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Abstract. Over the past several years, there has been a rapid evolution in har-

nessing advanced deep reinforcement learning techniques to address challenges, 

including but not limited to the Traveling Salesperson Problems (TSPs) and the 

Vehicle Routing Problems (VRPs). However, the effectiveness of existing deep 

architectures for the Vehicle Routing Problem with Soft Time Windows 

(VRPSTW) is compromised by their integration of node and positional infor-

mation into a single unified representation. In this article, we design a novel 

Collaborative Transformer framework based on deep reinforcement learning ar-

chitecture to learn the node features(e.g., locations, time window) and position-

al features separately to avoid incompatible correlations, so as to improve the 

learning ability. During training, we leverage the Proximal Policy Optimiza-

tion(PPO) algorithm to update the parameters of the model. This CT architec-

ture serves as the policy network in the PPO framework. Tested on three da-

tasets with customer points of 20, 50, and 100 respectively, experiments show 

that our method outperforms existing DRL architecture, showcasing its effec-

tiveness in solving the given task. 

Keywords: Vehicle routing problem with soft time windows, Transformer, 

Deep reinforcement learning. 

1 Introduction 

The foundation of intelligent transportation systems (ITS) relies on the aspiration to 

enhance transportation through technology, with a recent emphasis on Big Data algo-

rithms. Continuous development of ITS and vehicle routing planning has become a 

key problem study in smart cities [1]. Overtime with the evolution of supply chain 

management approaches the delivery times that customers demand are more precise 

in last mile parcel delivery for smart cities [2]. To optimize the aforementioned re-

quirements, we propose a method of collaborative attention mechanism to solve vehi-

cle routing problem with soft time windows (VRPSTW). 

The vehicle routing problem (VRP) is a typical NP-hard problem in combinatorial 

optimization and has been the subject of combinatorial optimization problems (COP) 

for several decades. Recently, there has been a growing effort to utilize DRL to ad-
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dress more complex versions of the VRP. An emerging trend involves integrating 

temporal constraints, such as time windows [3], [4], as customers typically prefer 

service within specific time frames, deviations from which may lead to dissatisfac-

tion. Another notable trend involves extending from a single vehicle (or salesman) to 

multiple ones [5], reflecting the common practice of providing delivery services to 

customers in real-life situations. However, few studies have explored the application 

of DRL to simultaneously tackle both time windows and multiple vehicles. 

The vehicle routing problem with soft time windows (VRPSTW) is a variant of the 

vehicle routing problem(VRP) where vehicles are tasked with delivering goods or 

providing services to a set of customers while respecting both capacity constraints and 

time window constraints [6]. In VRPSTW, the time windows are considered soft, 

meaning that there is flexibility in meeting the time constraints, but deviations from 

the specified time windows incur penalties. The objective of VRPSTW is to minimize 

the total cost, which typically includes transportation costs, penalty costs for violating 

time windows, and possibly other relevant costs.  

Recent years have witnessed a surge of interest in applying deep reinforcement 

learning (DRL) techniques to tackle combinatorial optimization problems. Combina-

torial optimization problems, such as the Traveling Salesman Problem (TSP), the 

Vehicle Routing Problem (VRP), and the Knapsack Problem, are prevalent across 

various domains, including logistics, operations research, and manufacturing. Tradi-

tionally, the mainstream methods for these problems can be classified into two cate-

gories: exact methods and heuristic methods [7]. While these methods can effectively 

solve VRP, they all have certain drawbacks, such as computational complexity and 

inability to efficiently handle large problem instances. However, DRL offers a novel 

paradigm that leverages the power of deep neural networks and reinforcement learn-

ing to discover effective solutions in a data-driven manner. 

One seminal work in this field is "Neural Combinatorial Optimization with Rein-

forcement Learning" by Bello et al.[8], which proposed a framework for solving 

combinatorial optimization problems using DRL, and demonstrated the effectiveness 

of their approach on tasks such as the TSP and the VRP. Another significant contribu-

tion is the Attention Model (AM) by Kool et al. [9], which is regarded as the first 

successful VRP model based on Transformer and introduces the Pointer Network 

(PN). The AM achieves state-of-the-art performance on various combinatorial opti-

mization benchmarks, including TSP and VRP instances. Furthermore, "Reinforce-

ment Learning for Solving the Vehicle Routing Problem" by Nazari et al.[10] investi-

gates the effectiveness of different DRL algorithms, including Deep Q-Networks 

(DQN) and Proximal Policy Optimization (PPO)[16], for solving VRP instances. The 

study provides insights into the performance of various algorithms and their scalabil-

ity to large-scale problem instances. In addition, Li et al.[11] proposed a novel encod-

er–refiner–decoder structure for enhancing the performance of neural construction 

methods in solving Vehicle Routing Problems.  

In this paper, we propose a Collaborative Transformer (CT) architecture based on 

deep reinforcement learning to address the VRPSTW, a more challenging yet highly 

practical variant of the classic VRP, thereby offering a versatile and effective solution 

for optimizing vehicle routing in complex and dynamic logistical settings. 
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2 Problem Description and Formulation 

This paper studies the vehicle routing problem with soft time windows (VRPSTW). 

This this section presents a gentle introduction to the VRP along with its mathemati-

cal formulation. 

The objective in solving the vehicle routing problem with soft time windows 

(VRPTW) is to minimize the total cost associated with delivering goods or providing 

services to a set of customers, considering both transportation costs and penalties 

incurred for deviations from the specified time windows, while ensuring that all cus-

tomer demands are met and vehicle capacity constraints are satisfied. The assump-

tions of VRPSTW are as follows: 

(1)All customers must be visited exactly once. 

(2)As a vehicle deployment center, the depot is the origin and destination of the 

vehicle. 

(3)Set the vehicle speed to be a constant value. 

(4)The satisfaction of customers with the service can be adversely affected when 

vehicles arrive outside the designated time windows as per the customers' require-

ments. 
The VRPSTW is defined on a graph with a set of n nodes C =  {𝑐1, . . . , 𝑐𝑛}, Each 

customer ci  ≜  (𝑥𝑖 , 𝑦𝑖 , 𝑑𝑖 , 𝑒𝑖 , 𝑙𝑖) has a 2D location (𝑥𝑖 , 𝑦𝑖), demand 𝑑𝑖 and time win-

dow (𝑒𝑖 , 𝑙𝑖), where 𝑒𝑖  and 𝑙𝑖(𝑒𝑖  ≤ 𝑙𝑖) denote the early and later time, respectively. 

The depot is represented as 𝑁0  ≜  (𝑥𝑑 , 𝑦𝑑 , 0, 0,∞). Each vehicle departs from the 

depot, serves a subset of customers along a route, and finally returns to the depot. 

Arriving earlier than 𝑒𝑖 or later than 𝑙𝑖 of vehicles results in dissatisfaction. 

The symbols used in the VRPSTW model are formulated as follows in 错误!未找

到引用源。: 
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Table 1. The symbols used in the VRPSTW model. 

Symbol Implication 

N Set of depot and customer. 

𝑁0 The depot. 

𝐶 Set of customer nodes. 

Q Capacity of vehicles. 

i Indicator for node i. 

j Indicator for node j. 

𝑑𝑖 Set of delivery demands of customer i. 

𝑒𝑖 Earliest time window for customer i. 

𝑙𝑖 Latest time window for customer i. 

𝑑𝑖,𝑗  Euclidean distance between nodes i and j. 

𝑡𝑖 Arrival time of vehicle reach node i. 

Decision variables: 
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{0,1}, Ciy i             (11) 

Equation (3) expresses the objective of this paper, minimizing a hybrid cost of 

length and customer dissatisfaction. Equations (4) and (5) represent the distance trav-

eled by all vehicles in the process of serving customers and penalties incurred for 

deviations from the specified time windows, respectively. Constraint (6) guarantees 

that the vehicle goes to the next destination after serving the customer. Constraint (7) 

ensures that a customer can only be accessed once. Constraint (8) can ensure that the 

depot is the origin and destination of the vehicles. Constraint (9) ensures that the sum 

of the demand in every sub-route does not exceed the vehicle capacity. Constraints 

(10) and (11) limit the scope of the decision variable. 

3 Collaborative Transformer for VRPSTW 

To efficiently address VRPSTW, we introduce a DRL framework aimed at learning 

improved solutions for routing problems. Our approach involves designing a trans-

former-based deep architecture called Collaborative Transformer (CT) as the policy 

network, which guides the selection of the next solution. The CT model capitalizes on 

the utilization of two distinct embeddings to encode a solution within the context of 

the VRPTW. This section presents the architecture of our collaborative transformer 

model. The framework of our collaborative Transformer is presented in Figure 1. The 

model's workflow proceeds as follows: In the encoder architecture described, each 

embedding undergoes individual computation of self-attention correlations. To en-

hance the effectiveness of attention correlations, a collaborative attention mechanism 

is introduced[12]. This mechanism facilitates the mutual exploitation of attention 

correlations between PEFs and NEFs, allowing each aspect to utilize the attention 

patterns of the other for more information. Following the encoding stage, the decoder 

synthesizes these encoded information into a final action distribution. 

 
Fig.1. Architecture of our policy network 

 

3.1 Embeddings 

We divide the embeddings component of our model into two parts, namely the node 

embedding responsible and the positional embedding, where node embedding consists 

of a linear layer for extracting node information and outputs node feature embed-

dings(NFEs). Positional embedding consists of cyclic positional encoding (CPE) layer 

based on Ma et al.[12] that outputs positional feature embeddings(PFEs). Node in-

formation 𝑥𝑖  represents coordinates, node demands, and time windows of node 𝑖 , 
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while positional information 𝑝𝑖  denotes the visiting order of the customers within the 

sub-routes. 

 

3.2 Encoder 

The encoder in our model is composed of a stack of L = 3 identical layers, has its own 

parameters, and does the same computation. Each layer consists of four sub-layers, 

namely the collaborative-attention(CA) sub-layer, skip connection[13] and normaliza-

tion[14] sub-layer, and feed-forward network(FFN) sub-layer. Different from the 

original Transformer[15], we use collaborative-attention to replace the multi-head 

attention in the original Transformer, the encoding process is shown in Eq.(12) and 

Eq.(13), where 𝑙 represents the number of layers. The encoder receives both sets of 

NFEs and PFEs as input, facilitating collaboration and achieving information ex-

change between two embeddings. 
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The specific calculation process of the CA sub-layer is as follows:  

1) First, taking both sets of embeddings NFEs and PFEs as input, calculating the 

self-attention correlation from both embeddings, as shown in Eq.(14), where 

𝑊ℎ
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𝑄
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ℎ  and 𝛼𝑖,𝑗

𝑔
 are further enhanced using the softmax function to get 
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h
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,
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i j , respectively. 
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2) Subsequently, similar to the model proposed by Ma et al.[12], the obtained cor-

relations in the previous step are pairwise fused using a cross-aspect referential atten-

tion mechanism so that positional feature and node feature can be shared among each 

other. Finally, we concatenate the obtained values and referential values using the 

concat function, as shown in Eq.(15), where 𝑊ℎ
𝑣 , 𝑊𝑔

𝑣 , 𝑊ℎ
𝑉𝑟𝑒𝑓

, 𝑊𝑔
𝑉𝑟𝑒𝑓

, 𝑊ℎ
𝑜, 𝑊𝑔

𝑜 are also 

trainable parameters for computing values and referential values in each aspect and 

𝑊ℎ
𝑜, 𝑊𝑔

𝑜 are also trainable parameters.  
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The AT layer is then followed by the FFN (Feed-Forward Network) layer of the 

encoder, it takes the obtained 
( )l
iNFE

out  and 
( )l
iPFE

out  as input, the parameters of 

FFNh  and FFNg  are different. This layer computers node-wise projections using a 

hidden sub-layer with dimension 𝑑𝐹𝐹 = 64  and the ReLU activation function. In 

essence, the FFN performs a linear transformation, a ReLU activation, and normaliza-

tion, as shown in Eq.(16):  
( ) ( )
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3.3 Decoder 

For the decoder in our paper, we adopt the max pooling sub-layers, MHC sub-layer, 

and FFN sub-layer in Ma et al.[12]. Each of these sub-layer plays a crucial role in the 

decoding process. We first aggregate the outputs in the encoder into each respective 

representation by the max pooling sub-layer, as shown in Eq.(17), where 

Wh
Local, Wh

Global, Wg
Local, Wg

Global are trainable parameters.  

1
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} ,

,

max {

max { }

Local N Global
i i ih i h

Local N Global
i i i ig g

N

P

NFE W NFE W

PFE W

FE

PFEF WE

=

=

 = +
 

 = +
 

            (17) 

 

Then, we compute the attention correlations for each Max-pooling layer result pair 

through the MHC sub-layer, which bears a significant resemblance to the attention 

mechanism in the encoder. Finally, they are further processed by the Feed-Forward 

Network(FFN) and Mask softmax layer, resulting in a probability distribution of size 

N × N. This distribution will serve as the action distribution for the ordering of nodes 

in the solution. 

4 Reinforcement Learning Algorithm 

In this paper, we used n-step Proximal Policy Optimization(PPO) algorithm[16] to 

train the network model, which is a variant of the actor-critic reinforcement learning 

algorithm. The Actor is responsible for generating actions, while the Critic estimates 

the value function, consistent with the fundamental Actor-Critic architecture. In par-

ticular, both the actor network and the policy network are represented by the same 

network denoted as  . The critic network guides the updates of the actor network 
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by evaluating the output of the actor denoted as  v . We train policy network  and 

critic network v using Adam optimizer. In particular, we use the advantage function 

to guide policy updates, PPO achieves effective and stable policy optimization within 

the Actor-Critic architecture. Our critic network v is similar to that of actor in Ma et 

al.[12] as follows, consisting of multiple attention sub-layer, mean-pooling sub-layer, 

and feed-forward network used to assess the performance of the current policy. 

Algorithm 1 n-Step PPO 

Input: policy network   with parameters θ; critic network v  with parameters ∅; E epochs , B 

batches; step limit T. 

Output: θ and ∅ for the optimal actor network and critic network 

for epoch=1 to E do 

 Generate M problem instances randomly; 

 For b=1 to B do 

  Initialize random solutions {𝑝𝑖}, set 𝑠0 = {𝑝𝑖}; t ← 0; 

  while t <  T do 

   𝑡𝑠 = 𝑡;  

   while 𝐭 − 𝑡𝑠 < 𝑛 and not (t == T) do 

    Sample 𝑎𝑡 based on 𝜋𝜃(𝑎𝑡|𝑠𝑡); 

    receive reward 𝑟𝑡  and next state 𝑠𝑡+1; 

    t ← t + 1, 𝜋𝑜𝑙𝑑 ← 𝜋𝜃, 𝑣𝑜𝑙𝑑 ← 𝑣∅ 

    for k=1 to K do 

     Rt+1 = 𝑣∅ (st+1); 

     for i ϵ {t, t − 1, . . . , ts − 1} do 

      �̂�𝐢 ← 𝐫𝐢 + 𝛄�̂�𝐢+𝟏 

      �̂�𝑖 ← �̂�𝑖 − 𝑣∅ (si); 

     end for 

     θ ← θ + ∂θ∇𝐽𝑃𝑃𝑂(𝜃); 

     ∅ ← ∅ + ∂∅∇𝐿𝐵𝐿(∅); 

    end for 

   end while 

  end while 

 end for 

 ∂θ ← β ∂θ, ∂∅ ← β ∂∅; 

end for 

 

As shown in Algorithm 1, we train  and v for multiple E epochs until prede-

fined number of training steps is reached. For each batch, firstly, we randomly gener-

ate initial solutions for the instances and collect trajectories by interacting with the 

environment (line 7-10). Use the n-step returns to estimate advantages for each state-

action pair in the batch. Afterwards, PPO performs K epochs of updates for network 

 and v by its objective, the PPO objective function is defined as in Equation (19), 
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where the clip function is used to limit the range of policy variations to be within 

[1 ,1 ] − + , with tP  representing importance sampling. And the clip function is 

also used to constrain the change in the value function during updates to ensure stabil-

ity and prevent large policy changes, as shown in Eq. (20), and the error loss function 

is defined by Eq. (21). 

( | )
( ) ,

( | )

t t
t

old t t
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=            (18)
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t t old t old tv s clip v s v s v s    = − + ，                   (20) 

( )
2

ˆ ˆ( ) max ( )[ , ( ])clip

BL t t t ttL v s R v sE R  = − − ，                   (21) 

5 Experiments 

In order to prove the optimization and computational efficiency of the proposed CT 

architecture, we compare our CT with AM [9] and FER-AM[11], which are advanced 

learning based construction methods. We report results for both the greedy and the 

random versions of our CT model. We conducted comparative trials of the VRPSTW 

using datasets consisting of 20, 50, and 100 customers, the vehicle capacity values 

were set to 20, 40, and 50, respectively. For each instance, the customers were ran-

domly generated within a unit square grid [0,1] * [0,1] to ensure uniform distribution 

of coordinates. Similarly, the time windows were randomly generated within the unit 

time interval [0,1]. Additionally, the demand of the customer was sampled randomly 

from the set {0, 1, ..., 30}. The CT proposed in this paper is coded in Python and 

trained on a server equipped with RTX 3090 and Intel(R) Xeon(R) Platinum 8350C 

CPU at 2.60GHz. 

Significantly, to avoid memory overflow errors, we train 50 epochs for 

VRPSTW20, 42 epochs for VRPSTW50, 22 epochs for VRPSTW100. However, it 

can be seen from Table 2 that even with these limitations, our model is still the best 

performing of the three. With sufficient device memory, our model is highly likely to 

exhibit even better performance. 
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Table 2. Collaborative Transformer (CT) model vs baselines. The average value across all 

methods. 

 n=20 n=50 n=100 

Method Obj Gap Obj Gap Obj Gap 

CT(random, 

T=1500) 
13.6809 1.35% 35.2554 5.60% 61.6370 0.63% 

CT(random, 

T=2000) 
13.5279 0.21% 33.7399 1.06% 61.2502 0.00% 

CT(greedy, 

T=1500) 
13.7553 1.90% 33.8012 1.24% 62.2698 1.66% 

CT(greedy, 

T=2000) 
13.4991 0.00% 33.3861 0.00% 62.0093 1.24% 

FER-AM(random, 

T=1500) 
17.3620 28.62% 35.6004 6.63% 70.0081 14.30% 

AM(sampling) 18.1206 34.24% 36.6300 9.72% 72.0605 17.65% 

 

Table 3. Collaborative Transformer (CT) model vs baselines. The best value across all meth-

ods. 

 n=20 n=50 n=100 

Method Obj Gap Obj Gap Obj Gap 

CT(random, 

T=1500) 
11.6603 1.48% 25.2916 4.51% 50.6554 1.82% 

CT(random, 

T=2000) 
11.5266 0.31%  24.6191 1.73% 49.7515 0.00% 

CT(greedy, 

T=1500) 
11.6277 1.48% 24.7685 2.35% 53.9528 8.44% 

CT(greedy, 

T=2000) 
11.4905 0.00% 24.2002 0.00% 52.1592 4.84% 

FER-AM(random, 

T=1500) 
14.7477 28.35% 30.3318 25.34% 65.1173 30.89% 

AM(sampling) 18.1206  57.70% 36.6300  51.36% 72.0605  44.84% 

 

We compared the search progress curves of these methods in terms of iteration 

steps T = 1500, as shown in Fig. 2, where the horizontal coordinate is the iteration 

step and the vertical coordinate is the average of the best objective values so far for 

the examples used in Table 3. Since the solution obtained by AM is sampled by the 

policy network, it does not participate in the iteration step, but in order to have a 

clearer view of the performance of the CT model, we have likewise indicated the best 

value of AM(sampling) in the figure with a blue line segment. We can observe that 

the CT model significantly outperforms AM(sampling) and FER-AM in terms of 

convergence speed and obtains the best solution in a finite number of steps, which 

further verifies the effectiveness of our method. 
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(a)                                                              (b) 

 
(c) 

Fig. 2. Curves of searching progress for our CT and baselines including AM [9], FER-AM [11]. 

(a) VRPSTW20. (b) VRPSTW50. (c) VRPSTW100. 

 

6 Conclusions 

In this paper, in order to tackle the parcel delivery issues arising in the development 

of smart cities, we model the scenario as a VRPSTW. To solve this problem, we pro-

pose a Collaborative Transformer framework based on deep reinforcement learning 

architecture for VRPSTW that learns the node information and positional information 

separately and adjusts the network parameters through the n-step PPO algorithm. This 

approach mitigates incompatible associations and generates high-quality solutions for 

the problem. Experimental experiments confirm the superiority of our method against 

the traditional DRL model. However, due to the nature of feature embeddings, they 

can only utilize a single objective as the object function, which limits the CT model 

and cannot be directly applied to multi-objective problems. Therefore, improvements 

to both the model embedding section and the objective function will be key areas of 

future research.  
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