
Learning to Solve Vehicle Routing Problems with Soft

Time Windows via Collaborative Transformer

Zengjian Yang1, Junqing Li 2, 3,1, *, Xiaolong Chen1

1 Shandong Normal University, Jinan, 250014, China
2 Yunnan Normal University, Kunming, Yunnan, 650500, China

3 HengXing University, Qingdao, 266199, China

lijunging@lcu-cs.com

Abstract. Over the past several years, there has been a rapid evolution in har-

nessing advanced deep reinforcement learning techniques to address challenges,

including but not limited to the Traveling Salesperson Problems (TSPs) and the

Vehicle Routing Problems (VRPs). However, the effectiveness of existing deep

architectures for the Vehicle Routing Problem with Soft Time Windows

(VRPSTW) is compromised by their integration of node and positional infor-

mation into a single unified representation. In this article, we design a novel

Collaborative Transformer framework based on deep reinforcement learning ar-

chitecture to learn the node features(e.g., locations, time window) and position-

al features separately to avoid incompatible correlations, so as to improve the

learning ability. During training, we leverage the Proximal Policy Optimiza-

tion(PPO) algorithm to update the parameters of the model. This CT architec-

ture serves as the policy network in the PPO framework. Tested on three da-

tasets with customer points of 20, 50, and 100 respectively, experiments show

that our method outperforms existing DRL architecture, showcasing its effec-

tiveness in solving the given task.

Keywords: Vehicle routing problem with soft time windows, Transformer,

Deep reinforcement learning.

1 Introduction

The foundation of intelligent transportation systems (ITS) relies on the aspiration to

enhance transportation through technology, with a recent emphasis on Big Data algo-

rithms. Continuous development of ITS and vehicle routing planning has become a

key problem study in smart cities [1]. Overtime with the evolution of supply chain

management approaches the delivery times that customers demand are more precise

in last mile parcel delivery for smart cities [2]. To optimize the aforementioned re-

quirements, we propose a method of collaborative attention mechanism to solve vehi-

cle routing problem with soft time windows (VRPSTW).

The vehicle routing problem (VRP) is a typical NP-hard problem in combinatorial

optimization and has been the subject of combinatorial optimization problems (COP)

for several decades. Recently, there has been a growing effort to utilize DRL to ad-

2 Z.J. Yang, J.Q. Li and X.L. Chen

dress more complex versions of the VRP. An emerging trend involves integrating

temporal constraints, such as time windows [3], [4], as customers typically prefer

service within specific time frames, deviations from which may lead to dissatisfac-

tion. Another notable trend involves extending from a single vehicle (or salesman) to

multiple ones [5], reflecting the common practice of providing delivery services to

customers in real-life situations. However, few studies have explored the application

of DRL to simultaneously tackle both time windows and multiple vehicles.

The vehicle routing problem with soft time windows (VRPSTW) is a variant of the

vehicle routing problem(VRP) where vehicles are tasked with delivering goods or

providing services to a set of customers while respecting both capacity constraints and

time window constraints [6]. In VRPSTW, the time windows are considered soft,

meaning that there is flexibility in meeting the time constraints, but deviations from

the specified time windows incur penalties. The objective of VRPSTW is to minimize

the total cost, which typically includes transportation costs, penalty costs for violating

time windows, and possibly other relevant costs.

Recent years have witnessed a surge of interest in applying deep reinforcement

learning (DRL) techniques to tackle combinatorial optimization problems. Combina-

torial optimization problems, such as the Traveling Salesman Problem (TSP), the

Vehicle Routing Problem (VRP), and the Knapsack Problem, are prevalent across

various domains, including logistics, operations research, and manufacturing. Tradi-

tionally, the mainstream methods for these problems can be classified into two cate-

gories: exact methods and heuristic methods [7]. While these methods can effectively

solve VRP, they all have certain drawbacks, such as computational complexity and

inability to efficiently handle large problem instances. However, DRL offers a novel

paradigm that leverages the power of deep neural networks and reinforcement learn-

ing to discover effective solutions in a data-driven manner.

One seminal work in this field is "Neural Combinatorial Optimization with Rein-

forcement Learning" by Bello et al.[8], which proposed a framework for solving

combinatorial optimization problems using DRL, and demonstrated the effectiveness

of their approach on tasks such as the TSP and the VRP. Another significant contribu-

tion is the Attention Model (AM) by Kool et al. [9], which is regarded as the first

successful VRP model based on Transformer and introduces the Pointer Network

(PN). The AM achieves state-of-the-art performance on various combinatorial opti-

mization benchmarks, including TSP and VRP instances. Furthermore, "Reinforce-

ment Learning for Solving the Vehicle Routing Problem" by Nazari et al.[10] investi-

gates the effectiveness of different DRL algorithms, including Deep Q-Networks

(DQN) and Proximal Policy Optimization (PPO)[16], for solving VRP instances. The

study provides insights into the performance of various algorithms and their scalabil-

ity to large-scale problem instances. In addition, Li et al.[11] proposed a novel encod-

er–refiner–decoder structure for enhancing the performance of neural construction

methods in solving Vehicle Routing Problems.

In this paper, we propose a Collaborative Transformer (CT) architecture based on

deep reinforcement learning to address the VRPSTW, a more challenging yet highly

practical variant of the classic VRP, thereby offering a versatile and effective solution

for optimizing vehicle routing in complex and dynamic logistical settings.

Learning to Solve VRPSTW via CT 3

2 Problem Description and Formulation

This paper studies the vehicle routing problem with soft time windows (VRPSTW).

This this section presents a gentle introduction to the VRP along with its mathemati-

cal formulation.

The objective in solving the vehicle routing problem with soft time windows

(VRPTW) is to minimize the total cost associated with delivering goods or providing

services to a set of customers, considering both transportation costs and penalties

incurred for deviations from the specified time windows, while ensuring that all cus-

tomer demands are met and vehicle capacity constraints are satisfied. The assump-

tions of VRPSTW are as follows:

(1)All customers must be visited exactly once.

(2)As a vehicle deployment center, the depot is the origin and destination of the

vehicle.

(3)Set the vehicle speed to be a constant value.

(4)The satisfaction of customers with the service can be adversely affected when

vehicles arrive outside the designated time windows as per the customers' require-

ments.
The VRPSTW is defined on a graph with a set of n nodes C = {𝑐1, . . . , 𝑐𝑛}, Each

customer ci ≜ (𝑥𝑖 , 𝑦𝑖 , 𝑑𝑖 , 𝑒𝑖 , 𝑙𝑖) has a 2D location (𝑥𝑖 , 𝑦𝑖), demand 𝑑𝑖 and time win-

dow (𝑒𝑖 , 𝑙𝑖), where 𝑒𝑖 and 𝑙𝑖(𝑒𝑖 ≤ 𝑙𝑖) denote the early and later time, respectively.

The depot is represented as 𝑁0 ≜ (𝑥𝑑 , 𝑦𝑑 , 0, 0,∞). Each vehicle departs from the

depot, serves a subset of customers along a route, and finally returns to the depot.

Arriving earlier than 𝑒𝑖 or later than 𝑙𝑖 of vehicles results in dissatisfaction.

The symbols used in the VRPSTW model are formulated as follows in 错误!未找

到引用源。:

4 Z.J. Yang, J.Q. Li and X.L. Chen

Table 1. The symbols used in the VRPSTW model.

Symbol Implication

N Set of depot and customer.

𝑁0 The depot.

𝐶 Set of customer nodes.

Q Capacity of vehicles.

i Indicator for node i.

j Indicator for node j.

𝑑𝑖 Set of delivery demands of customer i.

𝑒𝑖 Earliest time window for customer i.

𝑙𝑖 Latest time window for customer i.

𝑑𝑖,𝑗 Euclidean distance between nodes i and j.

𝑡𝑖 Arrival time of vehicle reach node i.

Decision variables:

,

1, vehicle starts from node to node

0,otherwise
i j

i j
x


= 


 (1)

1, vehicle serves customer

0,otherwise
i

i
y


= 
 (2)

Objective function:

(() ())min D U + (3)

, ,
N N

() i j i j
i j

D d x
 

=   (4)

,

() 0,

,

i i i i

i i i

i i i i

e e

U e a

l

t t

t

l

l t



− 


= = =
 − 

 (5)

Subjective to:

, ,
N N

, Ci j j i
j j

x x i
 

 =    (6)

,
N

1, Ci j
i

x j


 =  (7)

0 0,N N ,
C C

i j
i j

x x
 

 =  (8)

C

Qi i
i

d y


  (9)

, {0,1}, , Ni jx i j   (10)

Learning to Solve VRPSTW via CT 5

{0,1}, Ciy i   (11)

Equation (3) expresses the objective of this paper, minimizing a hybrid cost of

length and customer dissatisfaction. Equations (4) and (5) represent the distance trav-

eled by all vehicles in the process of serving customers and penalties incurred for

deviations from the specified time windows, respectively. Constraint (6) guarantees

that the vehicle goes to the next destination after serving the customer. Constraint (7)

ensures that a customer can only be accessed once. Constraint (8) can ensure that the

depot is the origin and destination of the vehicles. Constraint (9) ensures that the sum

of the demand in every sub-route does not exceed the vehicle capacity. Constraints

(10) and (11) limit the scope of the decision variable.

3 Collaborative Transformer for VRPSTW

To efficiently address VRPSTW, we introduce a DRL framework aimed at learning

improved solutions for routing problems. Our approach involves designing a trans-

former-based deep architecture called Collaborative Transformer (CT) as the policy

network, which guides the selection of the next solution. The CT model capitalizes on

the utilization of two distinct embeddings to encode a solution within the context of

the VRPTW. This section presents the architecture of our collaborative transformer

model. The framework of our collaborative Transformer is presented in Figure 1. The

model's workflow proceeds as follows: In the encoder architecture described, each

embedding undergoes individual computation of self-attention correlations. To en-

hance the effectiveness of attention correlations, a collaborative attention mechanism

is introduced[12]. This mechanism facilitates the mutual exploitation of attention

correlations between PEFs and NEFs, allowing each aspect to utilize the attention

patterns of the other for more information. Following the encoding stage, the decoder

synthesizes these encoded information into a final action distribution.

Fig.1. Architecture of our policy network

3.1 Embeddings

We divide the embeddings component of our model into two parts, namely the node

embedding responsible and the positional embedding, where node embedding consists

of a linear layer for extracting node information and outputs node feature embed-

dings(NFEs). Positional embedding consists of cyclic positional encoding (CPE) layer

based on Ma et al.[12] that outputs positional feature embeddings(PFEs). Node in-

formation 𝑥𝑖 represents coordinates, node demands, and time windows of node 𝑖 ,

6 Z.J. Yang, J.Q. Li and X.L. Chen

while positional information 𝑝𝑖 denotes the visiting order of the customers within the

sub-routes.

3.2 Encoder

The encoder in our model is composed of a stack of L = 3 identical layers, has its own

parameters, and does the same computation. Each layer consists of four sub-layers,

namely the collaborative-attention(CA) sub-layer, skip connection[13] and normaliza-

tion[14] sub-layer, and feed-forward network(FFN) sub-layer. Different from the

original Transformer[15], we use collaborative-attention to replace the multi-head

attention in the original Transformer, the encoding process is shown in Eq.(12) and

Eq.(13), where 𝑙 represents the number of layers. The encoder receives both sets of

NFEs and PFEs as input, facilitating collaboration and achieving information ex-

change between two embeddings.

()

()()

() ()

(1) () (1)

Norm FFN () ,

Norm CA ,

l l

i i h i

l l l

i i h i

NFE

NF

NFE NFE

NFE NFEE

 

 − −

= +

= +

 (12)

()

() ()

(1) () (1)

Norm FFA () ,

Norm CA ,

()

()

l l

i i g i

l l l

i i g i

PFE

PF

PFE PFE

PFE P EE F

 

 − −

= +

= +

 (13)

The specific calculation process of the CA sub-layer is as follows:

1) First, taking both sets of embeddings NFEs and PFEs as input, calculating the

self-attention correlation from both embeddings, as shown in Eq.(14), where

𝑊ℎ
𝑄, 𝑊ℎ

𝐾 , 𝑊𝑔
𝑄

 and 𝑊𝑔
𝐾 ∈ 𝑅𝑑𝑖𝑚∗𝑑𝑘 are all trainable parameters used for computing

queries and keys of NFES {𝑁𝐹𝐸𝑖}𝑖=1
𝑁 and PFES {𝑃𝐹𝐸𝑖}𝑖=1

𝑁 , respectively. Then, the

obtained 𝛼𝑖,𝑗
ℎ and 𝛼𝑖,𝑗

𝑔
 are further enhanced using the softmax function to get

,

h

i j and

,

g

i j , respectively.

()() ()(), ,

1 1
, ,

T T
h Q K g Q K

i j i h j h i j i g j g

k k

NFEW NFE W PFEW PFE W
d d

 = = (14)

2) Subsequently, similar to the model proposed by Ma et al.[12], the obtained cor-

relations in the previous step are pairwise fused using a cross-aspect referential atten-

tion mechanism so that positional feature and node feature can be shared among each

other. Finally, we concatenate the obtained values and referential values using the

concat function, as shown in Eq.(15), where 𝑊ℎ
𝑣 , 𝑊𝑔

𝑣 , 𝑊ℎ
𝑉𝑟𝑒𝑓

, 𝑊𝑔
𝑉𝑟𝑒𝑓

, 𝑊ℎ
𝑜, 𝑊𝑔

𝑜 are also

trainable parameters for computing values and referential values in each aspect and

𝑊ℎ
𝑜, 𝑊𝑔

𝑜 are also trainable parameters.

Learning to Solve VRPSTW via CT 7

() ()

() ()

, ,
1 1

, ,
1 1

Concat , ,

Concat , ,

i

i

N
v o

h h

N
NFE h g Vref

i j j i j j
j j

N N
PFE Vref

i j i j
j

h

g v h o

j g gj g
j

out NFE W NFE W W

out PFE W NFE W W

 

 

= =

= =

 
=    

 
=    

 (15)

The AT layer is then followed by the FFN (Feed-Forward Network) layer of the

encoder, it takes the obtained
()l
iNFE

out and
()l
iPFE

out as input, the parameters of

FFNh and FFNg are different. This layer computers node-wise projections using a

hidden sub-layer with dimension 𝑑𝐹𝐹 = 64 and the ReLU activation function. In

essence, the FFN performs a linear transformation, a ReLU activation, and normaliza-

tion, as shown in Eq.(16):
() ()

() ()

()

()

Norm[LN(Relu(LN()))],

Norm[LN(Relu(LN()))],

l l
i i

l l
i i

l
NFE NFE

i

l
PFE PFE

i

NFE out out

PFE out out

= +

= +

 (16)

3.3 Decoder

For the decoder in our paper, we adopt the max pooling sub-layers, MHC sub-layer,

and FFN sub-layer in Ma et al.[12]. Each of these sub-layer plays a crucial role in the

decoding process. We first aggregate the outputs in the encoder into each respective

representation by the max pooling sub-layer, as shown in Eq.(17), where

Wh
Local, Wh

Global, Wg
Local, Wg

Global are trainable parameters.

1

1

} ,

,

max {

max { }

Local N Global
i i ih i h

Local N Global
i i i ig g

N

P

NFE W NFE W

PFE W

FE

PFEF WE

=

=

 = +
 

 = +
 

 (17)

Then, we compute the attention correlations for each Max-pooling layer result pair

through the MHC sub-layer, which bears a significant resemblance to the attention

mechanism in the encoder. Finally, they are further processed by the Feed-Forward

Network(FFN) and Mask softmax layer, resulting in a probability distribution of size

N × N. This distribution will serve as the action distribution for the ordering of nodes

in the solution.

4 Reinforcement Learning Algorithm

In this paper, we used n-step Proximal Policy Optimization(PPO) algorithm[16] to

train the network model, which is a variant of the actor-critic reinforcement learning

algorithm. The Actor is responsible for generating actions, while the Critic estimates

the value function, consistent with the fundamental Actor-Critic architecture. In par-

ticular, both the actor network and the policy network are represented by the same

network denoted as  . The critic network guides the updates of the actor network

8 Z.J. Yang, J.Q. Li and X.L. Chen

by evaluating the output of the actor denoted as v . We train policy network  and

critic network v using Adam optimizer. In particular, we use the advantage function

to guide policy updates, PPO achieves effective and stable policy optimization within

the Actor-Critic architecture. Our critic network v is similar to that of actor in Ma et

al.[12] as follows, consisting of multiple attention sub-layer, mean-pooling sub-layer,

and feed-forward network used to assess the performance of the current policy.

Algorithm 1 n-Step PPO

Input: policy network  with parameters θ; critic network v with parameters ∅; E epochs , B

batches; step limit T.

Output: θ and ∅ for the optimal actor network and critic network

for epoch=1 to E do

 Generate M problem instances randomly;

 For b=1 to B do

 Initialize random solutions {𝑝𝑖}, set 𝑠0 = {𝑝𝑖}; t ← 0;

 while t < T do

 𝑡𝑠 = 𝑡;

 while 𝐭 − 𝑡𝑠 < 𝑛 and not (t == T) do

 Sample 𝑎𝑡 based on 𝜋𝜃(𝑎𝑡|𝑠𝑡);

 receive reward 𝑟𝑡 and next state 𝑠𝑡+1;

 t ← t + 1, 𝜋𝑜𝑙𝑑 ← 𝜋𝜃, 𝑣𝑜𝑙𝑑 ← 𝑣∅

 for k=1 to K do

 Rt+1 = 𝑣∅ (st+1);

 for i ϵ {t, t − 1, . . . , ts − 1} do

 𝐑̂𝐢 ← 𝐫𝐢 + 𝛄𝐑̂𝐢+𝟏

 𝐴̂𝑖 ← 𝑅̂𝑖 − 𝑣∅ (si);

 end for

 θ ← θ + ∂θ∇𝐽𝑃𝑃𝑂(𝜃);

 ∅ ← ∅ + ∂∅∇𝐿𝐵𝐿(∅);

 end for

 end while

 end while

 end for

 ∂θ ← β ∂θ, ∂∅ ← β ∂∅;

end for

As shown in Algorithm 1, we train  and v for multiple E epochs until prede-

fined number of training steps is reached. For each batch, firstly, we randomly gener-

ate initial solutions for the instances and collect trajectories by interacting with the

environment (line 7-10). Use the n-step returns to estimate advantages for each state-

action pair in the batch. Afterwards, PPO performs K epochs of updates for network

 and v by its objective, the PPO objective function is defined as in Equation (19),

Learning to Solve VRPSTW via CT 9

where the clip function is used to limit the range of policy variations to be within

[1 ,1] − + , with tP representing importance sampling. And the clip function is

also used to constrain the change in the value function during updates to ensure stabil-

ity and prevent large policy changes, as shown in Eq. (20), and the error loss function

is defined by Eq. (21).

(|)
() ,

(|)

t t
t

old t t

a s
P

a s




= (18)

 ()() [, ,1 ,1],min () ()t ttPO t tPJ PE A clip AP   = − +

 (19)

() (), () , ()clip

t t old t old tv s clip v s v s v s    = − + ， (20)

()
2

ˆ ˆ() max ()[, (])clip

BL t t t ttL v s R v sE R  = − − ， (21)

5 Experiments

In order to prove the optimization and computational efficiency of the proposed CT

architecture, we compare our CT with AM [9] and FER-AM[11], which are advanced

learning based construction methods. We report results for both the greedy and the

random versions of our CT model. We conducted comparative trials of the VRPSTW

using datasets consisting of 20, 50, and 100 customers, the vehicle capacity values

were set to 20, 40, and 50, respectively. For each instance, the customers were ran-

domly generated within a unit square grid [0,1] * [0,1] to ensure uniform distribution

of coordinates. Similarly, the time windows were randomly generated within the unit

time interval [0,1]. Additionally, the demand of the customer was sampled randomly

from the set {0, 1, ..., 30}. The CT proposed in this paper is coded in Python and

trained on a server equipped with RTX 3090 and Intel(R) Xeon(R) Platinum 8350C

CPU at 2.60GHz.

Significantly, to avoid memory overflow errors, we train 50 epochs for

VRPSTW20, 42 epochs for VRPSTW50, 22 epochs for VRPSTW100. However, it

can be seen from Table 2 that even with these limitations, our model is still the best

performing of the three. With sufficient device memory, our model is highly likely to

exhibit even better performance.

10 Z.J. Yang, J.Q. Li and X.L. Chen

Table 2. Collaborative Transformer (CT) model vs baselines. The average value across all

methods.

 n=20 n=50 n=100

Method Obj Gap Obj Gap Obj Gap

CT(random,

T=1500)
13.6809 1.35% 35.2554 5.60% 61.6370 0.63%

CT(random,

T=2000)
13.5279 0.21% 33.7399 1.06% 61.2502 0.00%

CT(greedy,

T=1500)
13.7553 1.90% 33.8012 1.24% 62.2698 1.66%

CT(greedy,

T=2000)
13.4991 0.00% 33.3861 0.00% 62.0093 1.24%

FER-AM(random,

T=1500)
17.3620 28.62% 35.6004 6.63% 70.0081 14.30%

AM(sampling) 18.1206 34.24% 36.6300 9.72% 72.0605 17.65%

Table 3. Collaborative Transformer (CT) model vs baselines. The best value across all meth-

ods.

 n=20 n=50 n=100

Method Obj Gap Obj Gap Obj Gap

CT(random,

T=1500)
11.6603 1.48% 25.2916 4.51% 50.6554 1.82%

CT(random,

T=2000)
11.5266 0.31% 24.6191 1.73% 49.7515 0.00%

CT(greedy,

T=1500)
11.6277 1.48% 24.7685 2.35% 53.9528 8.44%

CT(greedy,

T=2000)
11.4905 0.00% 24.2002 0.00% 52.1592 4.84%

FER-AM(random,

T=1500)
14.7477 28.35% 30.3318 25.34% 65.1173 30.89%

AM(sampling) 18.1206 57.70% 36.6300 51.36% 72.0605 44.84%

We compared the search progress curves of these methods in terms of iteration

steps T = 1500, as shown in Fig. 2, where the horizontal coordinate is the iteration

step and the vertical coordinate is the average of the best objective values so far for

the examples used in Table 3. Since the solution obtained by AM is sampled by the

policy network, it does not participate in the iteration step, but in order to have a

clearer view of the performance of the CT model, we have likewise indicated the best

value of AM(sampling) in the figure with a blue line segment. We can observe that

the CT model significantly outperforms AM(sampling) and FER-AM in terms of

convergence speed and obtains the best solution in a finite number of steps, which

further verifies the effectiveness of our method.

Learning to Solve VRPSTW via CT 11

(a) (b)

(c)

Fig. 2. Curves of searching progress for our CT and baselines including AM [9], FER-AM [11].

(a) VRPSTW20. (b) VRPSTW50. (c) VRPSTW100.

6 Conclusions

In this paper, in order to tackle the parcel delivery issues arising in the development

of smart cities, we model the scenario as a VRPSTW. To solve this problem, we pro-

pose a Collaborative Transformer framework based on deep reinforcement learning

architecture for VRPSTW that learns the node information and positional information

separately and adjusts the network parameters through the n-step PPO algorithm. This

approach mitigates incompatible associations and generates high-quality solutions for

the problem. Experimental experiments confirm the superiority of our method against

the traditional DRL model. However, due to the nature of feature embeddings, they

can only utilize a single objective as the object function, which limits the CT model

and cannot be directly applied to multi-objective problems. Therefore, improvements

to both the model embedding section and the objective function will be key areas of

future research.

12 Z.J. Yang, J.Q. Li and X.L. Chen

References

1. Zhu, Li, et al.: Big data analytics in intelligent transportation systems: A survey. IEEE

Transactions on Intelligent Transportation Systems 20.1, 383-398(2018).

2. Perboli, Guido, and Mariangela Rosano.: Parcel delivery in urban areas: Opportunities and

threats for the mix of traditional and green business models. Transportation Research Part

C: Emerging Technologies 99, 19-36(2019).

3. Liu, Zhishuo, ngquan Zuo, Mengchu Zhou, Wei Guan, and Yusuf Al-Turki.: Electric vehi-

cle routing problem with variable vehicle speed and soft time windows for perishable

product delivery. IEEE Transactions on Intelligent Transportation Systems (2023).

4. Wu, Hongguang, and Yuelin Gao.: An ant colony optimization based on local search for

the vehicle routing problem with simultaneous pickup–delivery and time window. Applied

Soft Computing 139: 110203 (2023).

5. Li, gwen, Yining Ma, Ruize Gao, Zhiguang Cao, Andrew Lim, Wen Song, and Jie Zhang.:

Deep reinforcement learning for solving the heterogeneous capacitated vehicle routing

problem. IEEE Transactions on Cybernetics 52, no. 12: 13572-13585(2021).

6. Meng, Ming, and Yun Ma.: Route optimization of electric vehicle considering soft time

windows and two ways of power replenishment. Advances in Operations Research 2020:

1-10(2020).

7. Wu, Yaoxin, et al.: Learning improvement heuristics for solving routing problems. IEEE

transactions on neural networks and learning systems 33.9 : 5057-5069(2021).

8. Bello I, Pham H, Le Q V, et al.: Neural combinatorial optimization with reinforcement

learning. arXiv preprint arXiv:1611.09940(2016).

9. Kool, W., Van Hoof, H., & Welling, M.: Attention, learn to solve routing problems!. arxiv

preprint arxiv:1803.08475(2018).

10. Nazari, Mohammadreza, et al.: Reinforcement learning for solving the vehicle routing

problem. Advances in neural information processing systems 31 (2018).

11. Li J, Ma Y, Cao Z, et al.: Learning feature embedding refiner for solving vehicle routing

problems. IEEE Transactions on Neural Networks and Learning Systems (2023).

12. Ma, Yining, et al.: Learning to iteratively solve routing problems with dual-aspect collabo-

rative transformer. Advances in Neural Information Processing Systems 34: 11096-

11107(2021).

13. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.: Deep residual learning for im-

age recognition. In IEEE conference on computer vision and pattern recognition, 770–

778(2016).

14. Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton.: Layer normalization. ArXiV,

Corr: abs/1607.06450(2016).

15. Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Łukasz Kaiser, and Illia Polosukhin.: Attention is all you need. Advances in neural

information processing systems 30 (2017).

16. Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.: Prox-

imal policy optimization algorithms. arxiv preprint arxiv:1707.06347 (2017).

