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Abstract. This paper presents a LightGBM-SMOTE-ENN model that uses a 

medical knowledge graph to predict diabetes complications with improved accu-

racy and interpretability. In response to the public health challenge posed by di-

abetes, this research utilizes advanced AI to analyze medical data, integrating 

patient information with symptom vectors from the knowledge graph to develop 

a reliable classification tool. The model's effectiveness is demonstrated through 

superior performance metrics such as accuracy, recall, and F1 score, attributed to 

a SHAP value-based method for interpretability. Future directions include ex-

panding the knowledge graph and optimizing algorithms for broader application. 

This work not only advances diabetes complication prediction but also leverages 

medical knowledge graphs for clinical support, aiming to enhance healthcare 

quality and patient outcomes. 

Keywords: Medical knowledge graph, Knowledge graph construction, Diag-

nostic reasoning for diabetic complications, Interpretability. 

1 Introduction 

1.1 Background and Significance of the Study 

Background of the Study. According to the 10th Edition of the IDF Global Diabetes 

Map, released by the International Diabetes Federation in December 2021, diabetes 

now affects 537 million adults worldwide, representing 10.5% of the global adult pop-

ulation, or one in every ten adults [1]. In China, the prevalence of this chronic metabolic 

disease is escalating rapidly, with estimates suggesting up to 114 million individuals 

may be affected. Diabetes mellitus, characterized by persistent hyperglycemia, can lead 

to various complications if not adequately managed, posing significant clinical chal-

lenges. Leveraging medical knowledge graphs could significantly enhance decision-
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making in the management of chronic diseases like diabetes, providing crucial support 

in clinical settings. 

 

Figure 1 from the National Health Commission's July 2023 report shows that con-

sultations in China's healthcare institutions totaled 3.92 billion, a 5.2% increase from 

the previous year. Hospital visits increased by 2.8%, and primary care consultations 

rose by 10.6%. The expansive and diverse nature of medical data, which includes tex-

tual and visual information, presents challenges such as missing values and data imbal-

ances. These issues necessitate advanced processing techniques to maintain the relia-

bility of assisted diagnostic systems. Addressing these challenges is critical for enhanc-

ing diagnostic accuracy and is a key focus for researchers and industry professionals. 

 

 

Fig. 1. National Healthcare Facility Consultation-Discharge Data. 

Significance of the study. Knowledge graphs significantly enhance intelligent 

healthcare tasks with their robust interpretability in managing complex medical data. 

However, deep learning algorithms, often regarded as "black-box" models, struggle to 

produce interpretable outcomes, which undermines user trust in high-stakes environ-

ments such as medical diagnostics, thereby increasing operational risks. Consequently, 

the advancement of interpretable AI has become a critical imperative. The opacity of 

deep learning originates primarily from two areas: firstly, the intrinsic non-interpreta-

bility rooted in complex model architectures, necessitating external interpretation sys-

tems or expert intervention; and secondly, the inability to semantically interpret data 

relationships, including causality, confounding factors, and sample selection biases. 

Addressing these challenges, the development of interpretable mechanisms that eluci-

date the operational underpinnings of neural networks is essential. This progress is vital 

for researchers and developers to pinpoint problems and guide enhancements, fostering 

more transparent and trustable AI-driven solutions in healthcare. 

1.2 Current Status of Domestic and International Research 

Medical Knowledge Mapping. Knowledge Graph is a concept first proposed by 

Google in 2012 to provide users with higher quality search services, which is essentially 

a semantic network, usually using a ternary such as (head entity, relation, tail entity)/ 

(h, r, t) to express the attributes of things as well as the semantic relationships between 

things [2]. In recent years, the research and application of large-scale knowledge graphs 

have attracted greater attention in various industries, and a variety of general knowledge 

graphs have been launched, such as Google launched Google Knowledge Graph [3] in 
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2012, and there are also DBpedia [4], Freebase [5], Wikidata [6], YAGO [7] etc. Mean-

while, many scholars have carried out in-depth theoretical research in this field, such 

as in clinical diagnosis, the use of representation models by constructing the patient's 

time-series knowledge graph for link prediction, so as to complete the missing infor-

mation in the graph [8]. Crespo et al. [9] proposed an ontology-driven medical diag-

nostic system based on ontology for the diagnosis of infectious diseases by constructing 

ontologies for infectious diseases, medicines, and bacteria. Nie Lili et al [10] estab-

lished a medical diagnostic knowledge graph with a three-layer model of "disease-

symptom-feature" and applied it to a clinical decision support system; Shanghai Shu-

guang Hospital constructed a knowledge graph of traditional Chinese medicine, an on-

tology medical knowledge base SNOMED-CT [11]. 

 

Disease Prediction Models. Despite the fact that there are so much medical 

knowledge graph constructs available in the market, the future of the application of 

using deep learning-based models and medical knowledge graphs for aiding the diag-

nosis of diseases is still unclear because most of them are black boxes, and thus their 

decision-making procedures are difficult to be understood by clinicians. This limitation 

raises concerns about their reliability and inevitably restricts their deployment in clini-

cal practice [12]. 

 

To address this problem, researchers have proposed a number of interpretable disease 

prediction models [13]. These models are usually able to generate a set of weights to 

indicate the contribution of each feature to the prediction of complications to be used 

as an explanation for the prediction. Tseng et al. used random forests to predict acute 

kidney injury, and they used SHAP to interpret the prediction results as a linear com-

bination of the given features [14]; Yan et al. used convolutional neural networks 

(CNNs) to predict age-related macular degeneration, and they used the Locally Inter-

pretable Model Diagnostic Interpretation (LIME) [15] to explain the prediction results 

[16]; Hongman Zhang and Guo He [17] used XGboost algorithm to conduct an accurate 

prediction study for type 2 diabetes. However, all the above methods are purely data-

driven, failing to organically integrate the nervous system and symbolic system and 

utilize the existing medical knowledge to provide interpretable prediction results. 

 

Interpretable Artificial Intelligence. Explainable Artificial Intelligence (XAI) 

[18], whose main idea is to use the facts or rules in the knowledge graph to explain the 

behavior of neural network training process, and then improve the interpretability of 

neural network. It is worth mentioning that the latest cognitive mapping proposed by 

Tang Jie et al. at Tsinghua University [19] is an attempt of "neural + symbolic" in ex-

plainable AI, which aims to solve the black-box problem of the deep learning solution 

process by using symbolic knowledge representation, reasoning and decision-making. 

 

By providing a deeper understanding of model decisions, XAI enables non-expert users 

to understand model behavior. In addition to methods such as Locally Interpretable 

Model-Interpretation Techniques (LIME), SHapley Additive exPlanations (SHAP), 

and Integrated Gradients, there are a variety of other techniques and strategies that have 
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been developed to improve the interpretability of AI systems. One approach is through 

decision trees, especially their variants such as Random Forests and Gradient Boosting 

Decision Trees, which are considered to have good interpretability due to the fact that 

their decision-making process can be viewed as a series of if-then rules. While these 

models may not be as powerful as deep neural networks, the intuitive explanations they 

provide are valuable for building trust in a given application. 

 

On the other hand, global interpretability methods, such as feature importance ranking, 

provide insights into model behavior by evaluating the overall contribution of individ-

ual features to model predictions. This approach is simple, intuitive, easy to understand 

and communicate, and is particularly suitable for scenarios where model dependencies 

need to be quickly assessed. 

1.3 The Work and Innovations in this Paper 

This study introduces a novel predictive model for diabetic complications utilizing 

a medical knowledge graph. This graph is constructed by aggregating clinical data and 

applying knowledge representation learning techniques to vectorize and establish intri-

cate relationships among entities. Through meticulous data preprocessing and analysis, 

key predictor variables are identified. These are integrated with symptom vectors to 

form a classification model that leverages integrated learning, enhancing prediction ac-

curacy and the reliability of assisted diagnoses. Furthermore, the study delves into 

model interpretability, employing a SHAP value-based method to highlight critical in-

fluencing factors, thus offering substantial decision support to clinicians. Experimental 

findings demonstrate that our model surpasses conventional approaches across various 

evaluation metrics, notably excelling in handling data imbalances with significantly 

enhanced performance. A case study confirms the model's effective predictive capabil-

ities and robust interpretability. This research provides a fresh technological avenue for 

predicting diabetes complications and applying medical knowledge graphs. It is poised 

to significantly influence clinical decision-making and disease management, potentially 

elevating the standard of medical services and improving patient quality of life along-

side advancements in medical data and algorithmic developments. 

2 Medical Knowledge Graph-based Inference Prediction Model 

for Diabetes Complications 

2.1 Basic Idea 

In this study, we introduce a predictive inference model for diabetes complications, 

utilizing a medical knowledge graph. This model integrates the triadic relationship of 

the diabetes knowledge graph with processed metrics from patient cases to mine poten-

tial symptom entities. By employing integrated learning techniques, we construct a dis-
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criminative model capable of identifying complications. The framework of this infer-

ence prediction model, illustrating its application in medical diagnostics, is depicted in 

Figure 2. 

 

 

Fig. 2. Framework diagram of the inference prediction model for diabetic complications based 

on medical knowledge graphs. 

2.2 Architecture Design 

Knowledge representation of the Diabetes Knowledge Graph. By using the con-

structed diabetes medical knowledge map, we transformed the medical knowledge in-

formation into the form of ternary groups, such as "type 2 diabetes, complications, di-

abetic nephropathy" and other ternary relationships, which are stored in the map data-

base, providing a convenient way for further querying and use. This kind of medical 

knowledge information transformed into ternary form will also become the basis for 

the development of intelligent medical system in the next step. 

 

The next step is the knowledge representation of the constructed medical knowledge 

graph. Considering the complex relationships of one-to-many, many-to-one, and many-

to-many in the knowledge graph, the TransR model is chosen as the knowledge repre-

sentation model in this thesis. As an example, the model will give a mapping matrix 

𝑀𝑟 ∈ 𝑅𝑘×𝑑, to the complication 𝑟, while the entities diabetes ℎ⃗⃗, diabetic nephropathy 𝑡 

get their projection vectors ℎ⃗⃗𝑟, 𝑡𝑟 through ℎ⃗⃗𝑀𝑟, 𝑡𝑀𝑟. The vector representation 𝑒𝑅
ℎ of 

diabetes entity is obtained by calculating according to the formula of the TransR model. 
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Fig. 3. Schematic of the knowledge representation model TransR model. 

After the completion of knowledge representation, the matrix 𝐸𝑚×𝑘 =
[𝑒1, 𝑒2,⋯ , 𝑒𝑚] of diabetes related entities can be obtained, where 𝑘 is the dimension 

of the entity vector and 𝑚 is the number of entities. 

 

Taking the patient's entity matrix 𝐸𝑚×𝑘 as the input to the textual convolutional neural 

network, the results of the use of the convolutional neural network can be deduced 

based on the convolutional kernel to obtain features: 

 

𝑐𝑖 = 𝑓(ℎ ∙ 𝑒𝑖:𝑖+ℎ−1 + 𝑏) (1) 

 

Where 𝑓 is the activation function. The feature 𝑐′ = [𝑐1, 𝑐2, ⋯ , 𝑐𝑚−ℎ+1] of the entity 

matrix, the maximum pooling operation i.e. �̂�𝑗 = 𝑚𝑎𝑥{𝑐′} is performed for each feature 

mapping and the CONTACT connection is performed to obtain the representation vec-

tor of the Diabetes Knowledge Graph entities: 

 

𝑝𝑡𝑝 = [�̂�1, �̂�2, ⋯ , �̂�𝑛] (2) 

 

Patient indicator data screening and vector representation. Patient's index data 

are the result data obtained after examination for the condition in the medical record, 

this thesis obtains the patient's examination data from the patient's electronic medical 

record, such as: patient's age, duration of diabetes, blood creatinine, LDL cholesterol, 

triglycerides, and fasting glucose, among 15 other indexes. In response to the lack of 

negligible sample size in electronic medical records, this study employed a method us-

ing normal value padding to overcome this problem. Specifically, the researcher de-

faulted the missing examination indicators to normal values and applied a fully-con-

nected neural network to perform operations such as downscaling and feature extraction 

on the patient indicator data. The patient's indicators can be represented as: 

𝑢𝑖 = [𝑡1, 𝑡2, ⋯ , 𝑡𝑙] (3)  

 

And the process of neural network forward propagation is shown in the following equa-

tion: 

 

𝑣𝑖 = 𝑤𝑖𝑢𝑖 + 𝑏 (4) 

𝑝𝑧𝑏 = 𝜎(𝑣𝑖) (5) 
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which 𝑝𝑧𝑏  has a dimension much smaller than 𝑢𝑖, and the process can be repeated 

many times. 

 

Vector Fusion. In order to integrate the ternary knowledge representation vectors 

generated by medical knowledge mapping effectively into the disease prediction model, 

firstly, we combine these vectors with the representation vectors of patient indicator 

data by direct splicing through feature fusion technique, as in Eqs. 6, and the final fea-

ture representation vector is obtained as: 

 

𝑝 = [𝑝𝑡𝑝, 𝑝𝑧𝑏] (6) 

 

In the development of our disease prediction model, feature vectors are initially 

weighted, with sources from the medical knowledge graph receiving higher priority due 

to their rich disease-symptom relationship data. These weights are dynamically ad-

justed based on SHAP values, ensuring they accurately reflect the true influence of 

features on the model's predictive performance. This iterative optimization process, val-

idated through performance metrics on a validation set, enhances both accuracy and 

transparency in decision-making. The implementation of this methodology leverages 

the medical knowledge graph to significantly improve both the performance and inter-

pretability of the model. Specifically, our multi-label prediction model addresses the 

heterogeneity of diabetic complications, grounded in extensive experimental data. 

While this study primarily focuses on classifiers for diabetic nephropathy, the approach 

sets a precedent for future research into classifiers for other complications. 

 

Model interpretation. One important reason why machine learning is limited in se-

curity-sensitive tasks is the lack of interpretability. Especially for applications in a rig-

orous field like medicine, interpretability is even more critical. 

 

The main research objective of this subsection is to analyze the application and signif-

icance of the SHAP interpretable method in the field of adjunctive diagnostic models 

for diabetic nephropathy. SHAP, based on game theory [20] and local interpretation 

[21], belongs to the classical ex post interpretive framework that can provide Shapley 

values to estimate the contribution of each feature. Shapley values are a method of great 

applied value and their main role lies in describing the weights or importance of the 

feature parameters of a predictive model when making data point predictions and plays 

a central role in SHAP. Compared with traditional feature importance methods (e.g., 

XGBoost's feature importance), SHAP has better consistency in presenting the posi-

tive/negative relationship of each predictor with   respect to the target variable for both 

local and global interpretation [22, 23]. In this study, we assessed the contribution of 

features to the predictive outcome of diabetic nephropathy by means of Shapley values, 

which provided local interpretations of the features in each sample and determined their 

global importance by calculating the mean of the Shapley values of the features. Shap-

ley values of ICU clinical indicators were analyzed to explore the relationship between 

features and diabetic nephropathy risk, and the model was interpreted in the context of 
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clinical findings. Using Tree Explainer, a tool designed for tree modeling, Shapley val-

ues were calculated through tree model integration and additional modeling, and an 

individualized heuristic SHAP method was used to score and rank the global attributes 

of important predictor variables to reveal their importance in prediction. 

 

 

Fig. 4. Value of variable SHAP in the prediction model. 

According to Figure 4, the duration of diabetes is pivotal in predicting the risk of 

diabetic nephropathy. Urinary creatinine levels emerge as a crucial variable impacting 

renal function, with significant influence also from thyroglobulin antibodies, triglycer-

ides, and age. The top five weighted predictors encapsulate the essential information 

for forecasting diabetic nephropathy. 

 

Fig. 5. Summary plot of feature variable SHAP. 
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Figure 5 elucidates the significance and influence of each feature within the diabetic 

nephropathy prediction model. Here, each point corresponds to a Shapley value, delin-

eating the impact of individual features across various samples. Feature importance is 

delineated along the y-axis, while Shapley values are plotted along the x-axis, with the 

feature value sizes encoded in color, offering a clear, intuitive summary of the model. 

Variations in the vertical positioning of points illustrate the distribution of feature-based 

Shapley values. Notably, the duration of diabetes emerges as the most influential factor, 

showing a positive correlation with the likelihood of developing diabetic nephropathy. 

Urinary creatinine ranks as the second most impactful feature, indicating a higher prob-

ability of occurrence with elevated levels, whereas glycosylated hemoglobin and fast-

ing insulin hold lesser significance in this model. 

3 Findings 

3.1 Data sources 

In this study, we validate the predictive inference of diabetic nephropathy using the 

novel inference prediction model based on a diabetes medical knowledge graph, as pro-

posed in this paper. Clinical data from diabetic patients are fed into the knowledge 

graph for comprehensive analysis. The data sources are twofold: firstly, the success-

fully constructed diabetes medical knowledge graph, which encompasses 18 types of 

entities and 17 types of relationships, totaling 13,032 entity nodes and 24,281 relation-

ship pairs. Secondly, detailed clinical data from diabetic patients' consultations and ex-

aminations are extracted from the electronic medical records of three hospitals, encom-

passing diagnostic and treatment information of 3,182 patients. By integrating and 

structuring clinical data within the diabetes medical knowledge graph—through data 

structuring, establishing entity-attribute relationships, and other information processing 

steps—we enhance the diagnostic processes for identifying diabetic nephropathy com-

plications. This structured approach provides a robust framework for leveraging exten-

sive medical data to improve diagnostic accuracy and patient outcomes. 

3.2 Experimental Design 

Comparison Experiments. 

 

Comparison with related models. The model proposed in this paper mainly adds 

medical knowledge graph information to the traditional integrated learning algorithms 

to improve the accuracy of the algorithms, and three types of integrated learning algo-

rithms, LightGBM, CatBoost, and XGBoost, are selected in this thesis, and at the same 

time, the comparative experiments of classification effects are carried out together with 

neural networks. The overall experimental environment and equipment data are shown 

in the following table. 
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Table 1.   Experimental environment.  

Experimental Name (of a Thing)  Releases Environment 

programming language Python 3.9 

systems Windows (computer) 10 

editor (software) miniconda 3 

random access memory (RAM) 16G / 

CPU Intel(R) Core(TM) i7-9750H / 

 

 

Comparison of mixed and unmixed sampling data. This paper found an imbalance 

in its data when predicting for diabetic nephropathy, where the number of patients with 

diabetic nephropathy was 786, or 25% of the total number of patients, and mixed sam-

pling of patient information was performed to analyze the comparisons. 

 

Judging Criteria. For classification problems, the confusion matrix is an important 

evaluation tool that can be used to calculate the model's recall, precision, F1 value and 

other indicators. The confusion matrix of this study is shown in Table 5.2, which can 

intuitively reflect the classification performance of the model and provide a strong ref-

erence for subsequent studies.  

Table 2.   Confusion Matrix. 

 The model predicts a positive The model predicts a negative 

The actual result is positive TP FN 

The actual result is negative FP TN 

 

3.3 Experimental results 

Comparison with related models. In this thesis, the experimental results of four 

types of models, LightGBM, CatBoost, XGBoost and Neural Networks, were com-

pared on the prediction of complications and the results are shown in Table 3. 

Table 3.   Comparison of experimental results of different models. 

 LightGBM Cat Boost XGBoost Neural network 

Accuracy 0.83 0.81 0.82 0.79 

Precision 0.82 0.80 0.75 0.83 

Recall 0.36 0.32 0.38 0.21 

F1 Score 0.49 0.45 0.50 0.34 

AUC 0.75 0.74 0.73 0.69 

Gini 0.50 0.49 0.47 0.38 

KS Value 0.37 0.36 0.35 0.31 
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From this table, the LightGBM model has the best classification performance as it 

ranks first in all four dimensions of accuracy, AUC, Gini coefficient and KS value, and 

the model also ranks second in the other three dimensions (precision, recall and F1 

value). 

 

The individual parameters of the LightGBM model are analyzed next. Shown in Figure 

6 is the AUC curve of the LightGBM model, usually the value of AUC ranges from 0.5 

to 1. The closer the AUC is to 1, the better the classifier performance. In general, an 

AUC greater than 0.7 represents a good classifier. This shows that the model performs 

well in terms of effectiveness. 

 

 

Fig. 6. AUC curve for the LightGBM model. 

And the confusion matrix for the whole model is shown in Figure 7. 

 

Fig. 7. Confusion matrix for the LightGBM model. 
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Comparison of Mixed and Unmixed Sampling Data. Through the in-depth anal-

ysis of the patients' disease conditions in the e-cases, it is found that the proportion of 

patients with diabetic nephropathy is low, accounting for only about one -third of the 

total number of patients, and this unbalanced data distribution will have certain impacts 

and challenges on the training and prediction of the model. We cite a mixed-sampling 

unbalanced data processing technique based on LightGBM integration tree algorithm 

to fully utilize the advantages of oversampling and undersampling and balance the dis-

advantages of oversampling and undersampling. In the hybrid sampling algorithm, a 

new sample is synthesized by SMOTE by selecting each sample in turn from a small 

number of samples as the root sample, and the noise samples are eliminated by using 

ENNs when generating the SMOTE process. The hybrid sampling process is shown 

below in Figure 8. 

 

 

Fig. 8. Mixed sampling flow. 

In this thesis, the experimental data were processed by oversampling of SMOTE 

algorithm and hybrid sampling of SMOTE-ENN based on LightGBM integration tree 

algorithm, and the results are shown in Table 4. 

Table 4.  Comparison of experimental results of different models after resampling. 

 LightGBM LightGBM-SMOTE LightGBM-SMOTE-ENN 

Accuracy 0.83 0.82 0.90 

Precision 0.82 0.82 0.97 

Recall 0.36 0.64 0.71 

F1 Score 0.49 0.72 0.82 

AUC 0.75 0.86 0.91 

Gini 0.50 0.72 0.82 

KS Value 0.37 0.57 0.73 
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As can be seen from the table results, the LightGBM-SMOTE-ENN algorithm has 

improved the data of all the metrics. For the LightGBM model without mixed sampling, 

the KS value, recall and F1 value of the LightGBM-SMOTE-ENN algorithm are im-

proved by 97.3%, 97.22% and 67.35%, respectively; for the LightGBM-SMOTE model 

with separate sampling oversampling treatment, the KS value, accuracy, and Gini co-

efficient are improved by 28.07%, 18.29% and 13.89%, respectively. Among them, the 

accuracy, precision, and AUC of the mixed sampling model are improved to more than 

0.90. 

3.4 Analysis of experimental results 

This subsection delves into the interpretability of the experimental outcomes, utiliz-

ing predicted data from randomly selected patients to exemplify this analysis. 

 

Figure 9 presents the SHAP waterfall plot for the third patient, illustrating that the final 

prediction outcome value is 𝑓(𝑥) = 4.665. Given that this value exceeds 0, it indicates 

a positive prediction for diabetic nephropathy. This visual representation not only un-

derscores the predictive accuracy but also enhances our understanding of the contrib-

uting factors leading to the diagnosis, thereby facilitating a deeper insight into the mod-

el's decision-making process. 

 

The graphical representation in the SHAP waterfall plot effectively visualizes the im-

pact of different features on the predicted outcomes. In this visualization, blue bars 

illustrate the extent to which specific characteristics decrease the predicted value, while 

red bars indicate how certain features contribute to an increase in the predicted value. 

For instance, a red bar for urinary creatinine, marked as +2.65, signifies that this varia-

ble significantly increases the likelihood of a diabetic nephropathy prediction. Con-

versely, a blue bar for triglycerides, noted as -0.3, demonstrates that this variable tends 

to lower the predicted risk of diabetic nephropathy. This method of visualization pro-

vides a clear and intuitive understanding of the influence and importance of various 

features within the prediction model, enhancing interpretability and aiding in more in-

formed clinical decision-making. 
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Fig. 9. SHAP waterfall diagram for patient 3. 

 

 

Fig. 10. Effect of urinary creatinine on model outputs. 

The SHAP waterfall plot, while insightful, is limited to illustrating the impact of 

variables on a single sample value. To address this limitation and observe the dynamic 

changes of variables, we employ a scatter plot. As depicted in Figure 10, a discernible 

trend emerges: lower urinary creatinine levels correlate with higher SHAP values, in-

dicating an increased probability of disease presence. Conversely, higher levels of uri-

nary creatinine correspond to lower SHAP values and a decreased likelihood of disease. 

This pattern is corroborated by real clinical data, where patients with diabetic nephrop-

athy often exhibit chronic inflammation and renal impairment, coupled with reduced 
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urinary creatinine excretion. Such findings are consistent with observed clinical condi-

tions, enhancing our understanding of the disease's progression and aiding in the pre-

dictive accuracy of the model. 

4 Conclusions 

4.1 Summary of the work in this paper 

This study introduces a novel model for predicting diabetes complications, utilizing 

a medical knowledge graph. This graph is constructed by aggregating diabetes-related 

clinical data and employing knowledge representation learning techniques for vectori-

zation. This process helps identify key predictor variables, which are integrated with 

symptom vectors to form a classification model. The aim is to enhance prediction ac-

curacy and the reliability of assisted diagnoses. The model incorporates a SHAP value-

based approach to bolster interpretability and support clinical decision-making. Exper-

imental validation confirms that this model surpasses traditional methods in accuracy, 

AUC, and other evaluation metrics, particularly in handling data imbalances with sig-

nificantly improved outcomes. Case studies demonstrate the model's efficacy in pre-

dicting complications and providing explanatory guidance. This research paves a new 

avenue for the application of medical knowledge graphs in diabetes complication pre-

diction, potentially elevating healthcare service quality and improving patient out-

comes. 

4.2 Outlook 

In this study, we investigated the utility of medical knowledge graphs in assisting the 

diagnosis of diabetic complications. By compiling extensive clinical data, we con-

structed a comprehensive diabetic medical knowledge graph, which we then analyzed 

using advanced representation learning and integrated learning techniques. Our find-

ings highlight the significant role of mining implicit disease features from patients' chief 

complaints recorded in electronic medical records, facilitated by natural language pro-

cessing techniques. This approach proved crucial for enhancing diagnostic accuracy. 

However, experiments revealed discrepancies between the entities of the medical 

knowledge graph and actual patient examination indices, primarily due to the diversity 

of natural language, which impacted entity representation consistency, information 

matching, and ultimately, the accuracy of the knowledge graph. 

 

Future research will focus on developing entity alignment techniques to refine the per-

formance of the knowledge graph and the accuracy of the inference model by analyzing 

and integrating heterogeneous data sources more thoroughly. Additionally, this study 

underscores the critical importance of adhering to medical ethics and protecting per-

sonal privacy to ensure the safety and fairness of data processing, which is essential for 

fostering technological advancement in the field of medical AI. 
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In real-world scenarios, Large Language Models (LLMs) tend to encounter domain-

specific pragmatics that require a combination of domain expertise and complex rea-

soning capabilities [24]. In this context, the application of LLMs in healthcare is a re-

search topic of interest. As large-scale language models (LLMs) have achieved break-

throughs in general-purpose domains such as natural language processing, their poten-

tial application in healthcare is attracting extensive attention from both academia and 

industry [25]. It is foreseen that in the near future, with the continuous deepening and 

optimization of LLMs technology, the research results in this field will be more deeply 

integrated with LLMs, which will contribute to the further development of personalized 

medicine and precision medicine, especially providing more efficient and precise treat-

ment strategies and management plans for patients with diabetes mellitus and other 

chronic diseases, which will fundamentally  enhance the overall quality of healthcare 

services, and greatly improve the quality of life of patients. This will fundamentally 

enhance the overall quality of healthcare services and greatly improve the quality of 

life of patients. 
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