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Abstract. Accurate diagnosis of diabetes is crucial for effective health 

management of patients. Recent advances in machine learning have shown 

promising predictive results in diabetes diagnosis. In this paper, we developed an 

Adaptive Multi-Channel Fusion Network (AMCFN). Specifically, we have 

defined a feature enhancement module that combines an attention mechanism to 

dynamically assign relevant weights to input data, thereby enabling the model to 

focus on processing task-relevant outputs. Meanwhile, we design a multi-channel 

fusion network that utilizes different network structures to simultaneously extract 

various deep features, including temporal features and nonlinear features, from 

the input data. Extensive experiments were conducted on the Pima Indian 

Diabetes Dataset (PIDD) and the Early-Stage Diabetes Risk Prediction Dataset 

(ESDRPD). Our model achieved high predictive accuracies of 95.83% and 

99.6%, respectively. These results outperformed existing baseline models in 

diabetes diagnosis. Ablation experiments emphasized the power of the feature 

enhancement module and the multi-channel fusion network. Finally, we analyzed 

the prediction process of AMCFN using SHapley Additive exPlanations (SHAP). 



The analysis results show the importance ranking of each feature to the model 

output in different channels, and the importance ranking of each channel to the 

final diabetes diagnosis. This enhances the interpretability of AMCFN and 

validates the effectiveness of the multi-channel design. Our model demonstrates 

potential in diabetes diagnosis and is expected to increase end-user trust and 

confidence in early detection of diabetes. 

Keywords: Diabetes diagnosis, Adaptive Multi-Channel Fusion Network, 

Feature enhancement, SHapley Additive exPlanations. 

1 Introduction 

Diabetes is a common long-term disease. Diabetes occurs when the pancreas fails to 

produce adequate insulin or when the body becomes resistant to insulin's effects. Early 

diabetes detection contributes to extending patients' lifespans, which enable them to 

lead healthier and happier lives. At the same time, it can also reduce costly medical 

expenses. The insulin hormone and glucose levels in the bloodstream commonly serve 

as diagnostic factors for diabetes. When our body digests food, glucose is released into 

the bloodstream and insulin's job is to instruct cells to convert glucose in the blood into 

energy [1]. If insulin is not utilized correctly, the cells are unable to absorb glucose and 

blood glucose levels rise uncontrollably [2]. In addition, age is another factor associated 

with diabetes. Diabetes-related problems such as high blood pressure are more common 

in older people, making diabetes more difficult to control. 

With recent advances in artificial intelligence, patient data can be used to train and 

develop a precise classifier for early diabetes diagnosis [1][3]. Various machine 

learning methods, including Artificial Neural Networks (ANN), K-Nearest Neighbors 

(KNN), Naive Bayes (NB), Support Vector Machines (SVM), among others, have been 

applied in the diagnosis of diabetes [4][5]. Deep learning, which has achieved 

tremendous success in a variety of sectors during the last decade, can identify deep 

feature patterns with higher accuracy compared to traditional machine learning methods 

[6-9]. 

In the research on diabetes diagnosis, we utilize tabular data. Deep neural networks 

encounter several obstacles when applied to tabular data, including but not limited to 

the lack of locality, data sparsity, mixed feature types, and limited knowledge of the 

dataset structure [5]. Despite these challenges, there is still value in exploring novel 



deep-learning architectures for tabular data. Deep learning can significantly improve 

prediction performance, achieve end-to-end learning, capture representative features, 

and is suitable for streaming data and multiple data types, while simplifying tedious 

feature engineering [10]. Motivated by the advantages of deep learning, we have 

designed an adaptive multi-channel fusion network to improve the prediction 

performance of diabetes, which combines an attention mechanism to capture and 

enhance relevant information of the input data.  

Neural networks have found extensive application and validation in the field of 

medicine, demonstrating predictive performance superior to traditional statistical 

methods. However, neural networks often exhibit a "black box" nature, meaning that it 

is difficult to explain the internal mechanisms of the model and the basis for its 

predictive results. This is a drawback in the medical field because healthcare 

professionals need to understand how the model makes predictions based on patient 

features and provide relevant recommendations. At the same time, they also need to 

know which features significantly influence the prediction results. The aim of this study 

is to design a model for predicting diabetes and to apply the SHAP method for 

interpretability analysis of the model. By utilizing the SHAP method to rank the 

importance of each feature in different channels, it not only reveals the relevant features 

that affect the risk of diabetes, but also proves the effectiveness of the model design.  

The present study's contributions can be briefly outlined in three aspects:  

(1) Feature Enhancement Module: An adaptive attention weight matrix is defined 

to enhance features in tabular data. 

(2) Multi-Channel Fusion Network: A three-channel neural network is designed, 

with each channel employing a different network architecture. Subsequently, 

the outputs from the three channels are fused together for final prediction. This 

design takes into account the nonlinearity, time, and other complex data 

information of the input data by observing the input data from multiple angles. 

The proposed method outperforms all baseline models in comparison 

experiments. 

(3) SHAP Evaluation: Using SHAP for explanatory analysis of AMCFN not only 

reveals the importance ranking of input features within each channel to the 

model output, as well as the importance ranking of different channels to the final 

prediction results, but also demonstrates the effectiveness of the design of 

AMCFN. 



2 Related Work 

Many researchers [10-18] constructed classification models to predict diabetes using 

the PIDD. This dataset is widely regarded as suitable for conducting baseline tests on 

existing models. The utilization of ESDRPD is somewhat infrequent due to its recent 

release in the year 2020. Therefore, it is also a good option for validating our model. 

This section summarizes a few relevant studies using these two datasets, some of which 

[10-18] and [18-26] used PIDD and ESDRPD, respectively. Specifically summarized 

in Table 1. 

Table 1. Performing classification model-related work using (*) Dataset 1 (PIDD) and (**) 

Dataset 2 (ESDRPD). 

Proposed model and data used Accuracy (%) Refs. 

Model: Ensemble using the soft voting method with Logistic Regression (LR), Naive 

Bayes (NB), and Random Forest (RF) classifiers * 
79.04 [10] 

Model: A stacking-based heterogeneous ensemble classifier (Level 0 models: MLP 

and SVM, and Level 1 classifier: Logistic Regression) * 
78.20 [11] 

Model: Random Forest (RF) integrated with chaotic multi-verse optimization 

(CMVO) for feature selection (OSMOTE-CMVO-RF) * 
89.04 [12] 

Model: Deep Neural Networks (DNN) fine-tuned with stacked autoencoders (SAE) 

using the backpropagation method (DNN-SAE) * 
86.26 [13] 

Model: The integration of the C4.5 algorithm with SMOTE and the Interquartile 

Range (IQR) algorithm (IQR-SMOTE-C4.5) * 
89.50 [14] 

Model: A Functional Fuzzy Wavelet Neural Network optimized using the Teaching-

Learning-Based Optimization Algorithm. (TLBO- FFWNN) * 
88.68±3.02 [15] 

Model: ANN using Equilibrium Optimizer (ANN-EO) * 77.85 ± 0.06 [16] 

Model: Spider Monkey Optimization-based Rule Miner (RM-SMO) * 89.87 [17] 

Model: TabNet model optimized by Bayesian Optimization (TabNet-BO) * and ** 92.20*, 99.40** [18] 

Model: Binary logistic regression (BLR) integrated with XGBoost for feature 

selection (XGBoost-BLR) ** 
98.10 [19] 

Model: Extra Trees combined with Pearson Correlation feature selection (ET-PC) ** 99.06 [20] 

Model: Feed-Forward Neural Networks (FFNN) optimized using the CSA algorithm 

(CSA-FFNN) ** 
99.04 [21] 

Model: Utilize Grey Wolf Optimization (GWO) and Adaptive Particle swarm 97.00 [22] 



optimization (AP) to optimize MLP (APGWO-MLP) **  

Model: Artificial Neural Networks (ANN) combined with Information Gain (ANN-

IG) ** 
98.10 [23] 

Model: Integration between Association Rules and KNN (KNN-AR) ** 97.36 [24] 

Model: Stacking ensemble technique (CNN, SVM and CNN) ** 98.71 [25] 

Model: Stacking ensemble technique (LR, KNN, CART, SVM, AdaBoost and 

GDBT) ** 
97.00 [26] 

The field of machine learning has witnessed significant progress in both the creation 

and implementation of techniques for the classification of diabetes, which from initial 

independent models to current deep learning models. Research presented in Table 1 

shows that these models exhibit high classification accuracy in predicting diabetes. 

However, there still exists the potential for further improvement in diabetes prediction. 

We proposed the AMCFN, which integrates deep learning techniques such as attention 

mechanism and GRU to enhance diabetes prediction. 

 In the field of eXplainable Artificial Intelligence (XAI), the SHAP [27] has 

garnered significant attention as a valuable contribution to addressing model opacity 

and enhancing interpretability. The SHAP employs a game-theoretic approach aimed 

at determining Shapley values to measure the influence of each feature on instance 

predictions. Specifically, the SHAP reveals the decision-making process of a model by 

computing the contribution of each feature to the prediction outcome. For instance, Gu 

et al. [28] utilized the SHAP method to calculate the weights of different features (i.e., 

Shapley values) to explain both positive and negative outcomes of breast cancer 

recurrence. Additionally, researchers can utilize SHAP feature importance to explain 

the relationship between the features generated by the model and the outcomes. For 

example, Meena & Hasija [29] employed feature weights to rank and identify 

significant genes correlated with the progression of squamous cell carcinoma. The 

SHAP is highly trusted because it considers all possible input combinations for all 

potential predictions within a sample, thereby ensuring consistency and accuracy in 

explanations. 



3 Methods 

3.1 Data pre-processing 

Despite diabetes being a prevalent and life-threatening condition, only a few databases 

are publicly available. Among these, the PIDD is the most commonly used, whereas 

the latest one is the ESDRPD. In this study, benchmark testing was conducted using 

PIDD and ESDRPD to compare the performance of the proposed model. 

In this study, data description was conducted to better understand the features of the 

two datasets used, as illustrated in Table 2. Unlike the ESDRPD, the PIDD contains 

many outliers. In this study, box plots and interquartile range (IQR) were used to detect 

outliers in the PIDD, as shown in Figure 1. Before performing data cleaning, the 

division of the two datasets into training and testing sets was implemented to mitigate 

the risk of data leakage. The two datasets are randomly split in a 70:30 ratio, with 70% 

of the data used for model training and 30% for model testing. Hence, both the training 

and testing datasets underwent separate cleaning processes. This study removed 

duplicate values and employed median imputation to fill in missing values. Following 

this, outliers were replaced with the median value of each feature. For discrete 

variables, label encoding was applied, and finally, the dataset was normalized. 

 

Fig. 1. The PIDD Outlier Detection with Box Plots and Interquartile Range Analysis. 

Table 2. Description and original range of attributes for PIDD and ESDRPD. 

Dataset 1-PIDD 



Attributes Description Range Type 

Pregnancies Number of pregnant (0-17) Numeric 

Glucose 

Oral Glucose Tolerance Test (OGTT) 

2-hour plasma glucose concentration 

(mg/dl) 

(0-199.0) Numeric 

Blood Pressure Diastolic blood pressure (mm Hg) (0-122.0) Numeric 

Skin Thickness Triceps Skinfold Thickness (mm) (0-99.0) Numeric 

Insulin 2-hour Serum Insulin (μU/ml) (0-846.0) Numeric 

BMI Body mass index (kg/m2) (0-67.1) Numeric 

Diabetes Pedigree 

Function 
Diabetes pedigree function 

(0.078-

2.42) 
Numeric 

Age Patient ages (years) (21-81) Numeric 

Outcome Diabetic:1, Non-diabetic:0 (0-1) Binary 

Dataset 2-ESDRPD 

Age Patient ages (years) (16-90) Numeric 

Gender Female:0, Male:1 (0-1) Binary 

Polyuria Polyuria:1, No-Polyuria:0 (0-1) Binary 

Polydipsia Polydipsia:1, No-Polydipsia:0 (0-1) Binary 

Sudden weight loss 
Sudden weight loss:1, No-Sudden 

weight loss:0 
(0-1) Binary 

Weakness Weakness:1, No-Weakness:0 (0-1) Binary 

Polyphagia Polyphagia:1, No-Polyphagia:0 (0-1) Binary 

Genital thrush Genital thrush:1, No-Genital thrush:0 (0-1) Binary 

Visual blurring Visual blurring:1, No-Visual blurring:0 (0-1) Binary 

Itching Itching:1, No-Itching:0 (0-1) Binary 

Irritability Irritability:1, No-Irritability:0 (0-1) Binary 

Delayed healing 
Delayed healing:1, No-Delayed 

healing:0 
(0-1) 

Binary 

Partial paresis Partial paresis:1, No-Partial paresis:0 (0-1) Binary 

Muscle stiffness 
Muscle stiffness:1, No-Muscle 

stiffness:0 
(0-1) 

Binary 

Alopecia Alopecia:1, No Alopecia:0 (0-1) Binary 

Obesity Obesity:1, No-Obesity:0 (0-1) Binary 

Class Diabetic:1, Non-diabetic:0 (0-1) Binary 



 

3.2 Proposed Model Architecture 

The innovation of the AMCFN lies in the design of its feature enhancement module 

and multi-channel fusion module. The feature enhancement module enables the model 

to focus on processing features relevant to the task of diabetes prediction. The multi-

channel fusion module integrates the outputs from each channel to diagnose diabetes 

ultimately. Due to the diverse structural designs of each channel, the model can observe 

input data from various perspectives, effectively enhancing the model's performance. 

We conducted an analysis of the prediction process of AMCFN using the SHAP and 

visualized it, demonstrating the importance ranking of input features across different 

channels as well as the importance ranking of different channels for the final diagnosis 

of diabetes. The high-level architecture diagram for diabetes diagnosis is illustrated in 

Figure 2.  



 

Fig. 2. High-level architecture diagram of the diabetes diagnosis model. 
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In the diabetes dataset, not all features have an equal impact on the diagnosis of 

diabetes. Therefore, in this study, we introduce a feature enhancement module aimed 

at dynamically improving the input data. This enables the model to focus on processing 

task-relevant features, thereby improving the accuracy of diabetes diagnosis. 

The input to the feature enhancement module is the pre-processed diabetes feature 

matrix 𝑋. Firstly, the feature matrix 𝑋 is input into a fully connected layer with a large 

number of neurons. This layer maps the features into a new feature space, effectively 

increasing the dimensionality of the input data, denoted as 𝑋. Secondly, we defined an 

adaptive attention weight matrix 𝑊, which can automatically adjust based on changes 

in the output dimensions of different fully connected layers. Filling the matrix 𝑊 with 

the weights obtained using the dot-product attention mechanism [30]. Finally, the 

enhancement of the input data is achieved by multiplying the feature matrix 𝑋 with the 

weight matrix 𝑊. The result is denoted as 𝑋̂: 

𝑋̂ = 𝑅𝑒𝐿𝑢(𝑊 ⊙ 𝑋) = 𝑅𝑒𝐿𝑢(𝑊 ⊙ 𝐹𝐶 𝑋 ).  1  

where 𝑅𝑒𝐿𝑢 .   represents the ReLu activation function, 𝐹𝐶 .   represents the fully 

connected layer, ⊙represents the Hadamard product. 

Multi-Channel Fusion Module 

After the feature enhancement module, we constructed a multi-channel network 

architecture, where each channel adopts a different network structure. This design aims 

to comprehensively analyze input data from different perspectives, such as nonlinearity 

and time. Specifically, we designed three channels, each of which initially includes a 

fully connected layer to process 𝑋̂ and adapt it to the input dimensions of each channel. 

Finally, each channel undergoes a fully connected layer to ensure that their output 

dimensions are the same for the ultimate multi-channel fusion. 

The first channel consists of two fully connected layers and two one-dimensional 

convolutional layers. Firstly, after the fully connected layer, different local features in 

the data are learned through the first convolutional layer, and the result is recorded as 

ℎ1. Secondly, through skip connections, the model can establish connections between 

convolutional layers, which helps gradient propagation and effectively learns the 

characteristics of the data. Finally, a fully connected layer is used to control the output 

dimension of the first channel, which can be written as: 



ℎ1 = 𝑅𝑒𝑙𝑢 (𝐶𝑜𝑛𝑣 (𝐹𝐶(𝑋̂))) ,

𝐻1 = 𝐹𝐶 ℎ2 + ℎ1 = 𝐹𝐶 𝑅𝑒𝑙𝑢 𝐶𝑜𝑛𝑣 ℎ1  + ℎ1 .  2 
 

where 𝐶𝑜𝑛𝑣 .   represents the one-dimensional convolutional layer. 

 In the second channel, the Gated Recurrent Unit (GRU) is utilized to capture the 

temporal dependence between the target and feature variables. The GRU is a recurrent 

neural network that utilizes GRU cell units. The hidden state 𝑆𝑡 of each time step is 

controlled by the hidden state 𝑆𝑡−1 of the previous time step and the current input 𝑋𝑡. 

The information flow in the GRU model is controlled by the GRU cell unit, and its 

structure is shown in Figure 3. The GRU unit incorporates two primary gates: the reset 

gate and the update gate, indicated by dashed boxes. On the left is the reset gate, which 

is responsible for resetting 𝑆𝑡−1, and on the right is the update gate, which is used to 

update the previous state 𝑆𝑡−1  and the current hidden state 𝑆𝑡̃ . The detailed 

mechanisms working on the two gates can be represented as follows: 

𝑧𝑡 = 𝜎 𝑊𝑧𝑋
𝑡 + 𝑈𝑧𝑆

𝑡−1 + 𝑏𝑧 ,

𝑟𝑡 = 𝜎 𝑊𝑟𝑋
𝑡 + 𝑈𝑟𝑆

𝑡−1 + 𝑏𝑟 .  3 
 

where 𝑧𝑡  and 𝑟𝑡  represents the update gate and reset gate, 𝜎 .   represents the 

sigmoid activation function, trainable parameters: 𝑊𝑧,𝑊𝑟 , 𝑈𝑧 , 𝑈𝑟 , 𝑏𝑧 , 𝑏𝑟 .  

 The output of the GRU unit can be described as follows: 

𝑆𝑡̃ = 𝑡𝑎𝑛ℎ 𝑊ℎ𝑋
𝑡 + 𝑈ℎ 𝑟

𝑡 ⊙ 𝑆𝑡−1 + 𝑏ℎ , 

𝑆𝑡 = 𝑧𝑡 ⊙ 𝑆𝑡̃ +  1 − 𝑧𝑡 ⊙ 𝑆𝑡−1.  4   

where 𝑊ℎ , 𝑈ℎ , 𝑏ℎ are trainable parameters.  

 In the second channel, GRU is stacked twice, and the final output is acquired 

through a fully connected layer, which can be written as: 

𝑡1 = 𝐸𝐿𝑈 (𝑔𝑟𝑢 (𝐹𝐶(𝑋̂))) ,

𝐻2 = 𝐹𝐶 𝑡2 = 𝐹𝐶 𝐸𝐿𝑈 𝑔𝑟𝑢 𝑡1   .  5 
 

where 𝑔𝑟𝑢 .   represents the GRU layer, 𝐸𝐿𝑈  represents the ELU activation 

function. 



 

Fig. 3. The architecture of the GRU. 

The third channel aims to deepen the structure of the network layers, preserving and 

reusing the feature information learned at previous levels to enhance the model's feature 

learning capabilities. The deep blue layer in Figure 2 is referred to as the "mapping" 

layer. Each "mapping" layer consists of two ReLu activation functions and two fully 

connected layers. Firstly, feature transformation is performed by the first fully 

connected layer, which modifies the feature dimensions. Subsequently, deep feature 

representations are learned through three "mapping" layers. Finally, the current feature 

is added to the previously stored features through skip connections. This approach 

enables information retention and transfer, facilitating deeper learning of feature 

representations and ultimately improving the overall network performance, which can 

be written as: 

𝑚2 = 𝑚𝑎𝑝 𝑚1 = 𝑚𝑎𝑝 (𝑚𝑎𝑝 (𝐹𝐶(𝑋̂))) ,

𝐻3 = 𝐹𝐶 (𝑚3 + 𝐹𝐶(𝑋̂)) = 𝐹𝐶 (𝑚𝑎𝑝 𝑚2 + 𝐹𝐶(𝑋̂)) .  6 
 

where 𝑚𝑎𝑝 .   represents the "mapping" layer. 

 We aggregate the outputs of the three channels 𝐻1, 𝐻2 and 𝐻3. Finally, applying 

the fully connected layer and the sigmoid activation function, the binary prediction 

output is obtained, which can be written as: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝜎 (𝐹𝐶(𝑐𝑜𝑛𝑐𝑎𝑡 𝐻1 , 𝐻2, 𝐻3 )) .  7  

SHAP Method 

To enhance the interpretability of our model, this study adopts the SHAP method to 

identify the feature discrepancies that each channel attends to, as well as how much 

each channel influences the final diagnosis of diabetes. The SHAP method utilizes 

principles from cooperative game theory to allocate importance scores to each input 

feature for a given prediction outcome. Game theory consists of a set of principles in 

         

          

 

          

        
    

  

 

  

      

  

 

  

  

  

  



which players involved in a game hold a range of strategies and are motivated by 

various forms of rewards. Shapley values are utilized to elucidate the individual 

contributions of each participant within the game. To elucidate the model, strategies 

symbolize the generation of outcomes, players represent features, and rewards signify 

the quality of the outcomes obtained. By treating the input data as a collection of 

individual participants, the SHAP approximates Shapley values through Shapley 

kernels, thereby providing reasonable and reliable explanatory weights for each feature 

and the model's prediction outcomes. This effectively enhances the interpretability and 

applicability of the model. The calculation method for SHAP values is based on the 

following formula: 

𝜙𝑖 𝑓 = ∑
|𝑆|!  𝑀 − |𝑆| − 1 !

𝑀!
𝑆⊆{1,…,𝑀}\{𝑖}

[𝑓 𝑥𝑆 ∪ {𝑖} − 𝑓 𝑥𝑆 ].  8  

where 𝜙𝑖 𝑓  represents the contribution of feature i to the model f (i.e., the SHAP 

value.), 𝑀 is the total number of features, 𝑥 is the input sample, 𝑆 is a set of features, 

𝑥𝑆 is the input sample with only the features in the set S, 𝑓 𝑥𝑆  is the model prediction 

without the features in set 𝑆, and 𝑓 𝑥𝑆 ∪ {𝑖}  is the model prediction with feature 𝑖 

included. 

4 Results and Discussion 

4.1 Model Performance 

In this part, we demonstrate the performance difference between the proposed model 

AMCFN and the baseline model through extensive experiments, as shown in Table 3 

and Table 4. In this study, accuracy, precision, recall, and F1 score were used as 

evaluation metrics. 

 Combining Tables 3 and 4, our proposed model outperforms the baseline model 

in overall performance. Specifically, on the PIDD, the AMCFN accuracy is 95.83%, 

precision is 94.40%, recall is 95.74%, and F1 score is 95.07%. The AMCFN 

outperformed the baseline model by 3.63%, 3.74%, 6.34%, and 5.57%, respectively. 

On the ESDRPD, the AMCFN accuracy is 99.60%, precision is 100%, recall is 99.32%, 

and F1 score is 99.51%. The accuracy, recall, and F1 score are respectively higher than 

the baseline model by 0.2%, 0.32%, and 0.21%. We conducted ablation experiments 

on each of the two datasets as shown in Table 5. The results indicate that the 



introduction of the feature enhancement module enables the model to better process 

inputs relevant to the current task, thereby improving overall performance. Due to the 

distinct designs of each channel, considering different feature information, the fusion 

of the three channels significantly enhances the overall performance of the model, 

reaffirming the rationality and excellent performance of the AMCFN design. 

Table 3. PIDD- Comparison of AMCFN with methods in other literature 

Dataset 1-PIDD 

Method [Refs.] Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

AMCFN [Current study] 95.83 94.40 95.74 95.07 

Soft voting (LR, NB and RF) [10] 79.04 73.48 71.45 80.60 

Stacking (MLP, SVM and LR) [11] 78.20 72.20 — 59.40 

OSMOTE-CMVO-RF [12] 89.04 88.17 — 89.00 

DNN-SAE [13] 86.26 90.66 87.92 89.27 

IQR-SMOTE-C4.5 [14] 89.50 90.00 89.40 89.50 

TLBO- FFWNN [15] 88.68±3.02 — — — 

ANN-EO [16] 77.85 ± 0.06 74.61 ± 0.11 — — 

RM-SMO [17] 89.87 — — — 

TabNet-BO [18] 92.20 89.50 87.20 88.30 

 

Table 4. ESDRPD- Comparison of AMCFN with methods in other literature 

Dataset 2-ESDRPD 

Method [Refs.] Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

AMCFN [Current study] 99.60 100.00 99.32 99.51 

TabNet-BO [18] 99.40 100.00 98.60 99.30 

XGBoost-BLR [19] 98.10 — — — 

ET-PC [20] 99.06 98.77 — 98.53 

CSA-FFNN [21] 99.04 — — — 

APGWO-MLP [22] 97.00 97.00 99.00 98.00 

ANN-IG [23] 98.10 98.40 — 98.40 

KNN-AR [24] 97.36 98.22 — — 



Stacking (CNN, SVM and CNN) [25] 98.71 — — — 

Stacking (LR, KNN, CART, SVM, 

AdaBoost and GDBT) [26] 
97.00 — — — 

 

Table 5. Ablation experiments 

Ablation experiment Accuracy Precision Recall F1 Score 

PIDD 

AMCFN 0.9583 0.9440 0.9574 0.9507 

No Feature Enhancement Module 0.9167 0.8973 0.9291 0.9129 

𝐻2+𝐻3 0.9233 0.9402 0.8936 0.9163 

𝐻1+𝐻3 0.9300 0.9348 0.9149 0.9247 

𝐻1+𝐻2 0.9266 0.9343 0.9078 0.9208 

ESDRPD 

AMCFN 0.9960 1.0000 0.9932 0.9951 

No Feature Enhancement Module 0.9744 0.9688 0.9894 0.9789 

𝐻2+𝐻3 0.9935 0.9937 0.9935 0.9936 

𝐻1+𝐻3 0.9872 1.0000 0.9804 0.9901 

𝐻1+𝐻2 0.9808 0.9896 0.9794 0.9845 

 

4.2 SHAP Evaluation 

Figures 4 and 5 display the average impact ranking of various features and channels on 

the magnitude of model output, calculated using the SHAP method. The ranking of 

features is determined based on their importance (i.e., SHAP value) to the model output 

in different channels. In the PIDD, when considering all three channels, the top three 

ranked features are “Insulin”, “Glucose”, and “Age”, while the bottom ranked two 

features are “Blood pressure” and “Diabetes pedigree function”, as shown in Figure 4.  

The second channel contains a GRU structure sensitive to time series, which results 

in more attention being focused on the “Age” feature, as depicted in (b) of Figure 4. In 

the final diagnosis of the model, the impact of the third channel is the greatest, while 

the impact of the second channel is the smallest, as shown in (d) of Figure 4. In the 

process of model prediction, the features of “Insulin”, “Glucose”, and “Age” have a 

more significant impact on the predictive outcomes. 



For the ESDRPD, we conducted the same experiment, integrating the feature 

importance rankings from three channels. The top ranked three features are 

“Polydipsia”, “Age”, and “Itching”, while the last ranked feature is “Obesity”, as shown 

in Figure 5. Similarly, the second channel pays more attention to “Age”, as shown in 

(b) of Figure 5. In the final diagnosis of the model, the third channel has the greatest 

impact on the model output, while the first channel has the smallest impact on the model 

output, as shown in (d) of Figure 5. 

In summary, the SHAP method reveals differences in the importance ranking of 

features in each channel, and the impact of each channel on the final diagnosis is also 

different. This further enhances understanding of the model's prediction process and 

improves the model's interpretability. It provides medical professionals with evidence 

of the importance of each feature, helping doctors better understand the model's 

prediction process. 

  
(a) Feature impact ranking based on SHAP value on the channel 

H1 of the AMCFN 

(b) Feature impact ranking based on SHAP value on the channel 

H2 of the AMCFN 

 

 

(c) Feature impact ranking based on SHAP value on the channel 

H3 of the AMCFN 

(d) Different channels impact ranking based on SHAP value for 

the AMCFN 

Fig. 4. Impact ranking of features and channels based on SHAP values for the AMCFN in the 

PIDD. 



  
(a) Feature impact ranking based on SHAP value on the channel 

H1 of the AMCFN 

(b) Feature impact ranking based on SHAP value on the channel 

H2 of the AMCFN 

 

 

(c) Feature impact ranking based on SHAP value on the channel 

H3 of the AMCFN 

(d) Different channels impact ranking based on SHAP value for 

the AMCFN 

Fig. 5. Impact ranking of features and channels based on SHAP values for the AMCFN in the 

ESDRPD. 

5 Conclusion 

In this paper, we introduced an adaptive multi-channel neural network for the diagnosis 

of diabetes. The model consists of the feature enhancement module and the multi-

channel neural network module, enabling it to focus on processing input relevant to the 



current task and observe data from multiple perspectives using different network 

architectures. We conducted experiments on two commonly used diabetes baseline 

datasets, and the results show that our proposed model outperforms the existing 

baseline models in the diagnosis of diabetes. The ablation experiments indicate that the 

adaptive attention weight matrix has significant advantages in feature enhancement, 

and multi-channel neural networks can effectively focus on input features from 

different perspectives. Finally, we analyzed the prediction process of AMCFN using 

the SHAP method. The analysis results show the ranking of the importance of each 

feature in different channels for the model output, and the ranking of the importance of 

each channel for the final diagnosis of diabetes. Provides a basis for healthcare 

professionals to help them understand the importance of various characteristics for 

diabetes prediction and be able to provide relevant medical advice to patients based on 

this information. Through the SHAP method, it enhanced the interpretability of the 

AMCFN in the process of diabetes prediction, and demonstrated the effectiveness of 

the multi-channel design.  
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