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Abstract. Pulmonary alveolus segmentation plays an important role in the diag-

nosis of alveolar emphysema and lobar pneumonia. Besides, if the alveoli could 

be accurately segmented in pathological images, the area of tumor beds in non-

small-cell lung cancers could be readily calculated and hence can help determine 

the severity of one's cancer. These factors render the segmentation of alveolar 

pathological images highly meaningful. However, we have not identified any ex-

isting publicly available dataset of alveolar pathological images and no existing 

methods focused on the segmentation of alveolus. Therefore, we first collected a 

substantial amount of data and curated it into a dataset called Pulmonary Alveo-

lus Pathology Image(PAPI). Then, we adopt several traditional segmentation 

methods on PAPI and found them performing poorly either on the whole slide or 

on edge details. Therefore, we innovate our method Convolutional Enhanced 

Transformer-based U-net (abbreviated as CE-TransUnet), which is a combina-

tion of improved U-net structure and our innovative CE-Transformer block. We 

circumspectly detect salient characteristics of the pulmonary alveolus and make 

counterpart improvements in both CE-Transformer blocks and Unet structure. 

Our experimental results have shown that these adjustments has made our model 

surpass the current common segmentation models in performance on PAPI and 

reach a Dice score of 95.31. We are also exploring the robustness of our model 

to adapt it to a wider range of scenarios. Dataset(currently under the process of 

going public, will be published once the process is over) and code are available 

at: https://github.com/DemonRain7/CE-TransUnet. 

Keywords: semantic segmentation, computer vision, pulmonary alveolus, med-

ical digital pathology image, transformer. 

1.1 Introduction 

While modern medical imaging infrastructures provide efficient assistance for clinical 

medical diagnosis, the generation of a 'massive' amount of medical image resources 

still poses challenges to precise diagnosis. For example, the vast number of lung scans 

directly leads to an increase in the workload of medical professionals due to lack of 
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help from current machines, thereby increasing the likelihood of missed diagnoses and 

misdiagnoses. Furthermore, detecting malignant tumors relies on pathological diagno-

sis, and traditional pathological diagnosis requires pathologists to analyze pathology 

slides one by one under a microscope, hence putting the diagnostic process under a 

certain degree of subjectivity. Eventually, the accuracy of diagnosis is directly related 

to the expertise of the pathologist, and a slight deviation in thought process may poten-

tially lead to diagnostic errors. 

In recent years, with the development of artificial intelligence and digital pathology, 

the significant potential of artificial intelligence in the diagnosis of various diseases has 

gradually emerged. For example, in the diagnosis of pulmonary diseases, cytopathology 

is a convenient and rapid method. It can be used for lung cancer screening or general 

examination. Artificial intelligence can integrate and analyze a large amount of infor-

mation in a short time, effectively improving the efficiency of pulmonary disease diag-

nosis. Obviously, artificial intelligence has become a powerful auxiliary diagnostic tool 

for pathology experts.  

The accurate identification and segmentation of pulmonary alveolus (abbreviated as 

alveolus) play a crucial role in assisting the diagnosis and treatment of common lung 

diseases. For instance, calculating the size and area of alveolus after segmentation can 

help determine the presence of alveolar emphysema [1]. Simultaneously, preliminary 

diagnosis based on the morphology and distribution of alveolus can be made for spe-

cific pathological subtypes, such as lobar pneumonia [1]. And the observation of alve-

olus also proves beneficial in diagnosing rare diseases, like bronchopulmonary isolation 

in children, where assessing characteristics such as alveolar enlargement or elongation 

serves as one of the criteria. 

Furthermore, the accurate identification of alveolus also provides a novel approach 

to identifying the tumor bed area in lung cancer. Traditionally, the tumor bed comprises 

interstitial reactions involving tumor cells, fibrosis, necrosis, and inflammation. How-

ever, due to the incomplete nature of lung sections in clinical settings, there may be 

residual normal lung tissue. Given that normal lung tissue is predominantly composed 

of alveolus, a precise alveolus identification allows the exact extraction of normal lung 

tissue areas in sections, which in turn helps determine the remaining tumor bed area 

[1]. 

However, no previous medical concerned model has focused on the segmentation of 

alveolus. Besides, we found that no existing widely-used medical segmentation models 

can reach the optimal level when identifying alveolus. Therefore, we thoroughly stud-

ied the characteristics of alveolar pathology images and selected appropriate modules 

based on those features to enhance their recognition capabilities. 

Research Contribution. Due to the relative poor segmentation capabilities on alve-

olus-related tasks of existing models in medical image segmentation and inspiration 

from a previous work [2], we have developed a segmentation network called Convolu-

tional Enhanced Transformer-based Unet (abbreviated as CE-TransUnet), which can 

capture more of the features from alveolus. Our experimental results demonstrate that 

CE-TransUnet excels in alveolar segmentation tasks with improved segmentation ac-

curacy and training efficiency compared to state-of-the-arts like nnUnet [3] and Swin-

Unet [4]. We believe that CE-TransUnet will bring thus new breakthroughs to alveolar 
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pathology image segmentation tasks as a powerful tool for medical diagnosis and patho-

logical research. 

Besides, since there is no extant publicly available datasets for alveoli, we have cre-

ated one called Pulmonary Alveolus Pathology Image Dataset (abbreviated as PAPI). 

The dataset originates from lung slices obtained from West China Hospital, which 

boasts the largest and earliest medical testing center in China to have received accredi-

tation from the College of American Pathologists (CAP), with instructions from the 

professors there. 

2 Related Work 

2.1 CNN-Based Medical Image Segmentation 

Convolutional Neural Networks (CNNs) [5] have proven to be highly effective in med-

ical image segmentation, with variants like FCN [6] and U-Net [7] leading the field. 

Advanced architectures, such as UNet++ [8] with nested and dense skip connections, 

Attention U-Net [9] featuring attention gates for target focus, and Res-UNet [10] incor-

porating weighted attention mechanisms and ResNet-based skip connections, have 

shown significant improvements. R2U-Net [11], KiU-Net [12], DoubleU-Net [13], and 

FANet [14] further demonstrate the versatility of CNNs in addressing specific chal-

lenges in medical image segmentation. However, despite their success, CNN-based 

methods face limitations in modeling long-range dependencies and establishing global 

context connections. 

2.2 Vision Transformer 

Expanding upon the transformative success of transformers in NLP [15], Dosovitskiy 

et al. introduced the Vision Trans-former (ViT). ViT achieved state-of-the-art perfor-

mance in image classification tasks by incorporating self-attention mechanisms to cap-

ture global information. In an effort to enhance efficiency and reduce dependence on 

large datasets for generalization, several derivative vision transformers have been pro-

posed [16,17,18]. Vision transformers have demonstrated impressive results in various 

vision tasks, in-cluding providing end-to-end transformer-based models for object de-

tection, as well as for semantic and instance segmentation[19,20,21]. In summary, the 

success of Vision Trans-former and its derivatives extends beyond image classification, 

showcasing re-markable performance in tasks such as image segmentation. These trans-

former-based models have proven effective in capturing intricate features and spatial 

dependencies, highlighting their versatility across a spectrum of computer vision appli-

cations. 

2.3 SW-MSA in Swin Transformer for Segmentation 

Swin-Transformer introduces a pivotal innovation with its window-based multi-head 

self-attention (W-MSA), demonstrating linear computational complexity. Shifted 
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window-based MSA (SW-MSA), and it achieves state-of-the-art perfor-mance in im-

age recognition and dense prediction tasks such as object detection and semantic seg-

mentation. This design choice proves highly effective in various CV tasks, including 

image recognition, object detection, and semantic segmenta-tion. In the context of se-

mantic segmentation, SETR [22] adopts transformer as an encoder, showcasing the ef-

ficacy of transformers in sequence-to-sequence prediction for segmentation tasks. Seg-

menter utilizes ViT as the encoder and introduces a mask transformer decoder, high-

lighting the ver-satility of transformer-based architectures in segmentation. TransFuse 

[23], MedT [24], and MCTrans [25] provide different approaches to integrating trans-

formers and CNNs for biomedical segmentation. Unlike most previous trans-former-

based models, Swin Transformer is flexible to be a general-purpose back-bone network 

by introducing the hierarchical architecture for dense prediction. 

3 Method 

3.1 Architecture Overview  

An overview and module details of the proposed CE-TransUnet are respectively pre-

sented in Fig. 1 and Fig. 2. The whole structure is depicted in Fig. 1 , and the intricate 

details of the model are elucidated in Fig. 2. We retained much of the native Unet en-

coder layers because our experiment shows the preeminence of original Unet structure 

(our experiment results are shown in 4.3), and there is empirical evidence suggesting 

that such improvement permits better results compared to introducing transformer lay-

ers early in the encoding layers [26]. Besides, due to the clear edge features in alveolar 

images (which will be elaborated on in detail in 3.2) and the strong edge detection ca-

pability of convolutional layers [27], we have integrated more convolutional elements 

into the model, which will be further elaborated in 3.2. 

As a result, an input 𝑋 ∈ 𝑅𝐻×𝑊×𝐶 with a spatial resolution of 𝐻 × 𝑊 and channel 𝐶 

encounters the incorporated CE-Transformer block only after passing several convolu-

tional and convolutional down-sampling modules. After that, we repetitively imple-

ment convolutional down-sampling layers as well as CE-Transformer block for several 

times as the encoder and bottleneck of our model. Eventually, 𝑋 goes through the Unet 

decoder and features are derived. 

3.2 Convolution-Enhanced Elements 

In this subsection, we will first demonstrate the conspicuous edge features of alveo-

lus, and then thoroughly exhibit the convolutional improvements we designed and 

adopted. As mentioned in 3.1, we pursue convolutional integrations since they could 

aid our model in better identifying the prominent edge features of pulmonary pathology 

images [27] and help reduce computational complexity as well [28]. 

We conducted statistical analysis of Local Binary Patterns (LBP) [29] on the original 

images of our entire pulmonary alveoli dataset. The results of this analysis are depicted 

in Fig. 3, and you can also go to Fig. 6 to get an overview of alveolar pathology images. 
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Fig. 1. Overview of CE-TransUnet Structure 

The x-axis legend, from LBP-Code1 to LBP-Code9, represents patterns ranging 

from 00000000, 00000001, 00000011, ... to 11111111 respectively. The y-axis repre-

sents the proportion of each pattern. The results from Fig. 3 indicate that data corre-

sponding to LBP-Code5 pattern accounts for a significant proportion, reaching 13.07%. 

This suggests that the edge features in pulmonary pathological images are remarkably 

prominent. The heightened ubiquity of patterns in LBP-Code1 stems from the consid-

erable presence of pulmonary alveoli, our segmentation subject, within the overall im-

age. Moreover, the smoothness inherent to the alveolar interiors aligns with the charac-

teristics of LBP-Code1 patterns. 
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Fig. 2. Module Details 

We will then delineate our convolution-enhanced methods in the followings: 

 (Depthwise) Convolution-Enhanced Multi-Layer Perceptron. We have replace 

the original two linear layers with convolutional layers in the traditional MLP module 

in CE-Transformer Block (which will be introduced in 3.3) both to extract features of 

alveolus more precisely and to reduce more computational burden. Also, depthwise 

convolutional layers are introduced in MLP. We parallelized it with the non-depthwise 

convolution-improved MLP in our model, which could provide a different scope from 

the normal convolution channel and also effectively reduce the number of parameters. 

Hence, the features of alveoli can be extracted by the model across a broader spectrum 

of scales, resulting in a more precise output. 

Convolution-Enhanced (S)W-MSA. We adopted a convolution-enhanced self-at-

tention mechanism in CE-Transformer Block (which will be introduced in 3.3), with 

empirical evidence demonstrating its feasibility and superiority, which can tremen-

dously reduce computational complexity and help the attention module to obtain more 

effective features [28]. 
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Fig. 3. LBP Statistics of Pulmonary Alveolus Pathology Images 

Convolutional Downsampling Module. We adopted convolutional layers instead 

of pooling layers for down-sampling operations to let the model learn more features 

and thus obtain an increased receptive field. Long-term researches illustrate that con-

volutional down-sampling surpasses pooling in image segmentation tasks. 

3.3 CE-Transformer Block 

Transformer is renowned for its powerful capability to capture long-range dependen-

cies. It means that it could partition images into patches and employs additional posi-

tional encodings to model the relative spatial relationships between them, and then cap-

ture dependencies even among distant patches. As depicted in Fig. 3, the prevalence of 

the LBP-Code1 pattern suggests widespread distribution of alveolar cavity areas in pul-

monary pathology images. The segmentation objective in pulmonary pathology images 

is to identify and segment alveolar cavities, and as described in 3.2, the edge features 

of alveolar cavities also occupy a significant portion of the image. Furthermore, numer-

ous experiments and papers have demonstrated the powerful portability of the Trans-

former, with precedents showing its adaptability to the Unet architecture [26]. There-

fore, the introduction of the Transformer facilitates the recognition of dependencies 

among high-frequency features such as cavities and edges in the image, thereby aiding 

in the segmentation of pulmonary alveolar pathology images. 

Our CE-Transformer Block first adopts linear layer, and then let normalized data get 

through (shifted) convolution-enhanced window-based multi-head self-attention 

((S)CW-MSA) layer to capture multi-scale features. The (S)CW-MSA module ensures 

lower computational cost and more focus laid on information communications between 

patches, hence preventing feature loss [28]. The feature map obtained through (S)CW-

MSA are added to the original feature map, and then further input into the LN layer for 

normalization. After that, our (depthwise) convolution-enhanced multi-layer 
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perceptron ((DW)Conv-MLP) is converged and further features are extracted. The final 

result is also added to the feature map obtained before the second LN layer. Based on 

the structure of our CE-Transformer Block, we can derive the following model work-

flow: 

 z l̂ = CW-MSA (LN(z(l−1))) + z(l−1), (1) 

 z l̅ = DWConv-MLP (LN(z l̂)) + z l̂, (2) 

 z l̇ = Conv-MLP (LN(z l̅)) + z l̅, (3) 

 zl = z l̂ + z l̅ + z l̇, (4) 

 z(l+1)̂ = SCW-MSA (LN(zl)) + z(l), (5) 

 z(l+1)̅̅ ̅̅ ̅̅ ̅ = DWConv-MLP (LN(z(l+1)̂)) + z(l+1)̂, (6) 

 z(l+1)̇ = Conv-MLP(LN(z(l+1)̅̅ ̅̅ ̅̅ ̅)) + z(l+1)̅̅ ̅̅ ̅̅ ̅, (7) 

 z(l+1) = z(l+1)̂ + z(l+1)̅̅ ̅̅ ̅̅ ̅ + z(l+1)̇  (8) 

In the equations above, z l̂ , z l̅ and  zl̇  respectively correspond to the outcome of 

(S)CW-MSA, DWConv-MLP and Conv-MLP module, while zl represents the sum of 

z l̂, z l̅ and zl̇ , the same is for zl+1. 

3.4 Encoder 

We made some adjustments to the structure of the encoding layer in our model, transi-

tioning from some of the convolutional layers and pooling layers to CE-Transformer 

blocks and convolutional down-sampling modules respectively. We reserve some con-

volutional layers as the input part of our model because evidence has shown that intro-

ducing transformer blocks early does not yield significant positive effects on feature 

extraction. 

3.5 Bottleneck 

We converge two CE-Transformer blocks as the bottleneck of our U-shaped model. 

4 Experiment and Results 

In this section, we will demonstrate how we get our dataset and our experiment settings. 

In the former section, we will discuss how we process the original alveolar data to make 

it a high-quality dataset. After that, we will give our experiment details and compare 

our CE-TransUnet with the classic and basic medical image segmentation model Unet,  
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Fig. 4. Demonstration and Comparison of Image Enhancement Methods 

 

some state-of-the-arts model like nnUnet, etc. The results are evaluated through the 

DICE coefficient to show different models' segmentation accuracy. 

4.1 Dataset 

In this subsection, we will first provide an overview of the dataset, then the reasons for 

creating and subsequently making publicly available the dataset, and finally, methods 

we adopted for image enhancement and data augmentation. 

An Overview of Pulmonary Alveolus Pathology Image Dataset (abbreviated as 

PAPI). After preprocessing, our pathology alveolus dataset consists of 6056 training 

samples and 640 testing samples. All 6696 data points have been annotated. You can  
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Fig. 5. Demonstration of Data Augmentation Methods 

refer to Fig. 6 to see our raw data along with the corresponding labels. 

Backgrounds. Due to factors such as the high cost of annotation, patient privacy, 

policy regulations, and the relatively niche nature of the field, medical image datasets 

often exist in a small-sample state. This, in turn, results in a scarcity of medical-related 

datasets available online, which vary widely in terms of size and quality. Even when 

obtaining samples directly from specialized medical institutions, it is challenging to 

obtain a comprehensive dataset with high capacity and quality at a low economic and 

time cost. Therefore, expanding the dataset and applying data augmentation techniques 

are necessary operations that enable convolutional neural networks to learn more di-

verse sample features in subsequent experiments, thereby further improving their over-

all performance. 

Under the guidance of a professor in West China Hospital, our group members con-

ducted an on-site investigation of the pathological image processing procedures. We 

studied the pathological sections of pulmonary cases and received instruction from pro-

fessional doctors. After carefully reviewing a large number of slices under their guid-

ance, we identified the required peripheral lung, distant lung, and residual lung slices, 

which have later been put into experiments. 

Image enhancement. Due to the large number of segmentation objects contained in 

each pathological image obtained from the laboratory for this project, as well as their 

high resolution, it is not suitable to directly process them using segmentation networks. 

Also, simply letting machines crop these images made them too vague for our model 

to identify. Therefore, we manually scanned and selected those available sec-

tions(which indeed takes us lots of time), and first ran numerous filters to enhance the 

pixel quality of the images. Furthermore, when the cropping size at the edges is not 

large enough, we can overlap images appropriately, meaning there may be larger  



CE-TransUnet    11 

 

Fig. 6. Demonstration of Pulmonary Alveolus Pathology Image Dataset (PAPI) 

overlapping similar domains between the images collected from nearby regions to ob-

tain images that meet the requirements. 

In order to eliminate as much noises as possible, we have tested both frequency do-

main denoising methods like Ideal Low-pass Filter [32], Butterworth Low-pass Filter 

[33] and Gaussian Low-pass Filter [34], as well as spatial domain denoising methods 

like Average Filter [35], Gaussian Filter [36], Median Filter [37] and Bilateral Filter 

[38]. Eventually, we agreed on the Bilateral one as the best option, with the given ex-

periment results(demonstrated in Fig. 4). 

In addition, we employed contrast enhancement techniques to highlight the features 

of alveoli, thus increasing the differentiation from the surrounding edges. ESR-GAN 

[30] may also work if you need a dataset of higher resolution. 

Data augmentation. At last, we adopted several methods to enlarge our datasets. 

Offline data augmentation methods will be employed to expand and improve the da-

taset. In this project, we randomly rotated the images by 90, 180 or 270 degrees. In 

addition, Cycle-GAN [31] is introduced for help as well, for it is easy for machines to 

acquire the characteristics of alveolar, which has a nearly-round shape. After initial 

training on annotated samples, Cycle-GAN will generate alveolar images which, 

though, have similar structures to the original one, but obtain differernt and various 

colour details, hence increasing the robustness of the dataset. This augmentation will 

further enhance the final recognition accuracy of the subsequent convolutional neural 

network (CNN). It will allow for more precise extraction of relevant features during 

alveolar segmentation, making it more robust. Both GAN-generated and Offline-

method-generated results are shown in Fig. 5. 
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Fig. 7. Segmentation Results of Different Methods 

4.2 Implementation Details 

We train our CE-TransUnet on a Nvidia 3090 GPU (which has 24 GB memory) with 

Python 3.8 and Pytorch 2.0 as basic environment setup. To ensure fair comparisons, 

CE-TransUnet and all the other models are trained with the same training setup. We 

used the original code for each method, and input size is kept as 224 × 224, and learn-

ing rate as well as batch size is set to 1e − 2 and 24 respectively. Additionally, we adopt 

Adam as the optimizer for training, and IOU as well as Dice coefficient for evaluation. 

We choose CrossEntropyLoss as our loss function. All these models are trained for 500 

epochs, and the best model is selected from the checkpoints. 
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Table 1. Performance Comparison between Each Model on PAPI 

Segmentation 

Models 

Evaluation Metrics 
Dice Score(%) Accuracy(%) IOU(%) 

Unet 94.86 97.66 92.05 

nnUnet-v2 89.00 89.71 81.34 

Swin-Unet 92.10 96.24 87.02 

MT-UNet 64.20 74.19 49.67 

SSFormer 87.14 93.58 79.66 

TransUnet 92.49 96.46 87.66 

CE-TransUnet B 

CE-TransUnet VT 

93.89 

95.31 

97.07 

97.94 

90.29 

92.87 

Table 2. Ablation Study on Input Size 

Input 

Size 

Evaluation Metrics 
Dice Score(%) Accuracy(%) IOU(%) 

224 

448 

95.31 

94.92 

97.94 

97.71 

92.87 

92.16 

512 77.97 87.73 66.00 

Table 3. Ablation Study on Skip Connections 

Number of 

Skip Connections 

Evaluation Metrics 
Dice Score(%) Accuracy(%) IOU(%) 

0 67.29 81.15 52.16 

1 

2 

3 

4 

5 

94.80 

36.58 

95.10 

95.31 

95.06 

97.63 

65.12 

97.81 

97.94 

97.79 

91.91 

23.82 

92.48 

92.87 

92.42 

4.3 Main Results 

We compare our CE-TransUnet with some classical Unet-architecture models, as well 

as state-of-the-art methods like nnUnet, Swin-Unet on our alveolar dataset. All these 

methods are trained with the released codes from their respective authors for fair play. 

You can refer to the Transformer Set section in 4.4 to get a detailed explanation for CE-

TransUnet B and CE-TransUnet VT occurred in Table 1. 

 

Quantitative Comparison. From the results in Table 1, we notice that CE-

TransUnet attains the highest overall evaluation scores, with a Dice score of 95.31%, 

Accuracy of 97.94%, and IOU score of 92.87%. This suggests its superior segmenta-

tion capability compared to other methods in the table. Upon reviewing the table, it is 

evident that other state-of-the-art methods like Swin-Unet and nnUnet perform even 

worse than the baseline Unet in the task of alveolar segmentation. We assumes the rea-

son Unet works such well is that, as mentioned before in 3.2, convolutional layers  
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Table 4. Ablation Study on Transformer Block Set 

Model 

Scale 

Model 

Params 

Evaluation Metrics 
Dice Score(%) Accuracy(%) IOU(%) 

CE-VT 58.46M 95.31 97.94 92.87 

CE-T 

CE-B 

CE-L 

CE-VL 

83.82M 

65.38M 

71.78M 

109.3M 

95.09 

93.89 

93.75 

93.75 

97.80 

97.07 

97.04 

97.00 

92.47 

90.29 

90.02 

90.06 

 

 

Fig. 8. Comparison of Multiple Instance Segmentation Results Based on Unet and CE-

TransUnet 

outperforms the transformer modules in a PAPI, where one picture contains only one 

or few objects. To figure this out, we have done an ablation study (details are presented 

in 4.4) and found that CE-VT, the one with the most transformer blocks replaced by 

convolutional layers, performs better, which means that convolutional layers are indeed 

a well-performed fit for PAPI.  

The Dice score of most of the models remains near 90 % . Nevertheless, CE-

TransUnet achieves a nearly 5-percentage-point enhancement, which indicates that it 

can better learn the features of the object with convolutional improvements.  

Furthermore, despite the minor differences in DICE scores between Unet and our 

model, the inferior performance of Unet is highlighted in multiple instance tasks, which 

will be discussed in detail in the subsequent section on Qualitative Comparison.  
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Qualitative Comparison. We provide visual examples of segmentation results for 

each model in Fig. 7. It is obvious that the segmentation results of our model preserve 

the utmost edge and inner features, and matches the ground truth most. Meanwhile, 

Unet, ssFormer, TransUnet and Swin-Unet also reach a nearly-perfect performance, yet 

minute flaws still exist. The results produced by nnUnet and MTUnet indicate that they 

are not fit for alveoli segmentation tasks. 

As mentioned earlier, although there's little difference in DICE scores between Unet 

and our model in quantitative comparison, the disadvantage of Unet in multiple instance 

segmentation tasks is quite evident. As illustrated in Fig. 8, Unet fails to segment two 

closely spaced alveoli without a continuous purple wall separating them in pathological 

images. Unet tends to connect the mask images of two exclusive alveoli through alve-

olar cavities. This demonstrates that our model can capture deeper features about the 

alveoli, rather than just segmenting based on the features presented in pathological im-

ages. 

4.4 Ablation Study 

Extensive experiments are conducted to determine which factor may well influence the 

segmentation result of CE-TransUnet. Input size, skip connections as well as the num-

ber of the inserted transformer blocks will be analyzed below. The dataset for this sec-

tion is also PAPI (Pulmonary Alveolus Pathology Image Dataset). 

Input Size. As shown in Table 2, CE-VT has witnessed a sharp decline in its per-

formance in the case where only the input size rises from 224 × 224, 448 × 448 to 

512 × 512. Since 512 is not a multiple of 7 and the window size in (S)W-MSA is set 

to a multiple of 7, complex padding issues are hence introduced, resulting in such poor 

training performance even though more details are revealed through an enhanced input 

resolution. We eventually adopt 224 × 224 as input size due to its superior perfor-

mance. 

 Skip connections. We demonstrate the effect of the number of skip connections in 

Table 3. The skip connections of our CE-TransUnet are implanted at places of the 1, 

1/2, 1/4, 1/8, and 1/16 resolution scales and we gradually delete the skip connections 

from top to bottom. It is evident that deep skip connections have a substantial impact 

on result accuracy, as they convey a more abundant and critical feature information. In 

contrast, shallow skip connections exert a relatively minor influence. We found that 

retaining the last two skip connections resulted in poor performance, but when only the 

last one was retained, the performance improved. Based on experimental results, we 

ultimately chose a model without the topmost skip connection. 

Transformer Set. The impact of different transformer block sets on test accuracy 

can be observed from Table 4. CE-VeryTiny(CE-VT), CE-Tiny(CE-T), CE-Base(CE-

B), CE-Large(CE-L), CE-VeryLarge(CE-VL) correspond to combinations of 2,2, 2,4, 

2,2,4,2, 2,2,6,2 and 2,2,18,2, respectively. The results demonstrate that these various 

combinations have yielded worse impacts on the outcomes with more transformer mod-

ules included, and the model complexity generally grows tremendously. The reason 

why CE-T has such a large number of parameters is because it incorporates four trans-

former blocks at the bottleneck, where the volume of parameters to be computed 
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becomes significantly substantial. CE-VT is the lightest version with the best outcome. 

Therefore, we adopt CE-VT as our final version for alveoli segmentation. We have 

noticed that the more convolutional layers are employed to substitute transformer 

blocks, the better the result, which is in consistence to our aforementioned suspect that 

convolutional layers are extremely fit for the segmentation of objects with clear and 

salient edge features. 

5 Conclusion  

In this paper, we have introduced our innovative Pulmonary Alveolus Pathology Image 

dataset (PAPI). Besides, we have proposed our convolutional enhanced U-shaped 

method with improved transformer blocks called Convolutional Enhanced Trans-

former-based Unet (abbreviated as CE-TransUnet), which underwent targeted improve-

ments based on the characteristics of alveoli. Through 4.4 we know that CE-VT with 4 

skip connections and 224 as input size performs the best in PAPI. It keeps a simple 

structure while achieving better performance in PAPI with relatively low computational 

burden. It also demonstrates outstanding performance in quantitative testing. For future 

improvements, we plan to make both our method more robust and testify whether CE-

TransUnet could perform better in other medical segmentation tasks in the future. We 

hope our PAPI and CE-TransUnet could make a difference to the pulmonary alveolus-

concerned work. 
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