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Abstract. Traditional object detection methods typically require large-scale an-

notated training data. However, in some areas, acquiring a large amount of anno-

tated data can be extremely challenging. To address the issue of Few-Shot Object 

Detection (FSOD), researchers have introduced the concept of meta-learning. 

Currently, meta-learning is widely applied in two-stage object detection. We 

have identified several key issues affecting the accuracy of FSOD, including lim-

ited data, insufficient feature extraction capabilities, and the aggregation method 

between different features. To more finely extract features and better aggregate 

features, we separate the support branch and query branch of Meta-RCNN, form-

ing two parallel branches. We create one mixed feature processing model for few 

shot object detection. We put the Feature Pyramid Network (FPN) only into the 

backbone network of the query branch, creating a strong baseline to enhance the 

extraction capabilities for images of different dimensions. Additionally, for the 

first time in FSOD. We use a Variational Autoencoder (VAE) model to extract 

features, which achieves data augmentation and improves the generalization abil-

ity of the network by adding the VAE to the support branch to obtain more useful 

information in the support set. In addition to this, we design a module 𝑅 to ag-

gregate the output support image features with the query image features on the 

query branch. The aggregated results are fed into the detection head of the object 

detection process. Experimental results demonstrate that the proposed method 

exhibits good performance. Following the experimental settings for FSOD, we 

conducted extensive experiments on the PASCAL VOC dataset, showing that our 

method is superior to other methods currently available and achieves very satis-

factory results. 

Keywords: Few-Shot Object Detection, Feature Pyramid Network, Variational 

Autoencoder. 

1 Introduction 

With the continuous development in the field of computer vision, research based on 

images is gradually progressing [1][2]. Traditional object detection based on deep 

learning has achieved good performance. Object detection models require many images 
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and annotations, such as bounding boxes and class labels. Due to the detection perfor-

mance depends heavily on the number of images and annotations, it is difficult for the 

model to achieve good training results in case of insufficient data. The core challenge 

of FSOD is to learn and accomplish the task of object detection on a limited dataset. 

Therefore, various methods have been proposed to address the FSOD problem, includ-

ing meta-learning, metric learning, and fine-tuning. In this paper, we will specifically 

focus on meta-learning-based methods, using Meta R-CNN[3] as the baseline network 

for exploring FSOD. We found that the ultimate challenge of these methods is how to 

extract more information from the dataset and fully utilize the useful information. 

Most FSOD algorithms based on meta-learning are built upon Faster-RCNN [4], 

where the feature maps pass through the Region Proposal Network (RPN) after the 

backbone network and are directly fed into the detection head via pooling layers. Since 

the object sizes in Pascal VOC images vary slightly, using only the C4 layer of the 

backbone network can yield satisfactory results. However, in datasets where objects 

vary significantly in size, the network's performance is affected, resulting in many in-

stances of false positives and false negatives. To better address the issue of small object 

detection in FSOD, we introduce the combination of FPN with existing meta-learning 

methods, which serves as a strong baseline. Compared to methods solely relying on the 

C4 layer, this enhancement can better handle datasets with large scale variations. FPN 

works by constructing FPN to handle feature information at different scales, improving 

the adaptability of the object detection model to scale variations. The main idea of FPN 

is to establish a top-down feature pyramid structure in deep neural networks, allowing 

the model to simultaneously acquire features from both low-level and high-level layers, 

thus better capturing the features of objects at different scales. 

Meanwhile, due to the lack of data, the model is prone to overfitting, and we believe 

that the simplest way to alleviate this problem is to annotate the images, but it is inef-

ficient in terms of time and cost. Therefore, we consider using data augmentation meth-

ods, which mainly include image processing methods and deep learning methods. In 

previous studies, researchers used GANs [5-8] for data enhancement. GANs can gen-

erate real images that are closer to the original, whereas VAEs are more concerned with 

the well-structured latent space of the image. As a result, VAE[9] models are often used 

in the field of image generation compared to GANs. In FSOD, it is necessary to extract 

more hidden features from the dataset to enrich the information passed to the detection 

head. Therefore, in this paper, we chose to incorporate the VAE model into the support 

branch of the meta-learning model so that the network can learn more features from the 

support set. VAE is a generative model that focuses on learning the latent distribution 

of data. In FSOD tasks, due to the limited number of samples, learned feature represen-

tations become particularly crucial. Its structure consists of an encoder and a decoder, 

which can learn the latent representations of support set images, capturing key features 

Bin the images and helping to improve the model's generalization ability in Few-Shot 

scenarios. Additionally, the decoder part of VAE can be used to generate new samples 

with a similar distribution to the support set images. This effectively performs data 

augmentation by generating variants of support set samples during the training process, 

thereby effectively expanding the training data and enhancing the model's robustness 
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to various changes. Data augmentation is crucial in FSOD because limited samples may 

not cover various scenarios and variations. 

To evaluate our model, we conducted experiments on the PASCAL VOC dataset to 

validate the effectiveness of our approach. Our main contributions are: 

- We created a strong baseline network by incorporating the FPN only into the query 

branch to adapt to datasets with large scale variations. 

- We first introduced the VAE model is added to the support branch of meta-learning 

FSOD and the VAE model is used to extract more image information to mine out the 

hidden features from the data images. 

- We created three kinds of different models to aggregate the output results, and 

ultimately opted for the simplest one, which uses a fully connected layer to aggregate 

features and feed them into the detection head. 

 

2 Related work  

2.1 Generic Object Detection 

Traditional object detectors are typically categorized into single-stage and two-stage 

detectors. Single-stage detectors like the YOLO series[10]-[13] utilize backbone net-

works for feature extraction and directly perform classification and bounding box re-

gression on the extracted feature maps. In contrast, two-stage detectors, such as R-CNN 

[16], Fast R-CNN [17], and the popular Faster R-CNN [5], upon which many recent 

FSOD methods are built, usually employ ResNet [18] as the backbone. In recent years, 

Transformer [19] technology, which has achieved significant success in natural lan-

guage processing, has also been successfully applied to object detection. Notably, 

DETR [20] has been introduced. However, these detectors typically struggle to achieve 

satisfactory results in Few-Shot scenarios due to the need to handle annotations for a 

large number of object instances in practical applications. 

2.2 Few-Shot Object Detection 

FSOD is a significant issue in the field of computer vision. There are several main-

stream approaches to address this problem: 1. Metric learning  2. Fine-tuning  3. Meta-

learning  and 4. Transfer learning. Transfer learning refers to the pre-training of net-

work weights on a baseline dataset to enhance generalization ability in new domains 

with limited data. When applied to specific tasks, only a few iterations are needed to 

achieve excellent performance in new tasks. Taking the work of Yan et al. [3] as an 

example, they adopted a meta-learning framework for FSOD, using Faster/Mask R-

CNN as the base and proposing Meta R-CNN. This method includes a support branch 

for acquiring category attention vectors, which, combined with RoI features, extracts 

new predictive features for object detection. In other approaches, TFA [21] considers 

the Faster R-CNN backbone network as category-agnostic, requiring only fine-tuning 
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of the detector's last layer (including category classification and bounding box regres-

sion) to transfer feature information from base classes to new classes and achieve per-

formance far beyond previous methods. To address misclassification issues, FSCE [22] 

introduces contrastive learning based on TFA to optimize the feature embedding space, 

making instances of the same category closer in feature space and instances of different 

categories farther apart. In previous studies, researchers used GANs [5] with dual-chan-

nel convolution, discriminator, and generator to generate additional information for 

data augmentation. However, GANs lack effective capabilities for extracting hidden 

features. Therefore, we chose to use VAE for feature extraction on the support branch's 

data images. 

 

3 Method 

In this section, we first introduce the problem setting regarding FSOD and then describe 

our motivation and the main architecture of the network. 

3.1 Problem definition 

This paper uses the FSOD code collection MMfewshot[23] and follows the standard 

settings of FSOD based on meta-learning in this work. Assuming there is a training 

dataset  𝐷𝑏𝑎𝑠𝑒 ∪ 𝐷𝑛𝑜𝑣𝑒𝑙 , the data is divided into two classes, one is 𝐶𝑏𝑎𝑠𝑒, and the other 

is  𝐷𝑏𝑎𝑠𝑒. The base class and the novel class are two disjoint categories. The training 

𝐷𝑏𝑎𝑠𝑒   contains sufficient  𝐶𝑏𝑎𝑠𝑒. FSOD aims to detect objects from both the base da-

taset  𝐷𝑏𝑎𝑠𝑒 (containing a large number of annotated objects from 𝐶𝑏𝑎𝑠𝑒) and the new 

dataset 𝐷𝑛𝑜𝑣𝑒𝑙  (containing very few annotated objects from 𝐶𝑛𝑜𝑣𝑒𝑙) by learning. In the 

K-shot object detection task, each class from 𝐶𝑛𝑜𝑣𝑒𝑙  has K annotated object instances, 

but the number is relatively small compared to 𝐾 ∙∣ 𝐶𝑛𝑜𝑣𝑒𝑙|. For meta-learning, 𝑀𝑖𝑛𝑖𝑡  

is first trained on 𝐷𝑏𝑎𝑠𝑒  to obtain a basic model, denoted as 𝑀𝑏𝑎𝑠𝑒. Typically, a scenario 

training scheme is used, where each e simulates an N-way-K-shot setting, called meta-

training. In each e (also known as a few-shot task), the model is trained on a random 

subset 𝐷𝑚𝑒𝑡𝑎
𝑒 ∪ 𝐷𝑏𝑎𝑠𝑒  of K samples ∣ 𝐷𝑚𝑒𝑡𝑎

𝑒 ∣= 𝐾 ∙ 𝑁 from N classes. Therefore, the 

model typically needs to learn how to classify based on the input. Finally, the model 

𝑀𝑏𝑎𝑠𝑒  is fine-tuned through meta-fine-tuning for the final task training, obtaining 

𝑀𝑓𝑖𝑛𝑎𝑙 . In this project, the finally trained model is applied to a test dataset containing 

both novel and base classes. The process is shown in Formula 1. 

 
meta baseD

e 1

funetuneDD

init base final
E

M M M


= 
→→→ →  (1) 

3.2 Motivation 

We use two-stage Faster-RCNN network as our backbone network. Based on previ-

ous research findings, this network's performance is not satisfactory for datasets with 
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significant scale variations like the COCO dataset, objects often vary in size, leading to 

many false positives and negatives. As objects in Pascal VOC images exhibit less var-

iation in size, and thus using only the C4 layer of the backbone network proves effec-

tive. To better detect small objects in FSOD, we need to add a network to better extract 

images of different scales. The FPN upsamples feature maps from each stage in a top-

down path to generate multi-scale feature maps. Bottom-up paths enhance the features 

at each stage by connecting them horizontally, thus helping network learning to make 

accurate location and category predictions about the target. Therefore this paper intro-

duces the FPN to be used in conjunction with existing meta-learning methods. Mean-

while, we found that FSOD algorithms work on mining the detail information of sup-

port branches and query branches and utilize it for transferring into the detection header. 

We created a mixed feature processing module, in FSOD, hidden features must be ex-

tracted from the dataset to make the information transmitted into the detection head 

richer, in order to further mine the information in the support set, we merge the VAE 

model into the support branch of the meta-learning model to enable the network to learn 

more features from the support set. By learning distributions in the latent space, VAE 

helps to capture shared and differential features between categories, making the model 

better adapted to new categories. This capability allows the model to perform well in 

the face of both limited samples and new categories, providing strong support for FSOD 

tasks. 

3.3 Proposed Method 

In this paper, the focus is on meta-learning-based methods. However, on the 

COCO dataset, traditional meta-learning-based methods cannot achieve comparable 

performance to transfer learning-based methods, and this difference can be attributed 

to the fact that meta-learning-based methods utilize only the C4 layer for RoI pooling. 

To bridge this gap, this paper adds FPN to the support branch of meta-learning-based 

 

Fig. 1. Mixed feature processing model 

methods since transfer learning-based methods use a FPN to enhance multi-scale fea-

ture extraction. This network is constructed on the basis of Meta-RCNN, and its meta-

network actually shares the same backbone as Faster-RCNN, which contains two key 



6  Qian et al. 

branches, the query branch and the support branch. Due to the introduction of the FPN, 

we enhance the experimental results on the VOC dataset. However, in this paper, we 

choose to add the FPN to the query branch only, due to the complex feature fusion 

problem involved in support branches to generate multiple features. With the introduc-

tion of this innovation, the model performance in this paper is significantly improved. 

In addition, emphasize the aggregation between support features and query features. 

We built a powerful feature extraction module. Figure 1 shows the general structure of 

the network in this work. 

This network, based on Meta-RCNN as the baseline, divides the network into two 

parts: the support branch and the query branch. Except for adding the FPN network to 

the query branch, the backbone network is shared between the two branches. This work 

employs the ResNet101 network to construct the backbone network, as shown in Figure 

1. The input of the support set is annotated images, while the input of the query set is 

original images without any annotations. The VAE model is introduced into the support 

branch to extract deeper semantic information from the support set. Initially, the images 

of the support set are input into the backbone, and the features 𝑆 of the support set are 

obtained through RPN. Then, the features 𝑆 are input into the VAE module, where they 

are transformed into a class distribution 𝑁 using the encoder of the VAE module. Here, 

𝑁 follows a normal distribution 𝒩(𝜇, 𝜎2), and variational features 𝑧 are sampled from 

𝑁. Finally, the features 𝑆′  are output through the decoder. The obtained 𝑆′  and the 

query features 𝑄 from the query branch are input into the 𝑅 module for the final feature 

fusion step. The fused results are then input into the detection head for subsequent de-

tection. This paper tests several types of 𝑅 modules and identifies the optimal approach, 

which improves the performance effectively. 

VAE Module. Previous work often encoded support examples as single feature vectors 

that were difficult to represent the entire class distribution. Especially when data is 

scarce and instances vary widely, it is challenging to accurately estimate the class cen-

ter. Previous research has also introduced GANs into object detection modules and 

achieved good results. GANs consist of two branches: a generator network and a dis-

criminator network. The generated images are very similar to the original images but 

lack exploration and analysis of the latent space. Therefore, this chapter starts with the 

VAE model, which can explore the latent space more effectively than GAN networks. 

Inspired by recent advances in variational feature learning, we transform support fea-

tures into outputs with VAE. Then, we use samples of the output features for robust 

feature aggregation. 

During the encoding phase, VAE receives input from images in the support set and 

maps the input data to the latent space through an encoder. The encoder, consisting of 

neural networks, maps the input data to the mean and variance parameters in the latent 

space. These two parameters define a latent distribution, typically assumed to be a mul-

tivariate normal distribution. Specifically, given input data  𝑥 , the encoder produces 

the mean  μ and variance  σ of the latent variable  𝑧. This latent variable  𝑧  is a point 

sampled from the latent distribution, representing the representation of the input data 

in the latent space. The encoder's task is to learn a mapping function that maps the input 

data to the parameters of the latent distribution. During the decoding phase, VAE uses 
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the latent variable  𝑧 o generate reconstructed data  𝑥′ through a decoder. The decoder, 

also a neural network, takes the latent variable  𝑧  and attempts to restore  the input data. 

Since this chapter introduces randomness into the latent distribution during the encod-

ing phase, in the decoding phase, this paper samples a point from the latent distribution 

to generate multiple possible reconstruction results. Therefore, the VAE model also 

serves to diversify the data and alleviate issues such as the scarcity of samples and the 

resulting low model accuracy in FSOD. 

Specifically, the operation of the VAE is as follows: Given a real sample Xk, suppose 

there exists a distribution p(Z|Xk) (posterior distribution) specific to Xk. It is typically 

assumed to be a normal distribution, and  𝑝(𝑍 | 𝑋) is aligned with a standard normal 

distribution to prevent noise from being zero while ensuring that the model has gener-

ative capability.  

In this process, the mean and variance of the distribution are constructed through 

two neural networks, μ𝑘 = 𝑓1(𝑋𝑘) and log σ𝑘 = 𝑓2(𝑋𝑘) ,and the latent variable 𝑍  is 

sampled from it. This dedicated distribution is a hypothesis of the posterior distribution, 

used to train a generator 𝑋 = 𝑔(𝑍), where the generator's task is to sample a 𝑍𝑘 from 

the distribution 𝑝(𝑍|𝑋𝑘) and then generate 𝑋�̂� = 𝑔(𝑍𝑘) through a generator. The entire 

training process is completed by minimizing the reconstruction error 𝐷(𝑋�̂�, 𝑋𝑘) to en-

sure that the generator can effectively reconstruct the input samples. Through this pro-

cess, VAE achieves the mapping from the latent space to the data space, making points 

in the latent space correspond to reasonable representations of the data. The structure 

of this latent space is continuously optimized during the training process of VAE to 

better capture the features of the data. 

𝐿𝜇,𝜎2 = 𝐿𝜇 + 𝐿𝜎2 (2) 

𝐿𝜇 =
1

2
∑ 𝜇(𝑖)

2

𝑑

𝑖=1

=
1

2
|𝑓1(𝑋)|2 (3) 

𝐿𝜎2 =
1

2
∑(𝜎(𝑖)

2 − log 𝜎(𝑖)
2 − 1)

𝑑

𝑖=1

(4) 

𝐿𝜇,𝜎2 =
1

2
∑(𝜇(𝑖)

2 + 𝜎(𝑖)
2 − log 𝜎(𝑖)

2 − 1)

𝑑

𝑖=1

(5) 

 

The KL divergence between the normal distribution and the standard normal distri-

bution,KL(N(μ, σ2)|N(0,1)), serves as this additional loss, ensuring that all P(Z|X) 

align with the standard normal distribution by computing the KL loss function. Con-

straining the latent distribution to a standard normal distribution helps to make the 

structure of the latent space more regular and uniform, improving the model's general-

ization ability.  

𝑝(𝑍) = ∑ 𝑝( 𝑍 ∣ 𝑋 )𝑝(𝑋)

𝑋

= ∑ 𝑁(0,1)𝑝(𝑋)

𝑋

= 𝑁(0,1) ∑ 𝑝(𝑋)

𝑋

= 𝑁(0,1) (6) 
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It ensures that the learned representations are more consistent across the entire latent 

space and contributes to more stable model training. It can be seen as a form of regu-

larization that helps prevent overfitting while making the model easier to optimize. 

 R Module. When receiving the outputs 𝑆′ from the VAE model and 𝑄 from the back-

bone network, this chapter explored various feature fusion strategies. Different fusion 

strategies produce different outcomes. Drawing from prior research, contrastive learn-

ing and metric learning were introduced, employing cosine similarity to calculate intra-

class and inter-class features. This elevated the model's complexity. The chapter exam-

ined several aggregation strategies to consolidate the output features. 

 

Scheme 1 and Scheme 2 only utilize fully connected layers that play a role in the 

fine-tuning method. Firstly, the outputs 𝑆′ from the VAE and  𝑄  from the query branch 

are separately fed into two fully connected layers. Subsequently, the outputs of these 

two fully connected layers are directly summed up. They are aggregated together using 

the following formula, and then the aggregated  𝐹  is inputted into the detection head 

for detection. 

𝐹
𝑆′

⊕ 𝐹𝑄 = 𝐹1 (7) 

The second scheme is similar to the first one, where the outputs 𝑆′ from the VAE 

and  𝑄  from the query branch are separately fed into two fully connected layers. Sub-

sequently, the outputs of these two fully connected layers are directly multiplied (dot 

product). They are aggregated together using the following formula, and then the ag-

gregated 𝐹  is inputted into the detection head for detection. 

𝐹𝑆′ ⊗ 𝐹𝑄 = 𝐹2 (8) 

The third scheme, as illustrated in Figure 2, involves feeding the outputs 𝑆′ from the 

VAE and 𝑄  from the query branch into two backbone networks for further feature ex-

traction. Each branch consists of a sequence of convolutional layers with kernel sizes 

of 5×5, 3×3, and 1×1, respectively. These layers all utilize Leaky ReLU as the activa-

tion function. The convolutional layers with kernel sizes of 5×5 and 3×3 are employed 

for feature extraction. In the final stage, concatenation operations (Concat) are used to 

interchange and merge the features of  𝑆′ and  𝑄 After the last concatenation operation, 

the fused image is obtained through a convolutional layer with a 1×1 kernel size, acti-

vated by the Sigmoid function. 

In order to ensure that the image size remains unchanged during the generation pro-

cess, the stride for all convolution operations is set to "1", while the padding value is 

set to half of the kernel size in the corresponding convolution layer.  
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Fig. 2. R network architecture diagram 3 

In Table 1, the three values in parentheses corresponding to Conv represent the num-

ber of input channels, the number of output channels, and the kernel size of the convo-

lution, respectively. Batch normalization (BN) denotes batch normalization of the data. 

Table 1. R Module Network Architecture 1 

Network Layers Convolu-

tional Pa-

rameters 

Activation 

Function 

Network 

Layers 

Convolu-

tional Pa-

rameters 

Activation 

Function 

X1 (1,16,5) LeakyRelu Y1 (1,16,5) LeakyRelu 

X2 (16,32,3) LeakyRelu Y2 (16,32,3) LeakyRelu 

X3 (32,16,1) LeakyRelu Y3 (32,16,1) LeakyRelu 

Concat 

X4 (32,1,1) Sigmoid    

Loss Function.In the VAE, this chapter only introduced one encoder and one decoder. 

The encoder consists of a linear layer and two parallel linear layers, which produce  μ 

and  σ respectively. The decoder consists of two linear layers, generating the recon-

structed features 𝑆′. All layers in this chapter maintain the same dimensions, adopting 

end-to-end training, and incorporating the following multi-task loss: 

𝐿 = 𝐿𝑟𝑝𝑛 + 𝐿meta + 𝐿cons + 𝛼𝐿𝐾𝐿 (9) 

Here, 𝐿rpn represents the total loss of the Region Proposal Network (RPN): 𝐿rpn 

. 

𝐿𝑟𝑝𝑛({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠

∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
∗)

𝑖

+ 𝜆
1

𝑁𝑟𝑒𝑔

∑ 𝑝𝑖
∗𝐿𝑟𝑔𝑔(𝑡𝑖 , 𝑡𝑖

∗)

𝑖

(10) 

𝐿𝑟𝑒𝑔 is the regression loss: 

𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖∗) = ∑ 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1 (𝑡𝑗
𝑖 − 𝑡𝑗

𝑖′)

𝑗∈{𝑥,𝑦,𝑤,ℎ}

(11) 
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α  represents the weight coefficient (default α = 2.5 × 10−4 ). This chapter directly 

minimizes the KL divergence 𝐿KL(𝑝(𝑥)|𝑞(𝑥)), where λ is the weight of the two parts 

of the loss, 𝑁cls and 𝑁reg are the numbers of foreground and background samples, and 

𝐿meta is the meta-loss. Given a RoI feature 𝑍𝑖𝑗 , to avoid prediction ambiguity after soft 

attention, different attention vectors for objects of different classes will have different 

feature selection effects on 𝑍𝑖𝑗. Therefore, a simple meta-loss 𝐿meta is used to disperse 

the object attention vectors inferred in meta-learning. It is implemented through cross-

entropy loss, aiming to encourage diversity in class features, which enhances the per-

formance of the network in this paper. Our work applies consistency loss 𝐿cons  to the 

reconstructed feature 𝑆′, which is defined as the cross-entropy between 𝑆′ and its class 

label 𝑐: 

𝐿cn = 𝐿𝐶𝐸 (𝐹𝑐𝑙𝑠
𝑆′ (𝑆′) , 𝑐) (12) 

 

4 Experiments 

4.1 Dataset and Experimental Setting 

We utilized the PASCAL VOC dataset[24] to evaluate our method. K-shot object 

detection was performed on three partitions of novel/base classes, where K = (1, 2, 3, 

5, 10). In the PASCAL VOC dataset, we organized the 20 classes into three splits, each 

containing 15 base classes and 5 novel classes. For each novel class set, we conducted 

experiments with K={1, 2, 3, 5, 10} shot settings. The model was trained on the base 

classes and tested on the novel classes for each split. 

4.2 Few-Shot Object Detection Results 

Dilution experiment of the FPN module. Similarly, this chapter conducted ablation 

experiments on whether to include FPNs using data from Pascal VOC split 1. It was 

found that the improvement on the Pascal dataset was more pronounced. Through this 

ablation experiment, we found that the recognition accuracy of new categories was im-

proved by about 2-3 % with FPN compared with that without FPN. 

Differential ablation experiments of various R modules. This chapter employed 

three different aggregation methods to validate the effectiveness of the experiments and 

found that different processing methods lead to different outcomes.  

Table 2. Ablation experiments on FPN conducted on VOC split1 

VOC split1 

FPN 3 5 

× 60.1 63.8 

√ 61.3 65.3 



Mixed Feature Processing Model for Few-Shot Object Detection 11 

Contrastive learning and metric learning were introduced in previous studies mainly to 

calculate the relevance and irrelevance between different classes. In our work, we 

aimed to maximize the utilization of the VAE outputs. Therefore, we directly fed the 

results from the query branch and support branch into fully connected layers for feature 

aggregation, using two aggregation methods (Scheme 1 as Equation 7 aggregation 

method, Scheme 2 as Equation 8 aggregation method). Considering the dual-branch 

structure of the previous network, a third experiment was conducted. In Scheme 3, the 

results from the support branch and query branch were separately sent to two branches 

through a dual-channel network. After passing through the convolutional network, fea-

ture aggregation was performed. Finally, it was found that Scheme 1 yielded the best 

results. 

Table 3. Dilution experiment of different R modules 

Method 
Novel Set1 Novel Set2 Novel Set3 

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10 

1 51.2 61.0 61.3 63.7 65.3 34.3 43.1 47.1 50.2 52.3 47.4 45.2 47.7 51.4 55.3 

2 48.7 58.0 58.7 61.7 63.8 32.5 40.6 42.9 47.3 50.9 31.0 43.9 45.6 48.8 51.0 

3 49.2 59.8 60.2 62.3 63.9 32.6 41.6 43.8 47.9 51.0 38.6 43.9 46.1 49.8 53.5 

 

Few-Shot Object Detection Results and Visualization. For each novel class set, ex-

periments are conducted with settings of K=1, 2, 3, 5, and 10 shots. The model is 

trained on the base classes and tested on the novel classes in each partition. From Ta-

ble 4, we can see that the accuracy of our model is higher than most works, and has 

excellent performance, our results are the best in Novel set1 and 2, lacking in Novel 

set3, but still good. 

  

Fig. 3.  Confusion matrix of the mixed feature processing model: (a):VOC split1 
1shot (b): VOC split1 10 shot 

We selected split1 with 1-shot and 10-shot settings to generate confusion matrices 

for visualizing the results Fig 5. The corresponding abbreviations for these categories 

are as follows: ap-aeroplane, by-bicycle, bt-boat, bo-bottle, ch-chair, di-diningtable, hs-
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horse, ps-person, pp-pottedplant, sp-sheep, tr-train, tv-tvmonitor, bd-bird, mt-motor-

bike, sf-sofa, bg-background. Each row of the matrix represents the actual category, 

while each column represents the predicted category. 

When the row and the column are the same, the detection is correct, the rest is the 

error detection (positioning or classification error), and the bg (background) intersec-

tion is the missed detection situation. Upon comparison, we observed numerous in-

stances of false positives and missed detections in the 1-shot phase. However, these 

cases were significantly reduced in the 10-shot phase. In the 10-shot phase,  

we identified both error detections and missed detections, but the overall detection 

performance of our model remained superior. 

Table 4. The detection results on Pascal VOC by average score  

Method/Shots 
Novel Set1 Novel Set2 Novel Set3 

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10 

MetaDet [25] 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1 

Meta R-CNN[3] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1 

FSIW[26] 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6 

RepMet[27] 26.1 32.9 34.4 38.6 41.3 17.2 22.1 23.4 28.3 35.8 27.5 31.1 31.5 34.4 37.2 

TFA/cos [21] 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6 

TFA/fc[21] 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2 

FSCE [22] 32.9 44.0 46.8 52.9 59.7 23.7 30.6 38.4 43.0 48.5 22.6 33.4 39.5 47.3 54.0 

DCNet [28] 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7 

Retentive[29] 42.4 45.8 45.9 53.7 56.1 21.7 27.8 35.2 37.0 40.3 30.2 37.6 43.0 49.7 50.1 

QA[30] 42.4 51.9 55.7 62.6 63.4 25.9 37.8 46.6 48.9 51.1 35.2 42.9 47.8 54.8 53.5 

FADI[31] 50.3 54.8 54.2 59.3 63.2 30.6 35 40.3 42.8 48 45.7 49.7 49.1 55 59.6 

Ours 51.2 61.0 61.3 63.7 65.3 34.3 43.1 47.1 50.2 52.3 47.4 45.2 47.7 51.4 55.3 

 

5 Conclusion 

In our work, the Meta R-CNN network is divided into two branches: the support branch 

and the query branch. We named this model as mix feature processing model, FPN is 

introduced in the query branch to enhance the ability of the network to extract features 

of different dimensions. In the support branch, VAE is introduced for feature extraction 

to realize data expansion. We also introduce 𝑅 module to do feature aggregation of the 

output supporting branches and query branches, ablation experiments are done to verify 

the effectiveness of our feature aggregation method and add it to the model, use VOC 

data set to verify our network. In comparison and analysis with other FSOD methods, 

our method stands out and gets good results. 
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