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Abstract. Inversion based on electromagnetic induction (EMI) is an important 

method for detection of underground metal targets in fields such as archaeology 

and geological exploration. However, traditional inversion algorithms grounded 

in the framework of least squares suffer from long iteration times, susceptibility 

to local optima, and dependence on initial values. To address these challenges 

and enhance the detection of underground metal target detection, this paper pro-

poses an innovative CNN-GP algorithm based on Convolutional Neural Network 

(CNN) and Gaussian Process (GP). Our proposed algorithm initiates by extract-

ing discriminative features based on CNN, followed by dimensionality reduction 

through a multilayer perceptron (MLP) to map the extracted features into low-

dimensional vectors, and estimating the position of metal targets through GP al-

gorithm. To refine the accuracy of the CNN-GP algorithm, this paper uses grid 

and Bayesian search algorithms for network optimization. Results demonstrate 

that the Bayesian search algorithm expeditiously identifies an optimal set of hy-

perparameters, yielding inversion performance compared with grid search algo-

rithm. Comparative analyses of inversion efficacy between CNN, GP, MLP, and 

CNN-GP algorithms pre- and post-optimization reveal CNN-GP as the optimal 

performer, with inversion errors of 0.5cm, 0.5cm, and 2.4cm along the x, y, and 

z direction, respectively. 

Keywords: underground metal target detection, electromagnetic inducction, 

CNN, hyperparameter optimization, transfer learning. 

1 Introduction 

Underground metal target detection is an important branch of geophysical inversion, 

which finds widespread applications in fields such as resource exploration [1], archae-

ology [2], detection of underground infrastructure [3], and unexploded ordnance detec-

tion [4]. Detecting metal targets buried underground provide detailed physical infor-

mation about the metal, such as its location, orientation, and resistivity. This process of 
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obtaining physical parameters of underground metal targets is called inversion. With 

the development of computer technology, there are higher requirements for detection 

performance, and faster response times are necessary when accurately inverting the 

physical properties of underground metal targets. 

In general, inversion algorithms for underground metal targets include model-based 

inversion algorithms and data-driven inversion algorithms. Model-based inversion al-

gorithms operate on the principle of estimating the physical properties of underground 

metal targets by solving for the model parameters that minimize a least squares objec-

tive function. The effectiveness of model-based inversion algorithms depends on the 

rational design of the objective function. On the other hand, data-driven inversion al-

gorithms predominantly use artificial intelligence techniques such as machine learning 

and deep learning. These methods establish mappings between response data and the 

physical properties to be inverted. Typically, these algorithms take either raw or fea-

ture-extracted response data as input and the corresponding true physical properties as 

labels for model training. Once trained, these models can then be used to estimate the 

physical properties of metal targets. 

Deep learning, as a popular machine learning technique, has been widely applied in 

various domains. Using deep learning algorithms, applications in seismic data inversion 

[5], underground cavity detection [6], and other areas have yielded promising results. 

This highlights the potential of deep learning algorithms to address the nonlinear and 

non-unique inversion problems in geophysical domain. Traditional inversion algo-

rithms based on least squares suffer from problems such as dependence on initial val-

ues, long iteration times, and susceptibility to local optima. Furthermore, in the study 

of Wang et al. [7], the objective function based on the least squares optimization algo-

rithm is designed according to the forward physical model used to generate simulation 

data, which may lead to potential inverse crime [8], where inversion performs well on 

simulation data but poorly on real collected data. Therefore, the use of deep learning-

based methods for inversion provides a viable approach to overcome the limitations of 

traditional inversion algorithms. In addition, CNNs are a commonly used method when 

processing data with spatial characteristics. Therefore, exploring the potential of CNNs 

in inversion for underground metal target holds significant research value and signifi-

cance. 

Deep learning algorithms are widely used in the electromagnetic field. Lei et al. [3] 

utilized a CNN-LSTM hybrid model to detect and estimate the diameter of cylindrical 

metal targets. The CNN processed two-dimensional magnetic map data from GPR B-

SCAN, while the LSTM handled one-dimensional temporal data from GPR A-SCAN. 

Results from both layers were integrated to derive the final inversion outcome, which 

achieves over 90% accuracy for simulated and real data. Puzyrev et al. [9] employed 

CNNs for time-domain inversion to predict resistivity in underwater and underground 

scenarios and demonstrated the superior performance and efficiency of CNNs over the 

LM algorithm. By training a fully convolutional network on simulated datasets and 

validating on real-world scenarios, Davood et al. [10] proposed a novel deep CNN-

based method for inversion of EMI data. Results addressed computational complexity, 

and nonlinearity, and achieved quick estimations in milliseconds, beneficial for large-

scale prediction tasks. Puzyrev et al. [11] proposed a fully convolutional deep neural 
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network for predicting underground resistivity, utilizing simulation data for model 

training. Experimental examples across different scenarios and noise levels confirmed 

the feasibility of deep learning inversion. Aleardi et al. [12] used a convolution-based 

approach to address resistivity tomography inversion, which compressed data via dis-

crete cosine transform and trained on transfer learning methods to facilitate real-time 

estimation of underground resistivity. 

Therefore, this paper focuses on the application of deep CNNs in the field of under-

ground metal target detection. Taking underground metal target detection as the back-

ground, cylindrical metal objects are considered as targets for underground detection. 

A CNN structure is designed, and the model is trained using simulated data generated 

by a dipole model-based forward. The trained model facilitates the inversion of under-

ground metal target properties. The current model cannot be directly extrapolated to 

real-world datasets due to potential disparities between simulated and real data. Con-

sidering that both tasks involve feature extraction from magnetic maps, this paper uses 

model-based transfer learning methods to transfer the model trained on simulated data 

to the prediction task of real data. 

This paper provides the following contribution: 

• The CNN-GP algorithm is proposed to apply CNN to the inversion problem of un-

derground metal target detection, to extract feature data directly in the magnetic map 

and find the mapping relationship between magnetic field data and metal target pa-

rameters. CNN-GP algorithm is an efficient tool for dealing with data inversion in 

geophysics, which solves the mismatch between high-precision instrument-acquired 

data and lightweight data processing methods. 

• This paper optimizes the hyperparameters of the CNN-GP algorithm using the grid 

and the Bayesian search algorithm to improve the model learning efficiency and pre-

diction accuracy. 

• The model-based transfer learning is used to solve the problem of difficult model 

reproduction due to the difference between simulated and real data. This paper keeps 

the feature extraction part related to CNN and re-learn the regression part of the 

model on real data to effectively improve the learning ability of the model. 

2 Related Work 

2.1 Metal Target Detection 

The theoretical core of frequency-domain electromagnetic detection methods lies in 

Faraday’s law of electromagnetic induction, which detects changes in the magnetic 

field of targets to achieve detection. Currently, electromagnetic detection devices in-

clude the EM series developed by Geonics [13], the GEM series developed by Geophex 

[14], the NEMFIS series developed in Russia [15], GCM [16], CEM [17], and others. 

These devices have similar hardware architectures, consisting mainly transmitters, re-

ceivers, and control units. 

The process of generating secondary field data can be described as: 

 ( ) ( ) ( ) ( ) ( ), , ), (p p p s sI r tt t r t rt t→ → → + →B J B B V  (1) 
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The transmitter drives the transmitting coil to emit a changing current Ip, thereby 

generating low-frequency electromagnetic waves to the ground, known as the primary 

field Bp. Underground metal targets, exposed to the primary field generate eddy currents 

internally, which in turn generate a magnetic field known as the secondary field Bs. The 

rapidly decaying secondary field is finally received by the receiver and transmitted to 

the control unit for further processing, resulting in the final response signal Vs. 

In the field of underground metal target detection, the most used data acquisition 

scheme is 2D parallel scanning, as shown in Fig. 1. During data collection through a 

portable handheld device, a square area is selected on the ground, starting from one 

corner of the square area, and data is collected at certain sampling spaces.  

 

Fig. 1. Process of underground metal target detection 

Upon obtaining response data, inversion methods can be used to estimate the posi-

tion information and physical properties of underground metal targets. For model-based 

inversion algorithms, initial estimates are typically initialized before inversion based 

on prior information. By introducing a dipole model into the objective function, the 

difference between the estimated and collected response data can be calculated through 

forward computation. This difference is used to iteratively update the estimated values 

until a predefined number of iterations is reached or the difference falls below a specific 

threshold, indicating the completion of the inversion. In contrast, data-driven inversion 

algorithms use collected response data directly as the input data to train the model and 

further estimate the relevant properties of underground metal targets. 

2.2 Convolutional Neural Network 

Convolutional Layer. The convolutional layer is one of the most important compo-

nents of a CNN, composed of convolutional kernels, where each kernel is a small ma-

trix. When dealing with images like color images that require multiple channels, the 

image is represented as a multi-dimensional matrix, and convolutional operations are 

used to extract features such as edges, textures, and colors. Through feature extraction, 

the convolutional layer transforms raw pixels into higher-level feature, facilitating fur-

ther tasks such as image classification and recognition. 
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During feature extraction, the most important step is to perform convolution on each 

sub-matrix of the input matrix to obtain a new matrix representing the extracted fea-

tures. The convolution is expressed as follows: 

 ( )( ) ( ) ( )s t n s t n d  


−
 = −  (2) 

where s and t are two continuous functions and the convolution of the two is described 

in terms of an integral sum. In image processing, the convolution of two matrices can 

be expressed in terms of a two-dimensional discrete equation. Assuming that the size 

of the convolution kernel is m n, the convolution of the image sub-matrix and the con-

volution kernel can be represented by the following equation: 

 ( ) ( ) ( ) ( )
0 0

, , ,,
j mi m

i j

s x y t x y s t x i y ji j
==

= =

 =  − −  (3) 

 

Pooling Layer. The pooling layer is used to perform dimensionality reduction on 

the input data through methods such as subsampling, average pooling, min pooling, or 

max pooling. This helps to remove redundant information and reduces the computa-

tional complexity of the model. During the operations of pooling, it is necessary to set 

the size and stride of the pooling kernel. Pooling filters out redundant information from 

the image while preserving important features, thus improving the performance of the 

model for better results. However, improper settings can also result in relatively im-

portant features being filtered out, which will have a negative impact on the perfor-

mance of the model. 

 

Fully Connected Layer. The fully connected (FC) layer is usually located at the end 

of the entire CNN structure and follows the basic approach of a traditional MLP. Its 

input comes from the feature vector created by the Flatten layer, which flattens the 

feature matrix from the last layer of the CNN into a vector. Then, the fully connected 

layer performs the inversion. 

The loss function is critical in all supervised learning algorithms and is used to meas-

ure the difference between the predicted and actual output of the model. Gradient-based 

methods such as Batch Gradient Descent (BGD), Stochastic Gradient Descent (SGD), 

and Mini-Batch Gradient Descent (MGD) are commonly used to train CNNs. These 

methods continuously update the network parameters overall training epochs to mini-

mize the value of the loss function. This process occurs overall training epochs until 

the network searches for the optimal solution to minimize the error. 

2.3 Hyperparameter Optimization 

It is essential to improve the performance of the network by selecting appropriate 

hyperparameters, such as optimizer, batch size, and learning rate (LR). Currently, the 

most used optimizers include variants of SGD with momentum, such as AdaGrad [18], 

RMSprop [19], and Adam [20]. On the other hand, hyper-parameters related to the 

model mainly include the structure of the neural network, such as the number and width 

of hidden layers. 
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Learning Rate. To improve the accuracy of the model, it is generally necessary to 

manually adjust the LR to balance training time and convergence speed [21]. In addi-

tion, adaptive learning rate adjustment adjusts automatically based on the performance 

or structure of the model and has been supported by relevant learning algorithms [22]. 

 

Optimizer-related Hyperparameters. In practice, Adam is recommended as the 

default optimization algorithm for training deep learning models. It has more hyperpa-

rameters than other optimizers but works well with minimal adjustment of parameters 

other than the LR. The Adam sets the LR to start from 0.001 and gradually decrease, 

with a default momentum parameter of 0.9, an RMSprop parameter of 0.999, and a 

smoothing term of 1e 8. The default values of these hyperparameters are suitable for 

most problems. 

 

Model-related Hyperparameters. The number of hidden layers is a key hyperpa-

rameter related to the network structure, which directly affects the final performance of 

the trained network model [23]. Generally, increasing the number of hidden layers in a 

deep learning network would improve the performance of the neural network. How-

ever, care must be taken to avoid potential problems such as overfitting. In addition to 

the number of hidden layers, careful consideration must be given to the number of neu-

rons within each layer. 

The dropout rate is a hyperparameter that controls the rate at which neurons are ran-

domly dropped out during training. A dropout rate that is too high may overly simplify 

the model, while one that is too low may not have a significant effect. 

Activation functions in deep learning introduce non-linear properties allowing neu-

ral networks to handle complex features. Activation functions must be differentiable to 

compute weight gradients and improve training efficiency. 

2.4 Model-based Deep Transfer Learning 

One unavoidable challenge in the electromagnetic inversion problem of underground 

metal targets addressed in this paper is the availability of training data. Real-world data 

is much more difficult to obtain than simulated data. One approach to address this prob-

lem is to transfer the knowledge learned from simulated data to fit the inversion prob-

lem of real detection scenarios. This process, known as transfer learning, involves trans-

ferring knowledge learned from the source domain to the target domain. In this way, 

the training and testing data do not need to be completely independently and identically 

distributed, thereby addressing the shortage of training data and significantly reducing 

the learning time in the target domain. 

The core idea of model-based transfer learning is to incorporate the well-trained net-

work model from the source domain into the target domain network, allowing the 

knowledge learned from the source domain to be utilized for tasks in the target domain. 

For some generalized features, such as those extracted from input data using convolu-

tion, more accurate information can be provided for tasks in the target domain, thereby 

accelerating model training and improving performance. Pre-trained networks in the 

source domain have learned common features and patterns, thereby avoiding building 
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Fig. 2. Proposed CNN-GP algorithm. 

a model from scratch.  

In the study of George et al. [24], knowledge obtained from object recognition tasks 

was transferred to fault classification tasks in gravitational wave signal detectors using 

DNNs as feature extractors, resulting in promising outcomes. In the recognition task, 

to maximize the effectiveness of models trained with small samples, Oquab et al. [25] 

used partially trained models from the ImageNet dataset to obtain intermediate results 

for other image datasets. Furthermore, in language-related tasks, to increase efficiency 

by transferring features between different contexts and languages, Huang et al. [26] 

divided the network into language-related and non-language-related transformers and 

classifiers. 

3 Method 

3.1 Model Construction 

Network Architecture The CNN-GP algorithm, as shown in Fig. 2, uses CNN to 

extract features from the secondary field magnetic map, followed by the GP regression 

and the MLP to further invert the extracted features to obtain the parameters of under-

ground metal targets. 

The proposed CNN-GP algorithm consists primarily of CNN and GP processing 

modules. The CNN module comprises two convolution layers and two max-pooling 

layers for extracting magnetic map features. Each convolution layer has a kernel size 

of 3 3, with a stride of 1, and the number of kernels is 32 and 64, respectively. A max-

pooling layer is added after each convolutional layer. The pooling window size for each 

pooling layer is 2 2, with a stride of 2. Additionally, the CNN applies padding to the 

edges to prevent loss of edge information. 

Since the input data is an image, it needs to be converted to a one-dimensional vector 

through a flatten layer before entering the Gaussian process regression. Gaussian pro-

cess regression is a Bayesian non-parametric kernel method that models function 
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directly, thereby generating non-parametric models. It models the mapping relationship 

between observed data and the parameters of metal targets by using a covariance func-

tion, also known as the kernel function. The effectiveness of GP regression depends on 

the choice of kernel function. The Maternal and WhiteKernel kernel functions are used 

for preliminary experiments prior to optimization. The number of optional resets of the 

optimizer is set to [0, 5, 10, 15], which will be further studied in the model optimization 

subsection. Before entering the MLP, a flattening layer is added to transform the multi-

dimensional matrix into a one-dimensional vector. MLP contains two dense layers, 

which have 256 and 64 neurons respectively. Finally, the size of the output layer is 

consistent with the dimensionality of the parameters to be inverted. 

The input data consists of magnetic maps, where the scale of the magnetic map is 

determined by the sampling space. A smaller sampling space results in higher dimen-

sional magnetic maps. The magnetic map used in this paper is generated with a sam-

pling space of 0.5m. 

 

Loss Function Selection. The mean absolute error (MAE) and mean squared error 

(MSE) are the most used to train a model. ones. MAE represents the average of the 

absolute differences between predicted values and observed values, which can be de-

scribed by the following equations: 

 
1

1 n

MAE i i
i

f y y
n



=

= −  (4) 

 

MSE can be expressed as: 

 ( )
2

1

1 n

MSE i i
i

f y y
n



=

= −  (5) 

where yi represents the observed value, yi
∗ represents the predicted value, and n repre-

sents the number of data points in the training dataset. In this paper, MSE is employed 

as the loss function during model training, while MAE is adopted as the evaluation 

metric for predictions on the test dataset. 

 

Optimization. Commonly used optimization algorithms include SGD and the Adam 

optimizer. When using the SGD optimizer for training, attention should be paid to con-

vergence issues. Adam optimizer leverages first, and second-order moment estimates 

of gradients to dynamically adjust weights and biases, enabling more efficient network 

optimization. Additionally, Adam possesses advantages such as adaptivity and bias cor-

rection, automatically adjusting the LR during training to enhance the performance of 

the model. Therefore, Adam is chosen as the optimizer in this paper. 

 

Activation Function. In this paper, the Leaky ReLU function is used as the activa-

tion function. The Leaky ReLU function differs from the ReLU function in that it scales 

down negative inputs proportionally, thus preventing the complete neglect of negative 

inputs and addressing the issue of Dying ReLU. Leaky ReLU function can be expressed 

as Eq. (6): 
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, 0

x x
f x

mx x


= 
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where m represents a fixed parameter, which is typically assigned a very small value. 

3.2 Training Loop 

In this paper, 80% of the data is randomly selected as the training set, while the 

remaining 20% is used as the test set to validate the model. The network parameters are 

detailed in Table 1. The optimizers in GP and CNN are both based on gradient descent 

for weight updates. Here, the widely used BFGS algorithm is used to implement this 

optimization process. The Matern kernel function is chosen in GP algorithms, which is 

a generalization of the radial basis function (RBF) kernel. Target-value normalization 

refers to standardizing the target value of y by removing the mean and scaling to the 

unit variance, which is recommended when using a zero-mean, unit-variance prior. 

Fig. 3 shows the loss of the validation set for MLP, CNN, GP, and CNN-GP algo-

rithms. The inversion errors of MLP, CNN, and CNN-GP algorithms decrease as the 

number of training times increases at a signal-to-noise ratio (SNR) of 25dB. CNN-GP 

algorithm converges faster than the CNN and MLP algorithms, with smoother fluctua-

tions in loss. The overall loss error of the CNN-GP algorithm is smaller than that of the 

CNN algorithm in all three directions with a higher inversion accuracy. The CNN-GP 

algorithm converges gradually around the 230th iteration. However, after approxi-

mately 370 iterations, the inversion error increases due to model overfitting. MLP and 

CNN algorithms achieve the lowest inversion error at around 270 iterations. The GP 

algorithm shows relatively larger inversion errors, with an MAE of 0.067, 0.059, and 

0.135 for inversion in the x, y, and z directions, respectively. This indicates lower in-

version accuracy compared to the converged MLP, CNN, and CNN-GP algorithms. 

Table 1. Parameter settings of the inversion algorithms 

Hy er arameter  NN  P  NN- P  LP 

Training set 960 960 960 960 

Test set  40  40  40  40 

acti ation func-

tion 

LeakyReLU - LeakyReLU LeakyReLU 

o timizer Adam BF S Adam, BF S Adam 

kernel function -  atern  atern - 

Normalized - False False - 

SNR (dB)  5  5  5  5 
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Fig. 3. Changes in training loss of the CNN, GP, MLP, and CNN-GP algorithms. 

Table 2. Grid search algorithm and its search domain. 

Hyperparameter 
Candidate values for hyperparameters 

CNN GP CNN-GP MLP 

Number of iterations [350,400,450,500,550] - [350,400, 450,500,550] 

Activation function 
[Leaky ReLU, ELU, 

ReLU, Sigmoid, Tanh] 
- 

[Leaky ReLU, ELU, 

ReLU, Sigmoid, Tanh] 

Optimizer Adam BFGS Adam, BFGS Adam 

Kernel function - 

[Matern, WhiteKernel,  

RBF, ConstantKernel,  

Matern + WhiteKernel,  

ConstantKernel +RBF] 

- 

Number of optimizer restarts - [0, 5, 10, 15] - 

Normalized - [False, True] - 

No. of convolution layers [1, 2, 3] - [1, 2, 3] - 

Pooling layer [False, True] - [False,True] - 

Number of FC layers [1, 2, 3, 4] - [1, 2, 3, 4] 

Sampling space [0.1, 0.2, 0.3, 0.4, 0.5] 

3.3 Model Optimization 

Grid Search. Algorithm Grid search algorithm is used to determine the optimal 

combination of hyperparameters by exhaustively searching through the user-defined 

hyperparameter space. It is suitable for scenarios where multiple hyperparameters are 

limited in the space to search. Parallelization of the grid search algorithm can increase 

the efficiency, allowing faster identification of the optimal hyperparameter combina-

tion. 

However, using the grid search algorithm in high-dimensional spaces may lead to 

the problem of dimensionality catastrophe. This is because the search space will grow 

exponentially with increasing dimensionality, which makes it necessary to limit the 

sampling range. Therefore, to avoid an excessive number of configurations and ensure 

efficient utilization of computational resources, it is feasible to define a smaller search 

space and adjust no more than three hyperparameters. The grid search algorithm is usu-

ally implemented with nested loops, iterating through all possible combinations of  

     

        

     

     

     

     

     

     

     

               

   

   

  

      

 
 
 
 
  
 
  
  
  
  
  
 
  
  

  
  
  
 
  
  
 
  
 
  

                    

     

        

     

     

     

     

     

     
               

   

   

  

      

                    

    

        

    

    

    

    

    

    

               

   

   

  

      

                    

    

 
 
 
 
  
 
  
  
  
  
  
 
  
  
  
  
  
 
  
  
 
   

  

 
 
 
 
  
 
  
  
  
  
  
 
  
  
  
  
  
 
  
  
 
  
 
  



 CNN-GP Algorithm for Metal Detection 11 

 

Table 3. Bayesian search algorithm and its search domain. 

Hyperparameter 
Candidate values for hyperparameters 

CNN GP CNN-GP MLP 

Number of iterations (350, 550) - (350, 550) (350, 550) 

Activation function (0, 4.9) - (0, 4.9) (0, 4.9) 

Optimizer Adam BFGS Adam, BFGS Adam 

Kernel function - (0, 6.9) (0, 6.9) - 

Normalized - (0, 1.9) (0, 1.9) - 

No. of convolutional layers (1, 3.9) - (1, 3.9) - 

Pooling layer (0, 1.9) - (0, 1.9) - 

Number of FC layers (1, 4.9) - (1, 4.9) (1, 4.9) 

Sampling space (0.1, 0.5) (0.1, 0.5) (0.1, 0.5) (0.1, 0.5) 

 

candidate values for each hyperparameter to train the models and select the best one. 

Table 2 shows the hyperparameters that need to be adjusted when using the grid search 

algorithm. 

 

Bayesian Search Algorithm. Compared to the grid search algorithm, the Bayesian 

search algorithm offers higher computational efficiency and requires fewer trials. Its 

probabilistic surrogate model is built using evaluations from previous experiments. To 

avoid getting trapped in local optima, the model is updated at each trial, and the next 

sampling point is chosen to balance exploration and exploitation. BO algorithm consists 

of two key components: the Bayesian surrogate model for modeling the objective func-

tion and the acquisition function for determining the next sampling point. 

The Bayesian search algorithm maintains consistency with the grid search algorithm 

in terms of hyperparameter selection but differs in candidate values. The Bayesian 

search algorithm uses continuous values, which must be specified within a range. The 

specific parameters are shown in Table 3. Of the hyperparameters listed above, only 

Sampling space is a real number, while the others are integers. Therefore, before con-

ducting model training, these parameters must be rounded down. For Activation Func-

tion and Kernel Function, the integer values must correspond to the relevant candidate 

values in Table 2. For example, if the hyperparameter of Kernel Function in Table 3 

rounds down to 0, then its corresponding value during training corresponds to the Ma-

tern function. 
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Fig. 4. Model-based transfer learning for underground metal targets. 

3.4 Transfer Learning 

This paper conducts model training based on simulated data, resulting in satisfactory 

outcomes. To efficiently obtain a model with good inversion performance for real col-

lected data based on the existing model, it is necessary to perform model transfer. This 

paper uses model-based transfer learning for two main reasons. Firstly, the response 

data generated by both simulation and real detection are generally similar due to their 

shared detection scenario. Therefore, the feature extraction part in CNN-GP can be 

smoothly transferred, and only a slight training on the part after the flattening layer with 

real response data is needed to obtain an inversion model applicable to real scenarios. 

Secondly, data collection in real scenarios is slow, making it difficult to generate suffi-

cient data for model training. Hence, pre-training with simulated data is necessary, fol-

lowed by fine-tuning with real data. 

Fig. 4 displays the convolutional and pooling layers in red, which have been pre-

trained using a large amount of simulated data. Once training is completed, this part is 

transferred to the network training for the collected data. The feature extraction layers 

for the collected data are then initialized with effective weights and biases obtained 

from the pre-training process. Only a few training iterations are required to fit the col-

lected data, achieving model transfer. The green part in Fig. 4 is the MLP, which is 

initialized normally and updated with respective weights and biases during training us-

ing the collected data. 
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4 Result and Discussion 

4.1 Dataset 

In this paper, the length of the metal target is 0.4m, the radius is 0.2m, and the pitch 

and roll angles are 0 and 90 degrees, respectively. The magnetic field intensity in the 

three axial directions of the metal target is shown in Fig. 5. Electromagnetic signals are 

emitted from multiple locations, and the intensity information of the secondary field 

signals collected at these locations is used as observation data. From the heatmap of the 

magnetic field intensity in the z-axis direction, it can be observed that the value of the 

magnetic field induction observation data is greater at positions above the target. 

 

Fig. 5. Heatmaps of magnetic field intensity in the three axial directions of the metal target 

The inversion algorithm in this paper is entirely implemented in the Python program-

ming language, and Miniconda is used for managing and deploying the runtime envi-

ronment. 

4.2 Model Inversion and Result Analysis 

Fig. 6 lists the results of the four algorithms with different SNRs. The inversion er-

rors increase gradually as the SNRs decrease, and the most affected one is the inversion 

effect of the target in the z direction. At a SNR of 10dB, the inversion errors of MLP, 

CNN, and CNN-GP algorithms approach approximately 0.2m, while the errors in the x 

and y directions are around 0.06m. Regarding the GP algorithm, its overall inversion 

errors are relatively large. Under a SNR of 10dB, its error in the z direction reaches 

0.6m, with similarly 0.1m errors in the x and y directions. This is significantly inferior 

to the models trained by the CNN and CNN-GP algorithms. Overall, the inversion per-

formance of the CNN-GP algorithm appears superior to that of the MLP and CNN al-

gorithms. 

 

(a)  -a is ( )  -a is (c)  -a is
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Fig. 6. Inversion errors of four algorithms under different SNRs. 

 

Fig. 7. Inversion errors of four algorithms at different depths. 

Fig. 7 shows the inversion errors of the four models for cylindrical metal objects at 

different buried depths. It can be observed that the GP algorithm exhibits poor inversion 

accuracy for targets at depths ranging from 3.5m to 4.5m. For targets at depths ranging 

from 4.5m to 7.5m, the four algorithms maintain inversion errors in the x and y direc-

tions at around 2cm. However, depth significantly affects prediction accuracy in the z 

direction, particularly for the CNN-GP and GP algorithms. Notably, targets at depths 

ranging from 6.5m to 7.5m exhibit a marked increase in inversion errors. The CNN 

algorithm is less affected by depth; even with increasing buried depth, its inversion 

error growth remains relatively gradual, resulting in better overall performance com-

pared to the CNN-GP and GP algorithms. 

Table 4. Performance comparison of two search algorithms 

Algorithms 
Grid Search Bayesian Search 

Iterations Time/h Iterations Time/h 

CNN 3000 797 120 10 

GP 240 797 120 3 

CNN-GP 720000 797 120 13 

MLP 600 797 120 4.5 

4.3 Comparative Analysis of Model Optimization 

Table 4 shows that the time consumption for the grid search algorithm is signifi-

cantly higher than the Bayesian search algorithm. Therefore, the Bayesian search algo-

rithm proves to be more convenient and faster for conducting experiments. The average 
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inversion errors of the algorithms before and after optimization using the Bayesian 

search algorithm are presented in Table 5. It can be observed that after Bayesian search 

algorithms, the inversion performance of the four algorithms improves for different 

SNRs in terms of the x, y, and z directions. Specifically, the CNN-GP algorithm exhibits 

higher inversion accuracy compared to other algorithms in scenarios with higher SNRs. 

However, under low SNRs, its predictions for the z direction are less accurate compared 

to MLP and CNN algorithms. Nevertheless, its inversion performance for the x and y 

directions surpasses that of other algorithms. 

Table 5. Error comparison of the inversion algorithms under different SNRs before and after 

optimization 

Algo-

rithms 
SNR/dB 10 15 20 25 30 35 

Noise-

less 

CNN 

- 

X/m 0.0784 0.0531 0.0268 0.0193 0.0121 0.0117 0.0071 

Y/m 0.0539 0.0337 0.0237 0.0177 0.0111 0.0105 0.0127 

Z/m 0.2098 0.1227 0.0829 0.078 0.0686 0.0591 0.031 

Optimi-

zation 

X/m 0.0603 0.0315 0.0182 0.0113 0.0074 0.0067 0.0069 

Y/m 0.047 0.0278 0.0203 0.0094 0.0071 0.005 0.0037 

Z/m 0.1236 0.0728 0.0536 0.0369 0.0305 0.0195 0.0133 

GP 

- 

X/m 0.1418 0.0969 0.0707 0.0546 0.0462 0.0414 0.0319 

Y/m 0.1212 0.0829 0.0595 0.0462 0.0385 0.0344 0.0258 

Z/m 0.6176 0.4355 0.3306 0.2644 0.2267 0.2044 0.1554 

Optimi-

zation 

X/m 0.0913 0.0615 0.0456 0.0374 0.0336 0.0322 0.0292 

Y/m 0.0776 0.0528 0.0396 0.0317 0.0281 0.0265 0.0238 

Z/m 0.2171 0.2314 0.1942 0.1671 0.1534 0.1492 0.1394 

MLP 

- 

X/m 0.1066 0.0548 0.0442 0.0306 0.0244 0.0232 0.0268 

Y/m 0.0713 0.0469 0.031 0.0265 0.0295 0.0251 0.0233 

Z/m 0.1933 0.1864 0.1088 0.0969 0.0929 0.0907 0.0974 

Optimi-

zation 

X/m 0.0537 0.0316 0.0187 0.0126 0.0151 0.009 0.0049 

Y/m 0.046 0.0385 0.0217 0.0101 0.0092 0.0082 0.0043 

Z/m 0.0743 0.0622 0.0482 0.0358 0.0238 0.0201 0.0127 

CNN-GP 

- 

X/m 0.0639 0.036 0.0237 0.0149 0.0102 0.0063 0.0038 

Y/m 0.0541 0.0328 0.0218 0.0138 0.008 0.0064 0.0041 

Z/m 0.1798 0.1252 0.079 0.0569 0.0362 0.0243 0.0215 

Optimi-

zation 

X/m 0.0488 0.0285 0.0191 0.0116 0.0068 0.0047 0.0004 

Y/m 0.0412 0.0249 0.0147 0.0102 0.007 0.0033 0.0005 

Z/m 0.1528 0.093 0.0513 0.0372 0.025 0.0137 0.0011 
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Table 6. Comparison of the inversion average errors of the four algorithms at different depths 

before and after optimization 

Depth/m 
- Optimization 

X/m Y/m Z/m X/m Y/m Z/m 

CNN 0.0196 0.0165 0.0517 0.0134 0.0143 0.0518 

GP 0.0886 0.0726 0.5714 0.0680 0.0582 0.4184 

CNN-GP 0.0192 0.0140 0.0740 0.0120 0.0098 0.0448 

MLP 0.0360 0.0291 0.2189 0.0122 0.0120 0.0414 

 

The results of the average error of four algorithms for cylindrical metal objects bur-

ied at different depths are shown in Table 6. It can be observed that except for the CNN 

algorithm in the z direction, the other algorithms demonstrate improved inversion per-

formance for the x, y, and z directions post-optimization. It is evident that the Bayesian 

search algorithm effectively reduces the overall average inversion error for targets bur-

ied at different depths. 

5 Discussion 

This paper aims to obtain the three-dimensional position of underground metal tar-

gets from electromagnetic data using the CNN-GP algorithm. Typically, electromag-

netic data can be acquired through either the frequency domain electromagnetic 

(FDEM) method or the time domain electromagnetic (TDEM) method. The FDEM 

method emits low-frequency continuous electromagnetic waves and analyzes the am-

plitude and phase of the secondary field signals received at multiple locations to obtain 

the position of the target. The TDEM method determines the parameters of the target 

by emitting pulse currents and analyzing the secondary field decay signals. Compared 

to the TDEM method, the FDEM method does not need to account for the decay char-

acteristics of secondary signals over time, thereby reducing the impact of soil on detec-

tion. Hence, this paper generates electromagnetic data based on the FDEM method and 

forward modeling. Experimental results demonstrate that the CNN-GP algorithm can 

quickly obtain inversion results within 0.2s, meeting the real-time and rapid require-

ments of underground metal target detection. 

Although FDEM data can provide more direct information on resistivity and con-

ductivity, the lack of temporal characteristics in electromagnetic data limits the appli-

cation of methods that require temporal or spatial correlations, such as RNN, LSTM, 

and Transformer models. In this paper, preliminary experiments indicate that these 

methods struggle to make accurate predictions. Therefore, in complex applications re-

quiring information on the material, shape, or orientation of underground metal targets, 

the time domain electromagnetic (TDEM) method becomes the preferred choice, offer-

ing possibilities for the application of RNN methods. Additionally, when extracting 

features from the secondary field magnetic map, the magnetic field intensity at each 

location is only related to its position and is not influenced by surrounding positions. 

The Transformer method requires positional context in the input data and is commonly 
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used in natural language processing. Thus, future research will focus on further inves-

tigating the temporal and spatial characteristics of FDEM data, and analyzing the fea-

sibility of LSTM, Transformer models, and other methods in underground metal target 

detection applications. Future work will continue to explore deeper research on LSTM 

and Transformer methods based on CNN to improve the estimation accuracy of param-

eters such as the material properties of metal targets. 

In addition, we have analyzed the performance of four algorithms under different 

amounts of data, and the results show that as the amount of data increases, the errors 

decrease in the x and y directions. However, there is no significant reduction in the z 

direction due to the increase in the acquisition space. Therefore, it can be concluded 

that the inversion effects of the four algorithms on the x and y directions are sensitive 

to the amount of data, while for the z direction, only the GP algorithm and the amount 

of data show a positive correlation. MLP, CNN, and CNN-GP algorithms cannot im-

prove the inversion effect in the z direction by increasing the amount of data. 

6 Conclusion 

This paper proposes the CNN-GP algorithm for underground metal target detection 

based on the forward model and convolutional inversion theory. The proposed algo-

rithm is compared with the MLP, CNN, and GP algorithms, and all four algorithms 

demonstrate high inversion efficiency suitable for real-time detection and inversion, 

with inversion results obtained within 1s. The CNN-GP algorithm outperforms the 

other algorithms in terms of the average inversion error. The impact of depth on the GP 

algorithm results in significant error fluctuations. In contrast, the CNN and CNN-GP 

algorithms are less sensitive to depth when estimating in the x and y directions. The 

CNN algorithm performs relatively better when inverting deeper objects, demonstrat-

ing stable predictions for targets at different depths with minimal sensitivity to depth. 

To improve the performance of inversion algorithms, this paper uses Bayesian search 

algorithms to find the optimal network structure. Furthermore, this paper addresses the 

discrepancy between simulated and real data through transfer learning. The feature ex-

traction part related to CNN can be retained, and only the part of the model that needs 

to be regressed can be retrained using real data. This training process does not require 

multiple iterations or a large amount of data, which reduces the time of real data model 

training and improves model performance. 
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