting. There-

fore, Attentional Feature Fusion (AFF) with residual input can be utilized, which con-

sists of two input parts: one part is the output of MSF-TCN, and the other part is the 

input of MSF-TCN. The multi-input features are then fused with global and local atten-

tion and outputted. The calculation process is illustrated in Equation (4). 

 𝐴𝑜 = 𝑋 ⊗ 𝑀(𝑋 ⊎ 𝑌) + 𝑌 ⊗ (1 − 𝑀(𝑋 ⊎ 𝑌) (4) 

Where 𝐴𝑜 ∈ 𝑅𝐶×𝑇×𝑉 represents the fused feature, ⊎ denotes the initial feature inte-

gration. For simplicity, element-wise summation is chosen as the initial integration. The 

dashed lines in Figure 3 (b) represent 1 − 𝑀(𝑋 ⊎ 𝑌). It is worth noting that the fusion 

weights 𝑀(𝑋 ⊎ 𝑌) consist of real numbers between 0 and 1, and 1 − 𝑀(𝑋 ⊎ 𝑌) also 

consists of real numbers between 0 and 1, allowing the network to perform soft selec-

tion or weighted averaging between 𝑋 and 𝑌. 

After the incorporation of AFF, the basic block of FFN in this paper has been de-

signed, as shown in Figure 2. Similar to ST-GCN, FFN consists of 10 basic blocks, 

with the first basic block lacking the residual connection represented by dashed lines in 

the figure, while the remaining nine basic blocks all have residual connections. 

2.4 Two-stage Loss 

Traditional multi-class loss functions, such as cross-entropy loss, often consider all 

classes equally, which may not be efficient when dealing with class imbalances or sam-

ples that are difficult to distinguish. Although some improvements have been proposed 

by previous researchers[19-21], these enhancements are more evident for datasets with 

class imbalances, while they still lack sufficient discrimination for datasets with bal-

anced classes. 

To address this issue, this study adopts a two-stage training strategy, where the stages 

are differentiated by different epochs. The first stage is the initial training phase, where 

the standard cross-entropy loss function is employed as the model's loss function. The 

goal is to enable the model to capture the basic features and patterns of the data, estab-

lishing an initial understanding of the problem. The equation for the multi-class cross-

entropy loss function is expressed as follows: 

 𝐿𝐶𝐸 = −
1

𝑛
∑ ∑ 𝑦𝑖𝑐𝑙𝑜𝑔(𝑝𝑖𝑐)

𝑚

𝑐=1

𝑛

𝑖=1

 (5) 

In Equation (5), 𝑛 represents the number of samples. 𝑚 is the total number of clas-

ses. 𝑦𝑖𝑐  denotes the true label of sample ⅈ for class 𝑐. 𝑝𝑖𝑐 is the probability predicted by 

the model that sample ⅈ belongs to class 𝑐. 

In the first stage, weighting of high-confidence samples and differentiation of difficult-

to-distinguish samples are ignored. Therefore, this study immediately follows the first 

stage with the design of the second stage. The loss computation in the second stage 

consists of two parts, one of which is Focal Loss[19], where the parameter γ is used to 



7 

adjust the weights of positive and negative samples. The equation for this part of com-

putation can be expressed as: 

 𝐿1 = −(1 − 𝑝𝑖𝑐)𝛾 log(𝑝𝑖𝑐) (6) 

Additionally, to weight high-confidence samples, another part of the loss for high-

confidence samples is introduced in the second stage, controlled by parameter γ_hc. 

The computation for this part is represented by equation (7): 

 𝐿2 = −(1 + 𝑝𝑖𝑐)
𝛾
ℎ𝑐 log(𝑝𝑖𝑐) (7) 

For 𝐿1 and 𝐿2, weighting is performed using a looping factor 𝜉, which increases as 

the training epochs progress, gradually strengthening the weight of the 𝐿2 loss. The 

computation equation is as follows: 

 𝜉 = (𝑓𝑐

ⅇ𝑝𝑖

𝑒𝜌𝑛

− 1) /(𝑓𝑐 − 1) (8) 

In equation (8), 𝑒𝑝𝑖  represents the current training epoch number, 𝑒𝜌𝑛 represents the 

total number of training epochs, and 𝑓𝑐 denotes the cycle factor providing adaptiveness 

for cyclic scheduling. Combining equations (6), (7), and (8), the definition of the loss 

function for the second stage is as follows: 

 𝐿𝐶𝐹 = 𝜉𝐿2 + (1 − 𝜉)𝐿1 (9) 

Combining equations (5) and (9) yields the Two-stage Loss equation (10), where the 

value of m is restricted to 0 ≤ 𝑚 ≤ 𝑒𝜌𝑛. 

 𝐿𝑜𝑠𝑠 = {
𝐿𝐶𝐸      ⅈ𝑓   𝑒𝑝𝑜𝑐ℎ ≤ 𝑚

 𝐿𝐶𝐹      ⅈ𝑓   𝑒𝑝𝑜𝑐ℎ > 𝑚  
 (10) 

The Two-stage Loss, by integrating the concept of two-stage training, the idea of 

Focal Loss, and additional attention to high-confidence and difficult-to-distinguish 

samples, theoretically enables discrimination of difficult-to-distinguish samples while 

maintaining attention on high-confidence samples. 

3 Experiments and Results 

3.1 Experimental Setup 

The experiment employs 2D and 3D skeleton data from NTU-RGBD 60[22] and NTU-

RGBD 120[23] datasets. If 3D data is not labeled, 2D skeleton data is used by default. 

The experiment follows the skeleton data preprocessing methods provided in the 

MMAction2 toolbox. The hyperparameters for training are set as follows: the initial 

learning rate is set to 0.048, and a cosine annealing strategy is utilized to adjust the 

learning rate. Stochastic Gradient Descent (SGD) with Nesterov momentum of 0.9 is 

employed to optimize parameters, and weight decay is set to 0.0005. The batch size is 

set to 54, and the number of training epochs is set to 80. However, when using the Two-

stage Loss proposed in this paper as the loss function, the number of training epochs is 

set to 110. 
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3.2 Comparison of ESF-GCN Related Experiments 

Selection of the α Parameter 

This section of the experiment aims to select the optimal parameter α for ESF-GCN. 

The experiment utilizes ST-GCN as the baseline model, with the GCN component re-

placed by ESF-GCN, referred to as the S1 model for convenience. This section of the 

experiment aims to select the optimal parameter α for ESF-GCN. The hyperparameter 

α ∈ [0,1] balances the contribution between nodes and gradient information. 

The experiment utilizes ST-GCN as the baseline model, with the GCN component 

replaced by ESF-GCN, referred to as the S1 model for convenience. Based on different 

α values, comparative training was conducted using the cross-subject protocol on the 

NTU-RGBD 60 dataset and the cross-setup protocol on the NTU-RGBD-120 dataset, 

with results shown in Figure 4(a) and (b). 

As depicted in Figure 4 (a), when α is set to 0.2, the accuracy is higher compared to 

other α values, outperforming the baseline ST-GCN model (denoted as S0 dashed line) 

by 1.74%. Similarly, Figure 4 (b) validates the effectiveness of α set to 0.2, showing an 

improvement of 2.63% over the ST-GCN model. Therefore, for subsequent experi-

ments related to the ESF-GCN module, α will be set to 0.2. This choice is made because 

excessively high α values may overly emphasize gradient information, neglecting the 

importance of original features. Conversely, too low α values may result in the model 

inadequately utilizing gradient information to adjust feature representations, ultimately 

reducing the model's ability to learn complex data patterns. 

 
Fig. 4. Comparison of Accuracy between S1 and S0. (a) the cross-subject protocol on 

NTU RGB+D 60 dataset. (b) the cross-setup protocol on NTU RGB+D 120 dataset. 

Comparison between ESF-GCN and GCN 

Next, a comprehensive performance comparison between the S1 and S0 models is con-

ducted. As shown in Table 1, compared to S0, S1 achieves a 1.74% and 0.64% im-

provement on the cross-subject and cross-view protocols of the NTU-RGBD 60 dataset, 

respectively, without significantly increasing computational costs. Similarly, on the 

NTU-RGBD 120 dataset, S1 shows improvements of -0.35% and 2.63% on the cross-

subject and cross-setup protocols, respectively. These experimental results demonstrate 

the outstanding performance of ESF-GCN. 

Table 1. Comparison of overall performance between S0 and S1. 
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Model 
NTU-RGBD 60 NTU-RGBD 120 *Flops 

(G) 

*Parameters 

(M) X-Sub(%) X-View(%) X-Sub(%) X-Set(%) 

S0 89.05 96.43 83.98 84.1 3.82 3.09 

S1 90.79 97.09 83.63 86.73 4.20 3.41 

* 𝑀 = 1.0 × 106，𝐺 = 1.0 × 109 

 

3.3 Comparison of MSF--TCN Related Experiments 

In this section, experiments comparing the MSF-TCN related modules are conducted, 

with results shown in Table 2. S0-2 represents the model where the TCN in ST-GCN 

is replaced with MSF-TCN. S2 represents the model where both the GCN and TCN in 

ST-GCN are replaced with ESF-GCN and MSF-TCN, respectively. 

From the data comparison in Table 2, it can be observed that the S0-2 model outper-

forms the S0 model by 1.68% and 0.56% on the cross-subject and cross-view protocols 

of the NTU-RGBD 60 dataset, respectively. Similarly, on the NTU-RGBD 120 dataset, 

the S0-2 model achieves improvements of 0.75% and 3.08% on the cross-subject and 

cross-setup protocols, respectively, while having only one-third of the parameter count 

and half of the floating point operations of ST-GCN. These results demonstrate the 

effectiveness of the MSF-TCN module. 

On the other hand, the S2 model exhibits improvements over the S0 model by 2.77% 

and 0.8% on the cross-subject and cross-view protocols of the NTU-RGBD 60 dataset, 

respectively. For the NTU-RGBD 120 dataset, the S2 model achieves improvements of 

1.21% and 3.21% on the cross-subject and cross-setup protocols, respectively. Com-

pared to the S1 model, the improvements are 1.03%, 0.16%, 1.56%, and 0.58% on dif-

ferent protocols. Moreover, compared to the S0-2 model, the improvements are 1.09%, 

0.24%, 0.46%, and 0.13%, respectively. Additionally, both the parameter count and 

floating point operations of the S2 model are only half of those of the ST-GCN. The 

experiments demonstrate that integrating two modules into the S2 model simultane-

ously has not had a negative impact; instead, the performance of the model has been 

comprehensively improved. 

Table 2. Comparison of overall performance between S0,S0-2,S1 and S2. 

Model 
NTU-RGBD 60 NTU-RGBD 120 *FLOPs 

(G) 

*Parameters 

(M) X-Sub(%) X-View(%) X-Sub(%) X-Set(%) 

S0 89.05 96.43 83.98 84.1 3.82 3.09 

S0-2 90.73 96.99 84.73 87.18 1.50 1.09 

S1 90.79 97.09 83.63 86.73 4.20 3.41 

S2 91.82 97.23 85.19 87.31 1.88 1.42 

3.4 Comparison of AFF Related Experiments 

Adding different attention mechanisms to the output part of the S2 model's MSF-TCN 

forms several new models, as shown in Table 3. Among them, S3(CVSTA) represents 

the addition of CVSTA[21] to the S2 model. S3(Drop-att) represents the addition of Drop 
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attention[24], both of which are recently effective attention modules. S3(MS-CAM) is 

the model with MS-CAM added. S3(AFF) represents the model with AFF added, where 

the subsequent numbers indicate different values of r. These models are trained on the 

NTU-RGBD 60 dataset using the cross-subject partition method, and the results are 

obtained as shown in the table. 

Table 3 Comparison of accuracy among different attention modules. 

Model Top-1 Accuracy(%) Top-5 Accuracy (%) 

S2 91.82 99.22 

S3(CVSTA) 84.10 97.95 

S3(Drop-att) 89.36 98.95 

S3(MS-CAM) 92.09 99.24 

S3(AFF-4) 92.25 99.24 

S3(AFF-2) 92.21 99.21 

S3(AFF-1) 92.74 99.25 

From Table 3, it can be observed that, except for the attention mechanisms used in 

this study, the other two attention mechanisms show a decrease in accuracy compared 

to the original S2 model. Among them, the improvement in S3 (AFF-1) is the most 

significant, reaching 0.92%. Simultaneously, the experiment also confirms that the op-

timal value of the r parameter for the AFF module is 1. This may be because when r 

increases, the features processed by MSF-TCN are already prominent and rich enough. 

As a result, the increase in r weakens the model's ability to represent features, leading 

to underfitting of the data that was originally close to fitting. 

Comparing the accuracy of S3 (AFF-1) with S2 on the NTU-RGBD 60 dataset using 

the cross-subject and cross-view partition methods, as well as on the NTU-RGBD 120 

dataset using the cross-subject and cross-setup partition methods, the results are shown 

in Table 4. It can be observed that S3 (AFF-1) outperforms S2 by 0.92%, 0.24%, 0.19%, 

and 0.72%, respectively, demonstrating the effectiveness of the AFF module. 

Table 4 The accuracy comparison results between the S2 and S3(AFF-1) models. 

Model 
NTU-RGBD 60 NTU-RGBD 120 

X-Sub(%) X-View(%) X-Sub(%) X-Set(%) 

S2 91.82 97.23 85.19 87.31 

S3(AFF-1) 92.74 97.47 85.38 88.03 

Comparing the parameter count and floating point operations of the comprehensive 

models used in the previous sections, the results are shown in Table 5. Although there 

is an increase in both parameter count and floating point operations for the S3(AFF-1) 

model compared to the S2 model, it remains unchanged compared to the baseline model 

S0. Therefore, considering the significant improvement in accuracy of the S3(AFF-1) 

model over the S2 model, such increases in parameter count and floating point opera-

tions can be considered acceptable. 

Table 5 Comparison results of computational and parameter quantities for models 

with different attention model. 
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Model *FLOPs(G) *Parameters(M) 

S0 3.82 3.09 

S1 4.20 3.41 

S2 1.88 1.42 

S3(CVSTA) 1.94 2.22 

S3(Drop-att） 1.88 1.42 

S3(MS-CAM) 2.50 2.48 

S3(AFF-4) 2.46 2.56 

S3(AFF-2) 2.61 2.83 

S3(AFF-1) 2.92 3.35 

* 𝑀 = 1.0 × 106，𝐺 = 1.0 × 109 
3.5 Comparison of Two-stage Loss Related Experiments 

The experiment replaced different loss functions with the cross-entropy loss function 

used in ST-GCN (S0), and trained on NTU-RGBD 60 using the cross-subject partition 

method, as shown in Table 6. Poly Loss[20] is an improved version of Focal Loss, which 

treats the loss function as a linear combination of polynomial functions, making it con-

venient to adjust the weights. The numbers 2, 6, and 4 represent different values of the 

cycle factor 𝑓𝑐, which determine different cycle factors 𝜉 accordingly. As for the pa-

rameters 𝛾ℎ𝑐 and 𝛾, this study adopts the value of 2 for both, based on references[25] and 

experimental comparisons. 

Table 6 Comparison results of experiments with different loss functions 

Model Top-1 Accuracy(%) Top-5 Accuracy(%) 

S0 89.05 98.85 

S0(Focal Loss) 89.06 98.94 

S0(Poly Loss) 89.32 98.96 

S0(Two-stage Loss-2) 90.11 98.99 

S0(Two-stage Loss-6) 90.08 99.01 

S0(Two-stage Loss-4) 90.19 99.08 

 

Table 7 Accuracy comparison results between S3 (AFF-1) and S4. 

Model 
NTU-RGBD 60 NTU-RGBD 120 

X-Sub(%) X-View(%) X-Sub(%) X-Set(%) 

S3(AFF-1) 92.74 97.47 88.03 85.38 

S4 92.79 97.46 88.26 85.48 

From Table 6, it can be observed that when the period factor 𝑓𝑐 is set to 4, the accuracy 

reaches the highest at 90.19%, which is a 1.14% improvement compared to S0, and 

1.13% and 0.87% higher than Focal Loss and Poly Loss, respectively. 



12 

Subsequently, the cross-entropy loss function in the S3 (AFF-1) model was replaced 

with Two-stage Loss, with 𝑓𝑐 set to 4, resulting in model S4. Training the model on 

both datasets, Table 7 shows that S4 outperforms S3 (AFF-1) by 0.23% and 0.1% on 

the cross-subject and cross-setup protocols of the NTU-RGBD 120 dataset, respec-

tively, thus demonstrating the effectiveness of Two-stage Loss. 

4.Comparison between FFN and existing models 

Comparison between FFN and existing models is presented in this section, as shown in 

Table 8. "Proposed(j)" and "Proposed(j-3d)" represent models trained with single-

stream joint using 2D and 3D keypoint data, respectively. On the other hand, "Pro-

posed(2s)" and "Proposed(4s)" represent models fused with dual-stream and quadruple-

stream, respectively, where the fusion ratios are Joint: Bone=1:1 for dual-stream fusion 

and Joint: Bone: Joint-Motion: Bone-Motion=1:1:0.5:0.5 for quadruple-stream fusion. 

It can be observed from the comparison that FFN achieves higher accuracy compared 

to other models, making it a more advanced model. It is worth mentioning that while 

both ST-GCN in the table and the ST-GCN used in this paper belong to the same model, 

differences in data processing and training methods can lead to varying results. 

Table 8 Comparison Results between FFN and Existing Models 

Method Year 
Parameters 

(M) 

NTU-RGBD 60 NTU-RGBD 120 

X-

Sub(%) 

X-

View(%) 

X-

Sub(%) 

X-

Set(%) 

VA-LSTM(3d) [26] ICCV17 - 79.4 87.6 - - 

AGC-LSTM(3d)[27] CVPR19 22.9 89.2 95.0 - - 

HCN(3d)[28] IJCAI18 0.8 86.5 91.1 - - 

VA-CNN(3d)[26] TPAMI19 24.09 88.7 94.3 - - 

ST-TR(3d)[6] ICPR21 12.1 89.9 96.1 82.7 84.7 

ST-GCN(2d)[7] AAAI18 3.08 85.7 92.4 80.1 84.2 

2s-AGCN(3d)[8] CVPR19 3.5 88.5 95.1 82.9 84.9 

AAGCN(2d)[16] CVPR20 3.77 89.7 97.1 80.2 86.3 

MS-G3D(2d)[9] CVPR20 3.17 92.7 97.1 85.5 88.2 

CTR-GCN(2d)[10] ICCV21 1.43 90.6 96.9 82.2 84.5 

ST-GCN++(2d)[15] ACM22 1.39 89.3 97.4 84.4 88.1 

PoseC3D(2d)[2] CVPR22 2.0 94.1 97.1 86.9 90.3 

Proposed(j) - 3.35 92.8 97.5 85.5 88.3 

Proposed(j-3d) - 3.35 88.89 95.55 82.19 84.52 

Proposed(2s) - 3.35 93.72 97.81 86.56 90.08 

Proposed(4s) - 3.35 94.24 98.30 87.31 90.95 
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4 Conclusion 

This study is based on the ST-GCN network, which is improved and augmented with 

ESF-GCN module, MSF-TCN module, AFF module, and Two-stage Loss, and multi-

ple-stream fusion is performed. Through comparison, it is evident that FFN has lower 

parameter count and higher accuracy, making it a superior model at present. 
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