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Abstract. Unbiased Scene Graph Generation (SGG) is a major direction of SGG. 

Recent years, a number of great methods have emerged in this field. But unfor-

tunately, there is a critical conflict which is often unresolved between datasets, 

loss function and metrics: In most relevant datasets, the proportion of different 

predicates usually varies greatly. But each predicate has the same weight in loss 

function which can not properly reflect their unbalance in datasets. And when we 

evaluate results, this unbalanced issue also exists as we treat predicates in a uni-

form way. To mitigate this conflict, we introduce Meta Weighted Loss (MWL), 

a method based on meta-learning. MWL leverages meta-learning principles to 

construct a meta-neural network during model training. This network establishes 

a rational relationship between various predicates and their respective weight in 

loss function, so that alleviate the conflict. Furthermore, we also introduce a 

downsampling method named Neighbor Cleaning Rule (NCL), to build a more 

balanced sub-dataset which improve the training efficiency and performance dur-

ing meta-training stage. Experimental results verify the effectiveness and gener-

alization of MWL and NCL. Comprehensive experiments demonstrate that our 

method achieves the absolute gains up to 14.3\% on VG dataset compared to 

baseline. 

Keywords: Scene Graph Generation · Meta-Learning. 

1 First Section 

Scene Graph Generation (SGG) is a fundamental task in co1mputer vision, aiming to 

detect entities in an image and the relationships between them, as shown in Fig. 1. The 

outcome of SGG can be represented as a graph, which provides a standardized and 

comprehensive representation of visual content in an image, serving as a solid founda-

tion for downstream tasks such as Image Captioning [8,29] and Visual Question An-

swering (VQA) [9,13,21].  
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Fig. 1. Illustration of SGG. (a) An input image. (b) The output SGG results, including entities 

detected in the input image, corresponding labels, and relationships between entities. 

In recent years, the field of SGG has witnessed remarkable progress, driven in part by the avail-

ability of large datasets like Visual Genome (VG) [12]. State-of-the-art models, including Motifs 

[32] and VcTree [23,25], have emerged, capable of producing   

detailed scene graphs. However, a significant challenge arises when the only used 

recall metric may not be sufficient to meet the requirements of downstream tasks. The 

pursuit of high recall often leads to a dominance of common predicates (e.g., on, has) 

over more informative predicates (e.g., sitting on,  carrying). Therefore, unbiased SGG 

has gradually become the mainstream research direction in the field of SGG, where the 

goal is to produce predictions that are not biased. 

Unbiased SGG faces several challenges, with the long-tailed distribution of predi-

cates in datasets being a prominent concern. As illustrated in Fig. 2, we can see that 

Recalls of common predicates are high but Recalls of uncommon predicates are ex-

tremely low. Numerous methods and modules have been dedicated to addressing this 

bias [4,10,14,24,30]. However, a key phenomenon often goes unnoticed: while unbi-

ased SGG may produce balanced mean Recall metric, it does not penalize long-tailed 

predicates with extremely low scores. This can ultimately lead to a severe negative im-

pact of dataset long-tail problems on the evaluation metric. 

In tackling this challenge, our key insight is to adapt the weight assigned to different 

predicates in loss function. We present a framework based on meta-learning, consisting 

of the following key components: 

Meta-Weight Network (MWN): The foundation of our method lies in MWN, ini-

tialized as a neural network. The primary function of MWN is to learn and assign ap-

propriate weight to each predicate category. 

Joint Training of Predicate Classifier and MWN: In the pursuit of balanced and 

unbiased predicate classification results, we emphasize the joint training of the 
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predicate classifier and MWN. This training mainly consists of two repeated processes: 

traditional training of predicate classifier and training of MWN. By verifying the effect 

of  

 

Fig. 2. Illustration of the long-tailed problem of VG [12] dataset and the unbalanced Recall of 

predicates. Bar chart: Represents the number of occurrences of 50 predicate categories in the 

dataset. Line chart: Represents the Recall@100 of the 50 predicate categories in Baseline 

model(i.e., Motifs[32])'s prediction. 

weights from MWN on an unbiased meta-validation set, the parameters of MWN are 

constantly adjusted to produce more appropriate weight. Then appropriate weight is 

applied to the classification loss during training of predicate classifier, which makes 

predicate classifier more and more unbiased. 

In addition, in the joint training phase we mentioned a balanced meta-validation set. 

To get a representative meta-validation set, we leverage the Neighbor Cleaning Rule 

(NCL) method to downsample each predicate category. This results in a balanced da-

taset with more distinctive feature distributions across various predicates. 

In summary, our work offers three primary contributions: 

• We analyze and address the bias between predicate distribution in datasets and loss 

function within SGG, introducing the concept of using loss as a means to mitigate 

bias in unbiased SGG. 

• We introduce NCL method to construct a balanced sub-dataset, promoting the inclu-

sion of more representative predicate instances. 

• We propose a meta-weight learning framework that leverages meta-learning princi-

ples to identify optimal predicate weight. In subtasks of SGG, our method signifi-

cantly outperforms baseline models and achieves state-of-the-art results in many 

metrics. 
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2 Related Works 

2.1 Scene Graph Generation 

SGG is a critical task to understand scenes in computer vision, which has developed for 

a long time. It was first introduced by Lu et al. [20]. In the early stage, most methods 

focused on adding additional information and features from sources more than visual 

scene [6,18]. Later works involved incorporating spatial information into the feature 

extraction process. For instance, Zhu et al. [35] explored the significance of spatial 

distribution in object relationships, shedding light on the importance of spatial context. 

For another aspect, Baier et al. [2] introduced statistical priors by training models with 

absolute predicate frequencies, providing a valuable strategy to improve prediction ac-

curacy. Subsequent advancements in SGG have focused on the utilization of visual 

context through sophisticated techniques. For example, [16] employed local message 

passing within triplets to refine object relationships. And some method proposed more 

powerful relation encoders with informational context, like sequential LSTMs [25,32]. 

2.2 Unbiased Scene Graph Generation 

Recent years, after the introduction of the less biased mean recall metric by Chen et al. 

[3] and Tang et al. [25], the SGG researchers started to pay attention to the imbalance 

problem in SGG. Then unbiased SGG became a mainstream direction in the field of 

SGG and various methods was proposed to solve the bias problem. As more and more 

methods emerged, two main categories of approaches can be summarized in the field 

of unbiased SGG, as summarized in [14]: 1) After Tang et al. [24] proposed that causal 

reasoning solves predictive bias based on two strong SGG models [25,32]. Researchers 

consider Motifs [32] and VCTree [25] to be the two most commonly used baselines and 

propose various model-agnostic methods on these baselines [4,10,14,24,28,33]. 2) Be-

sides model-agnostic methods, there is also another efficiency way to improve unbiased 

SGG. That is to create special-designed models instead of baselines to achieve SGG 

tasks [7,15,17,19,31,34]. Li et al. [15] employed a re-sampling strategy while Zheng et 

al. [34] proposed a new prediction model based on prototype embedding. Within the 

first category towards unbiased SGG, many methods will decline Recall metric because 

of the improvement strategy on mean Recall. And they usually overlook the conflict 

we mentioned so that these unbiased model-agnostic methods can't make a comprehen-

sive improvement on SGG. Our method mitigates the conflict and while improving 

mean Recall metric, the decrease of Recall metric is minimized to the greatest extent, 

thus enhancing SGG performance more comprehensively. 

2.3 Meta-Learning 

Meta-learning, also known as learning to learn, has emerged as a powerful paradigm 

for adapting models to new tasks, particularly when faced with limited data [11,26]. In 
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the context of SGG, meta-learning offers a compelling method to address challenges 

such as biased loss and model efficiency. Ren et al. [25] made pioneering contributions 

by introducing a meta-learning framework to reweight unbalanced samples. Similarly, 

Shu et al. [22] harnessed multi-layer perceptrons (MLPs) to learn weight functions for 

reweighting, highlighting the potential of meta-learning in rebalancing SGG models. 

 

Fig. 3. The pipeline of our method MWL. During one iteration: Left: the routine training of 

Predicate Classifier with 𝜃𝑡 as parameter; Right: the process of updating the Meta-Weight Net-

work with ψt as parameter, by training on the clean dataset, and then obtaining a more unbiased 

Predicate Classifier as the Predicate Classifier in the next iteration. ⋆̅ denotes the intermediate 

variable in one iteration. 

3 Method 

3.1 Pipeline description 

The whole pipeline of applying Meta Weighted Loss (MWL) in SGG is illustrated in 

Fig.3. To illustrate, consider a specific scenario: 1) In a conventional training set, the 

predicate on occurs far more frequently than standing on, causing the Predicate Classi-

fier with parameter 𝜃𝑡  to be strongly biased toward predicting on rather than standing 

on. 2) MWN with parameter 𝜓𝑡generates a random initial weight wi̅̅ ̅ 

 based on the training loss l𝑖. However, applying this weight may not guarantee that the 

Weighted Predicate Classifier θt̅ is less biased. Because at this time, MWN has not 

been trained with the balanced meta-validation set. 3) Consequently, we assess the per-

formance of θt̅ on a balanced meta-validation dataset, we call it "Clean Set", which 

does not exhibit serious long-tailed problems. Specifically, the number of instances of 

on and standing on is approximately equal, and the proportion of each predicate cate-

gory is nearly balanced. Predictions on Clean Set may still favor on over standing on, 

and its corresponding loss li̅ can be used to update 𝜓𝑡 . 4) After 𝜓𝑡  is updated to 𝜓𝑡+1 , 
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𝑙𝑖. is once again input into MWN, which generates an updated weight wi. This updated 

weight helps make the Weighted Predicate Classifier more unbiased by reducing the 

weight of on and increasing the weight of standing on in subsequent predictions. 

In this process, MWN serves as a tool for learning how to train Predicate Classifier 

more effectively by adapting to Clean Set, exemplifying the application of meta-learn-

ing in SGG. 

3.2 Meta Weighted Loss Learning 

Let 𝑓𝑖 =< 𝑠𝑖 , 𝑜𝑖 > denotes the feature embedding of the i-th instance feeding into Pred-

icate Classifier, where 𝑠𝑖 is the feature embedding of i-th subject and 𝑜𝑖  is the feature 

embedding of i-th object. The training set is denoted as 𝑇 and Clean Dataset for meta-

validation is denoted as C. As illustrated in Fig. 3, θt is the parameter of Predicate Clas-

sifier. After 𝑓𝑖 is input into Predicate Classifier, predicate prediction result of this sub-

ject-object pair is obtained, and then Cross Entropy loss 𝑙𝑖 is calculated according to 

ground-truth. In the normal training process, the optimal Predicate Classifier parame-

ters can be obtained by minimizing the following loss: 

𝐿(𝜃) =
1

𝑛
∑ 𝑙𝑖

𝑛

𝑖=1

=
1

𝑛
∑ (−

1

𝐶
∑ 𝑝𝑐

𝑛

𝑐=1

log 𝑝𝑖,𝑐)

𝑛

𝑖=1

, (1) 

where 𝑛 is the number of training instances in a batch and C is the number of predicate 

categories. 𝑝𝑐 is the ground-truth predicate and 𝑝𝑖,𝑐 is the predicate prediction of cur-

rent instance. 

In our pipeline, MWN will take loss $l_i$ as input and output corresponding inter-

mediate weight $\bar{w_i}(\psi)$. After applying $\bar{w_i}$ to Predicate Classifier's 

loss $l_i$, the optimal Weighted Predicate Classifier can be obtained by minimizing 

the following loss: 

𝐿𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝜃) =
1

𝑛
∑ 𝑤𝑖̅̅ ̅(𝜓)

𝑛

𝑖=1

⋅ 𝑙𝑖(𝜃)   

                         =
1

𝑛
∑ (−

𝑤𝑖̅̅ ̅(𝜓)

𝐶
∑ 𝑝𝑐 log 𝑝𝑖,𝑐

𝑛

𝑐=1

)

𝑛

𝑖=1

. (2) 

So, at \textit{t}-th iteration, θ𝑡̅ will be updated: 

𝜃𝑡̅̅ ̅ = 𝜃𝑡 − 𝜂1∇𝜃𝑡𝐿𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝜃𝑡)|𝜃𝑡 

     = 𝜃𝑡 − 𝜂1

1

𝑛
∑ ∇𝜃𝑡𝑤𝑖̅̅ ̅(𝜓𝑡)

𝑛

𝑖=1

⋅ 𝑙𝑖(𝜃𝑡)|𝜃𝑡 , (3) 
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where η1 is the learning rate of Predicate Classifier. This updated θ𝑡̅ is regarded as in-

termediate parameter since its weight 𝑤𝑖̅̅ ̅ hasn't been updated through meta-validation 

process. 

The second step is meta-validation process. We validate Weighted Predicate Classi-

fier (with θ𝑡̅ as parameter) on the clean dataset, and the validation loss is denoted as 𝑙𝑖̅. 

Then we can update the parameter ψ𝑡 of MWN through 𝑙𝑖̅ in the \textit{t}-th iteration: 

𝜓𝑡+1 = 𝜓𝑡 − 𝜂2

1

𝑛
∑ ∇𝜓𝑡

𝑛

𝑖=1

𝐿(𝜃𝑡̅̅ ̅)|𝜓𝑡 , (4) 

where η2 is the learning rate of MWN. 

Finally, after 𝜓𝑡  is updated into 𝜓𝑡+1, we feed loss 𝑙𝑖 of training into MWN again to 

obtain a new weight 𝑤𝑖 . Then we apply this 𝑤𝑖  to loss 𝑙𝑖. Based on this new weighted 

loss, Weighted Predicate Classifier is updated again in a similar manner to Eq. 3: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂1

1

𝑛
∑ ∇𝜃𝑡

𝑛

𝑖=1

𝑤𝑖̅̅ ̅(𝜓𝑡+1) ⋅ 𝑙𝑖(𝜃𝑡)|𝜃𝑡 . (5) 

3.3 Neighbor Cleaning Rule 

Neighbor Cleaning Rule (NCL)[1,5] primarily conducts data cleaning based on neigh-

bor relationships, determining whether an instance should be retained by assessing its 

similarity to neighboring instances. In our context, instance similarity is gauged using 

the distance between feature vectors, and we employ the square of the Euclidean dis-

tance as the similarity measure: 

𝑑(𝑓𝑎, 𝑓𝑏) = ||𝑓𝑎 − 𝑓𝑏||
2

, (6) 

where 𝑓𝑎 represents the feature embedding corresponding to the triplet instance 𝑎, like 

𝑓𝑖 at the beginning of Sec. 3.1, and 𝑑(𝑓𝑎, 𝑓𝑏) represents the Euclidean distance between 

instances a and b. 

 Our downsampling process mainly consists of the following steps: 

1) For the data points contained in class c, we calculate data density of central  

region. Let 𝜇𝑐 denote the cluster center of class c, then we can obtain a distances set 

𝑮 = {𝑔𝑖}𝑖=0
𝑁 , where N is the total number of points belonging to class c and 𝑔𝑖 is com-

puted as: 

𝑔𝑖 = 𝑑(𝑓𝑖, 𝜇𝑐). (7) 

Then, we sort this set and remove the largest 10% of elements to obtain the remained 

distance set as 𝑅 = {𝑏𝑖}𝑖=0
0.9𝑁, in order to eliminate the impact of overly remote data. 

Furthermore, the boundary distance 𝐷𝑐 of class c can be calculated: 

𝐷𝑐 = 𝛼
1

0.9𝑁
∑ 𝑏𝑖

0.9𝑁

𝑖=1

, (8) 
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where 𝛼 is a hyper-parameter to adjust the distance used next. After we get 𝐷𝑐 , the 

number of data points within distance 𝐷𝑐  of 𝜇𝑐 can be obtained as 𝑘𝑐, which will be 

utilized as threshold in later steps. 

2) For each data point 𝑓𝑖, compute the number of data points 𝑠𝑖 within a distance 

not exceeding 𝐷𝑖  around 𝑥𝑖: 

𝑠𝑖 = ∑ 𝛿(𝑑(𝑥𝑖 , 𝑥𝑗) <= 𝐷𝑖)

𝑁

𝑗=1

, (9) 

where 𝛿(⋅) is the indicator function. In 𝑠𝑖, the number of data points of class c is de-

noted as 𝑚𝑖 . 
3) If 𝑚𝑖 < 𝛽 ⋅ 𝑘𝑐, the point is considered to be too far away from the  

class c , and delete it; else if 𝑚𝑖 < 𝛾 ⋅ 𝑠𝑖, it is considered that the point is in the confu-

sion zone of different categories, and it is deleted; otherwise, the data point is retained. 

𝛽 and 𝛾 are hyper-parameters. 

4 Experiments 

4.1 Datasets 

Visual Genome (VG). The VG dataset boasts a collection of 108,000 images, each 

annotated with an average of 38 objects and 22 relationships per image. In line with 

prior research efforts [4,14,24,30], we adopt the widely recognized split [27]. This split 

encompasses the most prevalent 150 object categories and 50 predicate categories. Fur-

thermore, the dataset is thoughtfully partitioned into three sets: a training set (compris-

ing 70% of the data), a test set (encompassing 30% of the data), and a validation set 

(comprising 5,000 images) extracted from the training set for model validation. 

The Clean Dataset. As elucidated in Sec.3.2, we apply the Neighbor Cleaning Rule 

(NCL) method to downsample the VG dataset, resulting in a smaller, predicate-bal-

anced dataset suitable for meta-validation. In our experiments, the clean dataset encom-

passes 5,000 images, with each predicate categories making approximately 400 appear-

ances. 

4.2 Tasks and Metrics 

Tasks. We evaluated our method on three SGG sub-tasks [27]: 1) Predicate Classifica-

tion (PredCls): Given the ground-truth entities with labels, we need to only predict 

pairwise predicate categories. 2) Scene Graph Classification (SGCls): Given the 

ground-truth entities bounding boxes, first we need to predict the entity categories, and 

then predict predicate categories. 3) Scene Graph Generation (SGGen): Given an im-

age, we need to detect all bounding boxes of entities, and predict both the entity cate-

gories and predicate categories between entities. 

Metrics. Following the previous works [2,4,10,14,24,30,34], we adopt three metrics as 

the primary evaluation metrics: 1) Recall@K (R@K): It calculates the proportion of 
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the top-K confident triplets in the ground-truth. In VG dataset, R@K is more repre-

sentative of the predictions of common predicates because of the imbalanced data dis-

tribution. 2) mean Recall@K (mR@K): It calculates the recall of each predicate cate-

gory separately, and then averages R@K over all predicate categories. In contrast to 

R@K, mR@K prefers tail predicates. 3) Mean@K (M@K): As introduced in [34], it 

averages the R@K and mR@K for evaluating the model's overall performance on SGG. 

We believe that this metric is more in line with the future development direction of 

SGG.    

 

Table 1. Comparison between our method (MWL) and previous methods. The best and second 

best methods under each setting are marked according to formats. Category A is indicated to 

special-designed models and B is model-agnostic methods. 

Category Method 
PredCls SGCls SGDet 

R@50/100 mR@50/100 M@50/100 R@50/100 mR@50/100 M@50/100 R@50/100 mR@50/100 M@50/100 

 MSDN [17] 64.6 / 66.6 15.9 / 17.5 40.3 / 42.1 38.4 / 39.8  9.3 / 9.7  23.9 / 24.8 31.9 / 36.6  6.1 / 7.2  19.0 / 21.9 

 GB-Net [31] 66.6 / 68.2 22.1 / 24.0 44.4 / 46.1 37.3 / 38.0 12.7 / 13.4 25.0 / 25.7 26.3 / 29.9  7.1 / 8.5  16.7 / 19.2 

A BGNN [15] 59.2 / 61.3 30.4 / 32.9 44.8 / 47.1 37.4 / 38.5 14.3 / 16.5 25.9 / 27.5 31.0 / 35.8 10.7 / 12.6 20.9 / 24.2 

 DT2-ACBS [7] 23.3 / 25.6 35.9 / 39.7 29.6 / 32.7 16.2 / 17.6 24.8 / 27.5 20.5 / 22.6 15.0 / 16.3 22.0 / 24.4 18.5 / 20.4 
 PE-Net [34] 64.9 / 67.2 31.5 / 33.8 48.2 / 50.5 39.4 / 40.7 17.8 / 18.9 28.6 / 29.8 30.7 / 35.2 12.4 / 14.5 21.6 / 24.9 

 Motifs [32] 65.5 / 67.2  16.5 / 17.8 41.0 / 42.5 39.0 / 39.7 8.7 / 9.3  23.9 / 24.5 32.1 / 36.9 5.5 / 6.8  18.8 / 21.9 

 Motifs+TDE [24] 45.0 / 50.6 24.2 / 27.9 34.6 / 39.3 27.1 / 29.5 13.1 / 14.9 20.1 / 22.2 17.3 / 20.8 9.2 / 11.1 13.3 / 16.0 

 Motifs+CogTree [30] 35.6 / 36.8 26.4 / 29.0 31.0 / 32.9 21.6 / 22.2 14.9 / 16.1 18.3 / 19.2 20.0 / 22.1 10.4 / 11.8 15.2 / 17.0 

 Motifs+DLFE [4] 52.5 / 54.2 26.9 / 28.8 39.7 / 41.5 32.3 / 33.1 15.2 / 15.9 23.8 / 24.5 25.4 / 29.4 11.7 / 13.8 18.6 / 21.6 

 Motifs+BPL-SA [10] 50.7 / 52.5 29.7 / 31.7 40.2 / 42.1 30.1 / 31.0 16.5 / 17.5 23.3 / 24.3 23.0 / 26.9  13.5 / 15.6  18.3 / 21.3 

 Motifs+NICE [14] 55.1 / 57.2 29.9 / 32.3 42.5 / 44.8 33.1 / 34.0 16.6 / 17.9 24.9 / 26.0 27.8 / 31.8 12.2 / 14.4 20.0 / 23.1 

 Motifs+IETrans [33] 54.7 / 56.7 30.9 / 33.6  42.8 / 45.2 32.5 / 33.4 16.8 / 17.9 24.7 / 25.7 26.4 / 30.6 12.4 / 14.9 19.4 / 22.8 

B 
Motifs+MWL(Ours) 57.7 / 60.1 28.6 / 30.9 43.2 / 45.5 36.7 / 37.6  17.2 / 18.1    27.0 / 27.9 28.7 / 32.9 12.6 / 15.3  20.7 / 24.1 

VCTree [25] 65.9 / 67.5 17.1 / 18.4 41.5 / 43.0 45.6 / 46.5 10.8 / 11.5 28.2 / 29.0 32.0 / 36.2 7.2 / 8.4  19.6 / 22.3 

 VCTree+TDE [24] 44.8 / 49.2 26.2 / 29.6 35.5 / 39.4 28.8 / 32.0 15.2 / 17.5 22.0 / 24.8 17.3 / 20.9 9.5 / 11.4 13.4 / 16.2 

 VCTree+CogTree [30] 44.0 / 45.4 27.6 / 29.7 35.8 / 37.6 30.9 / 31.7 18.8 / 19.9 24.9 / 25.8 18.2 / 20.4 10.4 / 12.1 14.3 / 16.3 

 VCTree+DLFE [4] 51.8 / 53.5 25.3 / 27.1 38.6 / 39.4 33.5 / 34.6 18.9 / 20.0 26.2 / 27.3 22.7 / 26.3 11.8 / 13.8 17.3 / 20.1 

 VCTree+BPL-SA [10] 50.0 / 51.8 30.6 / 32.6 40.3 / 42.2 34.0 / 35.0  20.1 / 21.2  27.1 / 28.1 21.7 / 25.5  13.5 / 15.7  17.6 / 20.6 

 VCTree+NICE [14] 55.0 / 56.9 30.7 / 33.0 42.9 / 45.0 37.8 / 39.0 19.9 / 21.3 28.9 / 30.2 27.0 / 30.8 11.9 / 14.1 19.5 / 22.5 

 VCTree+IETrans [33] 53.0 / 55.0 30.3 / 33.9 41.7 / 44.5 32.9 / 33.8 16.5 / 18.1 24.7 / 26.0 25.4 / 29.3 11.5 / 14.0 18.5 / 21.7 
 VCTree+MWL(Ours) 58.0 / 59.8 30.9 / 32.7  44.5 / 46.3 40.9 / 42.1 19.8 / 20.8  30.4 / 31.5 28.8 / 32.9 11.8 / 14.1 20.3 / 23.5 

4.3 Comparisons with State-of-the-art Methods 

To assess the SGG improvement of our method, in this section we mainly use MWL 

on two baselines: Motifs [32] and VCTree [25]. We compare it with several state-of-

theart SGG methods on VG dataset under all three sub-tasks. Based on the type of gen-

eralization of these methods, we divide them into the following two categories: 1) 

MSDN [17], GB-Net [31], BGNN [15], and PE- Net [34]. These methods are designed 

specifically for SGG which are not based on common baselines. 2)TDE [24], CogTree 

[30], DLFE [4], NICE [14] and IETrans [33]. These methods are model-agnostic SGG 

unbiased methods that are typically applied to baselines, e.g., Motifs [32] and VCTree 

[25]. The results are shown in Tab. 1. 

Generally, our method achieved significant improvements on two strong base- lines 

(i.e., Motifs [32], VCTree [25]). The absolute gains on metric mR@50 and mR@100 
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are 7.1% ∼ 12.1% and 8.5% ∼ 13.1% over Motifs, and 4.6% ∼ 13.8%, 5.7% ∼ 14.3% 

over VCTree. The results demonstrate the effectiveness of our method. 

Due to the structure of datasets, any method to increase mR@K will in- evitably 

reduce the R@K. Based on this, we believe that the goal of unbiased SGG should not 

only focus on improving mR@K, while ignoring the adverse effects on R@K. There-

fore, M@K proposed in [34], which calculated from the average value of R@K and 

mR@K, should become an important metric in this field. Compared to other state-of-

the-art model-agnostic debiasing strategies, MWL can not only achieve top perfor-

mance on mR@K metrics, but also keep relatively high performance on R@K metrics, 

as the performance of our method on R@K is only inferior to the baseline. Finally, on 

M@K metrics which rep- resents the comprehensive level of R@K and mR@K, our 

MWL always achieve state-of-the-art. 

 

Fig. 4. The Illustration of weights changes and results comparison from predicates under different 

frequency level. 

4.4 Specific Interpretation on How MWL Promote SGG 

In order to better interpret our method, we recorded the changes of weight correspond-

ing to predicates in joint training phase, and the results obtained by these predicates 

after changing their weight, as shown in Fig.4. For the convenience of illustration and 

considering the different levels of predicate frequency, we divide all predicates into 

three levels, and select ’on’ and ’wearing’ for common predicates, ’at’ and ’riding’ for 

predicates with the middle frequency, and ’parked on’ and ’walking in’ for rare predi-

cates. 

It is not difficult to see from Fig.4a that, as expected, the loss weight corresponding to 

common predicates are reduced, while the weight corresponding to medium-frequency 

and rare predicates are increased in the meta-validation stage. These changes reduce 

the dominance of common predicates and make the model pay more attention to the 

prediction of uncommon predicates. As reflected in Fig.4b, after this weight change, the 

Recalls of uncommon predicates are improved, and the Recalls of common predicates 
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are not reduced to a large extent, thus achieving an overall performance improvement 

of the SGG model. 

Table 2. Ablation studies on components of MWL. The baseline model is Motifs [32]. 

 

Exp Components PredCls 
MWN NCL mR@50/100 R@50/100 M@50/100 

1 ×       × 16.5 / 17.8 65.5 / 67.2 41.0 / 42.5 

2 √     × 26.3 / 28.5 56.1 / 57.2 41.2 / 43.6 

3 √     √ 28.6 / 30.9 57.7 / 60.1 43.2 / 45.5 

4.5 Ablation Studies 

To assess the efficacy of the components in our method, we conduct ablation studies 

using VG dataset. The results are summarized in Tab.2. In this table, Exp1 represents 

the baseline model. Notably, when we introduce MWN to the baseline model in Exp2, 

there is a substantial increase in metric mR@K. However, it is worth noting that R@K 

experiences a decrease, which is an anticipated trade-off when employing unbiased 

methods. In Exp3, we construct Clean Dataset using NCL method based on the im-

provements from Exp2. This not only further enhances mR@K but also mitigates the 

decline in R@K, ultimately allowing the metric M@K to achieve state-of-the-art per-

formance. These ablation experiments verify the significant impact of MWN on the 

SGG tasks. 
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Fig. 5. Visualization SGG result of Motifs [32] (in orange) and MWL (in green) on the PredCls 

task. The predictions in bold indicate that our method makes the model more unbiased and the 

predictions more comprehensive and accurate. 

4.6 Visualization Results 

In order to illustrate MWL’s improvements over baseline more prominently, we present 

a comparative analysis of scene graph detection results generated by Motifs [32] and 

our method in Figure 5. 

In the first example, our method predicts more relations, like ”cat_1-behind - 

women” and ”cat_2-laying on-women.” In the second example, our method predicts 

relations like, ”man 1-sitting on-bench,” and ”cow-standing on-street,” as opposed to 

the simpler ”man-on-bench,” and ”cow-on-street” provided by Motifs [32]. These re-

sults demonstrate the considerable effectiveness of our method, which contribute to a 

comprehensive understanding of the scene. 

5 Conclusion 

In this paper, we have firstly analyzed the conflict between datasets bias, loss function 

and pursuit metrics. Based on this, we have introduced a meta-learning framework and 

proposed Meta Weighted Loss to enhance baseline training and augment its overall 

performance. Furthermore, we have employed the Neighbor Cleaning Rule method 

within the meta-learning process to obtain a cleaner and more balanced meta-validation 

set to improve the training of model. Through extensive experiments, we have con-

firmed the effectiveness of MWL on the baselines. Among model-agnostic methods, 

MWL achieves new state-of-the-art performance on metric M@K, a comprehensive 

measure of model performance. 
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