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Abstract. We present a novel zero-shot inference framework for urban manage-

ment applications, particularly in retail environments. The deep learning model 

fuses multi-scale CNN-based object detection with self-attention mechanisms to 

enhance the identification of unauthorized activities and complex categorization 

tasks in fixed-point surveillance scenarios. Innovative components include light-

weight channel aggregation modules that reduce high-dimensional representa-

tions and intermediate interactions are captured through multi-stage gate aggre-

gation. Spatial aggregation extracts context-aware multi-level features, address-

ing limitations of traditional DNN. Attention down-sampling is integrated to ad-

dress computational challenges when applying Transformers on high-resolution 

imagery. Explicit labels are trained on raw text-image pairs using contrastive 

learning. This enables the model to learn from natural language supervision and 

perform zero-shot recognition across unseen categories. We obtain the state-of-

the-art performance both in public dataset and our own urban management da-

taset.  
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1 Introduction 

In the past, urban management heavily relied on time-consuming and inefficient man-

ual procedures. However, recent technological advancements, particularly in the realm 

of computer vision, have now empowered a more effective response to these chal-

lenges. Leveraging real-time monitoring, and analytical capabilities enables swift de-

tection of infractions, comprehensive environmental surveillance, as well as strategic 

allocation of resources, thereby significantly enhancing the precision and efficiency of 

urban administration. In the current era, big data’s inherent diversity has given rise to 
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the prominence of text and image data as an abundant resource.In modern urban man-

agement systems, there is a regulatory environment with zero or few samples to learn, 

and urban management departments heavily rely on manual supervision that is complex 

and inefficient. 

We propose a deep learning-based zero-shot inference approach designed to enhance 

intelligent detection of store management objectives through the use of fixed and mo-

bile cameras, thereby streamlining urban management operations. Specifically, our aim 

is to apply advanced deep learning techniques in retail environments for the identifica-

tion of goods. While a multitude of solutions (e.g., [1, 2]) have been introduced to ex-

pedite attention mechanisms, their practical application can encounter limitations. 

Since the groundbreaking success of Transformer [3] in NLP tasks as evidenced by [4, 

5], ViT [6] has been introduced and demonstrated promising outcomes on the ImageNet 

benchmark [7]. However, compared to ConvNets, pure ViTs are generally more over-

parameterized and heavily reliant on large-scale pre-training datasets [8, 9, 2]. To tackle 

this issue, one line of research has focused on proposing lightweight ViT architectures 

[10, 11, 12], often incorporating efficient attention mechanisms [13]. Concurrently, 

there has been an active exploration into hybrid backbones that fuse self-attention with 

convolution [14, 15, 16, 17] to imbue ViTs with region-specific priors typical of Con-

vNets. Through the integration of inductive biases [18, 19, 20], or supplementary 

knowledge [21], ViT and its derivatives have managed to achieve competitive perfor-

mance levels akin to ConvNets. Improving the efficiency of Transformers without com-

promising effectiveness remains a significant research topic, with several design and 

usage challenges yet to be fully addressed. Our key technical innovations consist of:  

1) Employing a lightweight channel aggregation module that re-weights high-di-

mensional hidden spaces and diminishes projection channels.  

2) Integrating multi-stage gate aggregation modules to capture comprehensive inter-

mediate interactions.  

3) Down-sampling to a uniform spatial resolution prior to interpolating the attention 

output back to its original size before feeding it into subsequent layers.  

4) Incorporating an attention down-sampling module, to form a hybrid local-global 

structure to bolster performance.  

We obtain the state-of-the-art performance both in public dataset and our own urban 

management dataset. 

2 The Proposed Framework 

We propose an innovative algorithm that combines a CNN based target detection 

framework with a self-attention mechanism within a zero-shot inference architecture. 

Multi-scale design allows the model to capture object feature at different resolutions, 

thereby better adapting to changes in different size and illegal activity detection. The 

self-attention mechanism dynamically weights different regions, enabling the model to 

automatically focus on the most critical parts. The combination of the two not only 

enhances the model's ability to identify subtle and diverse violations in fixed point mon-

itoring, but also promotes zero-shot learning.This system is primarily tailored for fixed-
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point surveillance to identify unauthorized out-of-store business activities and perform 

intricate text and image categorization.  

 

Fig. 1. The multi-scale CNN architecture. Within the spatial aggregation module, a multi-order 

gating aggregation sub-module effectively captures multi-level interactions within the context, 

extracting multi-level features that exhibit both static and adaptive regional sensitivity.  

2.1 Network Design  

Multi-scale convolutional neural network. As depicted in Figure 1, the framework is 

divided into the backbone network and the head network. The backbone network un-

dergoes five down-sampling stages where the input label image is resized to a dimen-

sion of 𝐻 × 𝑊, featuring a cross-stage partial network design. To further enhance its 

lightweight nature, we incorporate the 𝐶2𝑓 and SPPF. The head network adopts the 

Feature Pyramid Path Enhancement Network, which functions as a decoupled header 

component. It utilizes a loss function that combines BCE Loss for classification pur-

poses, while using the VFL and the CIOU Loss for regression. Our framework employs 

a Task Alignment Allocator matching method based on an Anchor-Free approach. The 
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parameter 𝑤 governs the width of the network, while 𝑑 controls the depth of the net-

work structure. 

 

Fig. 2. Convolutional attention mechanism can be added to enhance the performance and perfor-

mance of the model.  

In Figure 2, the 𝐶2𝑓 module consists of a 𝐶𝐵𝑆 convolution module, a channel split-

ting operation, 𝑛 residual bottleneck modules, branch stacking and a 𝐶𝐵𝑆 feature con-

volution and channel reduction. The residual bottleneck module is depicted in detail, 

where the upper branch consists of a sequential arrangement of two 𝐶𝐵𝑆 modules. Both 

these 𝐶𝐵𝑆 modules employ a kernel size of  3 × 3, a stride of  1, and a padding of 1 

for their convolutional layers. The first 𝐶𝐵𝑆 within this sequence serves to reduce the 

feature dimensions, while the second subsequently increases the dimensions back. Re-

garding the bypass link, the presence or absence of the component is controlled by the 

𝑆ℎ𝑜𝑟𝑡𝑐𝑢𝑡parameter. If 𝑆ℎ𝑜𝑟𝑡𝑐𝑢𝑡 = 𝑇𝑟𝑢𝑒, it signifies that a bypass link operation is 

included, which allows the original input features to be added directly to the output of 

the two 𝐶𝐵𝑆 modules. Conversely, when 𝑆ℎ𝑜𝑟𝑡𝑐𝑢𝑡 = 𝐹𝑎𝑙𝑠𝑒, no such bypass connec-

tion is employed, meaning that only the processed features from the 𝐶𝐵𝑆 modules are 

passed on to subsequent layers. 

 

Fig. 3. The SPPF module. It divides receptive fields of the same size into different levels and 

performs pooling operations on the features within each level, thus enabling fixed length feature 

representation of input images of any size.  

The SPPF is illustrated in Figure 3, serving the purpose of achieving adaptive output 

sizes. In SPPF, as depicted, it commences with a 𝐶𝐵𝑆 module where 𝐶 stands for con-

volutional operation, 𝐵 represents batch normalization, and 𝑆 denotes the 𝑆𝑖𝐿𝑈 activa-

tion function. Here, 𝐾 = 1 indicates a kernel size of 1 × 1, 𝑆 = 1implies a stride of 1, 

and 𝑝 = 0means there is no padding around the feature map. Subsequently, three con-

secutive max pooling layers are connected, each with a pooling kernel size specified by 

𝐾 = 5. Thirdly, there’s a feature stacking phase where the output results of these three 

max pooling layers are concatenated or stacked together with the output from the initial 

𝐶𝐵𝑆 module. This fusion of different scale features enables the model to capture con-

text information at multiple levels. Finally, the stacked features undergo another 𝐶𝐵𝑆 

feature extraction operation.  

Figure 4 illustrates the Spatial Aggregation Module, which is designed to address 

the limitation of traditional deep neural networks. This module efficiently captures 
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multi-order contextual interactions by extracting features with both static and adaptive 

region awareness. In this process, the 0-order interaction inherent in each patch and the 

1-order interaction encompassing all patches are modeled using 1 × 1 convolutions and 

global average pooling. To enforce the network’s focus on multi-order interactions, less 

significant interaction components are dynamically down-weighted. Firstly, a 1 × 1 

convolution operation is applied to obtain feature map 𝑋1. Global average pooling is 

then conducted on 𝑋1 to generate 𝑋2. By subtracting 𝑋2 from 𝑋1, we derive feature 𝑌. 

A dot product between 𝑌 and its scaled version 𝑌𝑠 (where 𝑌𝑠represents a scaling fac-

tor) produces feature 𝑈. Features 𝑋1and 𝑈are combined through element-wise addition 

to yield𝑍1, followed by a non-linear activation function 𝑆𝑖𝐿𝑈 to produce the final fea-

ture 𝑍. The subtraction step 𝑋1 − 𝑋2 serves to re-weight unimportant interaction com-

ponents, thereby enhancing feature diversity. Subsequently, DWConv is integrated into 

the context branch of the multi-order aggregation module to encode multi-order fea-

tures. This module utilizes n depth convolution layers in a progressive manner to cap-

ture low-, middle- and high-order interactions, ensuring a comprehensive understand-

ing of the multi-scale context.  

 

 

Fig. 4. The spatial aggregation module effectively captures multi-level interactions in the context, 

extracting multi-level features with static and adaptive region perception.  

 

Fig. 5. A lightweight channel aggregation module is used to re-weight high-dimensional hidden 

spaces, to collect and reallocate channel level information by reducing projection channel fea-

tures and activation functions. 

In Figure 4, the 𝑆𝑖𝐿𝑈 activation function is employed in the gating branch. This 

choice leverages the gating properties of 𝑆𝑖𝑔𝑚𝑜𝑖𝑑, which can selectively pass through 

or suppress information, while also maintaining the stable training characteristics that 

help prevent issues. The multi-order gating aggregation module specifically targets cap-

turing a richer set of middle-order interactions, which are often overlooked in conven-

tional approaches. However, achieving the desired performance level may necessitate 

a larger multi-layer perceptron ratio, which could introduce additional parameters and 

computational overhead, potentially due to redundancy across channels. To address this 

issue, as illustrated in Figure 5, a Lightweight Channel Aggregation Module is utilized. 

It serves to re-weight the high-dimensional hidden space by reducing the projection 

channel and applying activation functions. 
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Fig. 6. The multi-modal network architecture includes image encoding and text encoding.  

Multi-modal Model Construction. Current computer vision models are convention-

ally trained to recognize and classify a predetermined, fixed set of classes. For instance, 

like ImageNet (with 1000 predefined classes)[7] or COCO (with 80 classes) [22], this 

form of supervision is restrictive because it requires substantial amounts of labeled data 

and limits the model’s ability to generalize to unseen categories. An alternative and 

increasingly promising approach is to train models directly from raw text associated 

with images, bypassing the need for explicit class labels. In such a scenario, a model 

can learn by predicting which captions correspond to which images, serving as an ef-

fective and scalable pre-training strategy. First, it does not necessitate manually label-

ing large volumes of data. The inherent structure and semantics within the text provide 

a rich source of supervision that can grow organically alongside the available textual 

information about images on the web or other sources. Second, by connecting visual 

representations with linguistic descriptions, the model gains the capability to perform 

zero-shot transfer-meaning it can potentially identify objects or scenes from novel clas-

ses. The connection between the visual and textual modalities allows the model to un-

derstand and reason about new concepts based on its existing knowledge. Finally, train-

ing image and text embedding jointly results in a learned multi-modal representation 

that can more readily adapt to diverse tasks and scenarios. 

The multi-modal training architecture described here is designed to process and fuse 

information from both visual and textual inputs for a joint understanding of the data. 

The architecture accepts two types of inputs. Image input has dimensions [𝑛, ℎ, 𝑤, 𝑐], 
where 𝑛 refers to the batch size, ℎ and 𝑤 denote the height and width of each image, 

and 𝑐 represents the number of color channels. Textual descriptions come in dimen-

sions [𝑛,1], with 𝑛 again being the batch size and 1 representing the variable sequence 

length of words or tokens. Each input type is passed through its own encoding module. 

For images, this could involve CNN to extract high-level visual features. For text, it 
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would typically involve a transformer-based model or RNN to generate contextualized 

word embedding. After extracting uni-modal features, there are projection layers de-

noted by 𝑊𝑖 for image features and 𝑊𝑡 for text features. These projections adaptively 

transform each modality into a shared multi-modal space where they can be compared 

effectively. The projected features (𝐼𝑒 and 𝑇𝑒 for images and text, respectively) un-

dergo 𝐿2 normalization before being compared to measure their similarity or correla-

tion. The depth 𝑁, width 𝐶, and feed-forward network expansion rate of the overall 

architecture are determined using 𝑁𝐴𝑆 techniques. This approach automates the design 

process to find an optimal configuration that balances efficiency and performance. Dur-

ing the 𝑁𝐴𝑆 process, the number of 𝑀𝐻𝐴𝑆 blocks is dynamically adjusted. In the last 

stages of the network, every block consists of a 𝑀𝐻𝐴𝑆 layer followed by a 𝐹𝐹𝑁. The 

search decides how many global 𝑀𝐻𝐴𝑆 modules should be retained, ensuring the best 

trade-off between computational complexity and feature extraction capability. 𝑆𝑖𝐿𝑈 is 

used instead of 𝐺𝐸𝐿𝑈 due to its comparable performance but potentially better storage 

efficiency. The initial part of the network consists of two 3 × 3convolution operations 

with a stride of 2and padding of 1 to down-sample the input images while preserving 

spatial information. 

 

Fig. 7. The image encoding module adopts both convolutional local module and local and global 

context combination module. 

In Figure 8, the Convolutional Local Module is presented in a residual network struc-

ture. This architecture allows for efficient and effective learning by preserving the iden-

tity of input features while refining them through convolutional operations. The upper 

branch of this module consists of a series of convolutional layers, normalization steps, 

and nonlinear activation functions. These components work together to extract and re-

fine local features from the input data. On the other hand, the lower branch serves as a 

bypass connection that directly forwards the input features to the output without any 

transformation. This shortcut path maintains the original information and helps prevent 

the vanishing gradient problem during training. The outputs of both branches are then 

combined through an element-wise addition operation. By doing so, the module lever-

ages the benefits of both the refined local features from the convolutional pathway and 

the preserved raw features from the shortcut connection. This design effectively har-

nesses the inductive bias inherent in convolutional operations while allowing the model 

to learn residuals between the input and its more complex representation. 

 

Fig. 8. The inductive bias in the convolutional local module is beneficial for the model to quickly 

converge from a large number of latent function spaces to subsets.  
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The attention mechanism has also proven beneficial for computer vision tasks where 

it can enhance feature representation by selectively focusing on salient parts of images. 

However, a challenge arises when applying attention to high-resolution feature maps 

because its computational complexity grows quadratically with respect to the spatial 

dimensions. This is due to the dot-product attention operation that compares every ele-

ment across the entire space. In Figure 9, 𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦, and 𝑉𝑎𝑙𝑢𝑒 matrices are down-

sampled or sub-sampled to a lower fixed spatial resolution before performing the atten-

tion calculation. This reduction in size significantly reduces the computational load 

while still capturing essential information from the original high-resolution features. 

After the attention mechanism processes these lower-resolution representations, the 

output is up-sampled or interpolated back to match the original input’s resolution. The 

purpose is to ensure that the refined attention-based features can be seamlessly inte-

grated into the subsequent layers of the network, maintaining the consistency and in-

tegrity of the feature hierarchy. 

 

Fig. 9. The combination of local and global context modules effectively reduces the quadratic 

complexity of the transformer.  

 

 

Fig. 10. We obtain the 𝑄𝑢𝑒𝑟𝑦of down-sampling, using pooling layers as static local down-sam-

pling, using 3 × 3 depth-wise separable convolutions as learnable local down-sampling, and con-

catenating the results and projecting them into the 𝑄𝑢𝑒𝑟𝑦 matrix.  

In Figure 10, the process of obtaining a sub-sampled 𝑄𝑢𝑒𝑟𝑦 representation is de-

picted to improve computational efficiency while retaining key information in the at-

tention mechanism.To achieve this, the module employs two types of sub-sampling. 

Static local sub-sampling involves using a pooling layer to down-sample the input fea-

tures spatially by summarizing local information into a lower resolution. Pooling layers 

are fixed functions and do not have learnable parameters. Learnable local sub-sampling 

means a 3 × 3 DWCONV is used for this purpose. DWCONVs apply a single filter per 

input channel, allowing for more efficient feature extraction with fewer parameters 
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compared to standard convolutions. The learned filters can adaptively capture im-

portant local patterns in the data, thus providing a learn able alternative to the static 

sub-sampling. The results from these two sub-sampling methods are concatenated to-

gether, effectively merging the strengths of both static and learnable down-sampling 

techniques. Following concatenation, a projection operation is performed to transform 

this combined information into the desired 𝑄𝑢𝑒𝑟𝑦 matrix format. Moreover, this At-

tention Sub-sampling Module is designed as a residual connection to a convolutional 

layer with a stride. This configuration creates a local-global interaction mode where the 

sub-sampled features interact with those captured by the strided convolution.  

3 EXPERIMENTS 

3.1 Datasets  

We use images captured by mobile phones, which are divided into distant and close-up 

target images. Moreover, we also use images from the monitoring videos. From moni-

toring videos, 𝐿 distinct segments 𝑉𝑖 are identified. This diversity is crucial for ensur-

ing that the model being trained can generalize well across various situations. Each 

segment 𝑉𝑖 likely contains one or more instances of these target objects. Within every 

video segment 𝑉𝑖, there are 𝑁𝑖 total number of frames. 𝑀𝑖 images are selected from 

each segment. By pooling together 𝑀𝑖 images from each of the 𝐿 segments, the overall 

dataset for training and testing comprises ∑ 𝑀𝑖𝑖=1
𝐿  images. There are 90925 mobile 

phone images and 77491collected monitoring video frames. Meanwhile, we also use 

the public COCO dataset to conduct the experiments. 

 

3.2 Experiment Configuration  

The training configuration is basically consistent from the baseline model to the final 

model, training for 300 epochs on our own data and performing 5 epochs of warm-up. 

The optimizer is 𝑆𝐺𝐷. The learning rate is, the initial learning rate is 0.01. Cosine 

learning mechanism is used. Weight decay is set to 0.0005. Momentum is set to 0.90. 

Batch depends on the hardware device. Input size transitions uniformly from 448 to 

832with a step size of 32. We randomly initialize the connection weights w and biases 

𝑏 of each layer. Given the learning rate 𝜂 and the minimum batch 𝐵𝑎𝑡𝑐ℎ, we select the 

activation function 𝑆𝑀𝑈and the maximum number of iterations. During model training, 

multiple GPUs are used when the hardware meets the requirements, the deep learning 

framework used for training is PyTorch. 

 

3.3 RESULTS AND DISCUSSION  

Table 1 summarizes the performance of our methods and contrasts to those attained by 

prior work. It indicate that the proposed method obtains the best performance in the 

corresponding setting. We achieve the highest mean Average precison scores on both 
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mobile phone image dataset and Monitoring Video dataset. Moreover, we achieve com-

parable results with other state-of-the-art YOLO methods on the COCO dataset [22]. 

The results demonstrate that our method effectively captures image semantics in the 

context of urban management issues. This indicates that the lightweight channel aggre-

gation module efficiently weights the high-dimensional latent space, thereby reducing 

the need for projection channel features and activation function implementations, thus 

enabling a more effective gathering and redistribution of channel-wise information. 

Concurrently, the multi-stage gated aggregation modules capture a greater amount of 

intermediate-level interactions. On another front, down-sampling to a fixed spatial res-

olution followed by interpolation of attention outputs back to the original resolution 

before feeding them into the subsequent layer, also serves to decrease both floating-

point operations and parameter counts. Lastly, the attention-based down-sampling 

module is residually connected to a strided convolution, forming a local-global pattern, 

which enhances the semantic representation of images in cases pertaining to unauthor-

ized street vending problems. 

Table 1. Performance on the three datasets. We compare our approach with the state-of-the-art 

methods (YOLOs), and we obtain the best results. The best results are highlighted. 

 

 

 model YOLOX 

-S 

PPYOLOE 

-S 

YOLOv5 

-S(6.1) 

YOLOR 

-CSR 

YOLOv7 YOLOv5 

-S6(6.1) 

YOLOR 

-P6 

Ours 

 #Para 9.0M 7.9M 7.2M 52.9M 36.9M 12.6M 37.2M 7.9M 

 FLOPS 26.8G 17.4G 16.5G 120.4G 104.7G 67.2G 325.6G 17.9G 

 Size 640 640 640 640 640 1280 1280 640 

 FPS 102 208 156 106 161 122 76 149 

COCO 

APtest/ 

APval 

40.5%/ 

40.5% 

43.1%/ 

42.7% 

-/ 

37.4% 

51.1%/ 

50.8% 

51.4%/ 

51.2% 

-/ 

44.8% 

53.9%/ 

53.5% 

54.0%/ 

53.6% 

APtest
0.5 - 60.5% - 69.6% 69.7% - 71.4% 71.1% 

APtest
0.75 - 46.6% - 55.7% 55.9% - 58.9% 59.1% 

APtest
S - 23.2% - 31.7% 31.8% - 36.1% 36.1% 

APtest
M - 46.4% - 55.3% 55.5% - 57.7% 57.9% 

APtest
L - 56.9% - 64.7% 65.0% - 65.6% 65.7% 

Mobile 

Phone 

mAPtest
0.5 65.7% 66.4% 64.1% 67.2% 73.0% 72.8% 73.0% 73.7% 

mAPtest
0.5;0.95 34.1% 34.6% 33.3% 35.8% 37.9% 39.9% 39.9% 40.2% 

Monitor-

ing Video 

mAPtest
0.5 62.5% 64.9% 62.5% 69.6% 69.7% 71.5% 71.5% 71.9% 

mAPtest
0.5;0.95 31.6% 32.7% 31.8% 35.7% 37.4% 40.0% 42.1% 42.9% 
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4 CONCLUSION  

A zero-shot inference method based on deep learning is devised to address the chal-

lenge of intelligent detection of out-of-store business activities in urban management 

scenarios using both fixed cameras and mobile phone footage. This innovative ap-

proach utilizes images captured by stationary surveillance cameras installed as part of 

urban infrastructure, feeding them into an algorithm that automatically detects unau-

thorized commercial activities within the camera’s field of view. The methodology pro-

vides a convenient, swift, and transparent platform for urban administrators to manage 

such information. It harnesses the power of deep learning to enable efficient and effec-

tive urban intelligence management and operations. Notably, it archives and records 

detection of out-of-store businesses under monitoring, enabling verification by the 

management department. Timely notifications are sent to relevant personnel, prompting 

them to promptly attend the scene for necessary actions. Meanwhile, we advance object 

detection by combining state-of-the-art CNN and Transformer-like architectures, ena-

bling efficient and effective urban administration via real-time monitoring and strategic 

resource allocation. We obtain the state-of-the-art performance both in public dataset 

and our own urban management dataset.  
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