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Abstract. The periodicity of the time series is useful in improving the perfor-
mance of forecasting models by revealing long-term trends, seasonal variations 
and oscillatory phenomena. Existing methods usually use a single-scale periodic-
ity assumption at a certain fixed stage, which is uncoupled from the inherent 
multi-scale and continuous nature of the periodicity. This leads to a bottleneck in 
the exploitation of the periodic property of the time series by these methods. It 
limits the ability of the models to explore the underlying periodic information for 
capturing reliable dependencies and constructing them efficiently in forecasts. 
To this end, in this paper, we make full use of the multi-scale information of time-
series periodicity and construct a continuous periodic relational interaction at 
multiple different stages. By modeling dependencies and feature aggregation at 
the sub-sequence level, we are able to break the bottleneck of underutilization of 
periodic information. Specifically, we first extract the inherent stationary peri-
odic measurement of sequence data and embed the multi-layers period pattern to 
model seasonal regularity. Second, to capture the long-range periodicity correla-
tion, we propose a novel attention mechanism that performs convergence of rep-
resentation under the predictive paradigm with efficient sparse filtering based on 
periodic segments. Third, we implement the sequence decomposition with multi-
period scale to separate precisely tendency and seasonality. Therefore, the intrin-
sic patterns of the time series can be reasonably deciphered and analyzed respec-
tively. Extensive experimental results on five benchmarks show that our method 
achieves favorable results, especially on the significantly periodic data. 

Keywords: Time-series forecasting, Periodicity, Transformer.  

1 Introduction 

Time series prediction receives much attention due to the wide range of applications, 
such as business cycles [1], energy consumption [2], weather forecasting [3], and power 
supply pressure [4]. It has a main feature that the forecast time span is very long, such 
as several months or years, and it contains significant periodicity characteristics [5, 6]. 
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Fig. 1. Multi-scale periodic patterns of the time series data. Different periodic patterns denote 
different scale information. 

As shown in Fig.1, time series information can be decomposed into multiple periodic 
patterns with different scales which is critical to the analysis and modeling of known 
time series. For example, by measuring multiple periodic patterns, long-term stable 
trends with spanning years or decades can be discovered on a large scale, and seasonal 
variation repeating annually or monthly becomes more evident. This allows us to inter-
pret the recurring effects like holiday sales or weather changes. Similarly, fluctuation 
phenomena, e.g., rising and falling business cycles, can also be identified in time series 
that span long enough. In summary, the cyclical multi-scale nature of time series data 
provides key insight into data patterns that change over time. 

In recent years, deep learning based time series prediction methods [7,8,9] have 
made remarkable progress. Mainly because they have powerful global information ag-
gregation capabilities. Especially, the Transformer architecture [10,11] has been intro-
duced into time series prediction recently, deep learning based methods have achieved 
further improvement. Because the Transformer has more powerful long-range depend-
encies modeling capabilities. Unfortunately, using the original Transformer directly for 
long-term series forecasting will bring extremely high time complexity and memory 
consumption. To improve inference speed, LogTrans [12] designs a sparse attention 
module and Informer[13] uses a generative style decoder to replace the step-by-step 
method. More recently works [14,15] began to explore how to use periodicity to further 
improve the performance of time series forecasting. For example, Fedformer introduces 
a sequence decomposition and frequency domain computation to capture potential pe-
riodic. Autoformer proposes a sub-sequence-level information aggregation for model-
ing periodicity. However, these methods exploit periodic information in a single-scale 
manner only at a certain stage of time series forecasting, which is uncoupled from the 
inherent multi-scale and continuous nature of the periodic. Consequently, these meth-
ods cannot capture the multi-scale periodic dependence and model the internal perio-
dicity patterns of time series data effectively. 

To solve this problem, we propose a multi-scale period-dependent Transformer 
framework for long-term time series forecasting. The proposed method fully exploits 
periodic information by performing feature aggregation and dependency modeling at 



 Multi-scale Period-dependent Transformer for Time Series Forecasting 3 

the sub-sequence level. Moreover, our method can capture continuous periodic rela-
tional interactions by exploiting periodicity information at multiple different stages. 
Specifically, our method consists of three kinds of periodic-dependent modules: the 
Multi-Layers Periodic Stacked Embedding, the Multi-Head Foresight Attention, and 
the Multi-Scale Polishing Sequence Decomposition. To model the period-based multi-
ple seasonal patterns of the time series, we first propose a Multi-Layers Periodic 
Stacked Embedding that can make the initial inputs obtain the significance projection 
under each seasonal regularity. Then, to capture the long-range periodic dependence, 
we design a novel information convergence, named Multi-Head Foresight Attention. It 
not only uses periodic measurement to choose the perception field but also differenti-
ates the query and key in the attention mechanism. Meanwhile, we provide a corre-
sponding sparse screening mechanism, which emphasizes the difference between stable 
trends and seasonal fluctuations. It also conforms to the characteristics of time series 
and reduces the quadratic complexity effectively. Finally, to separate the stable trend 
term and the periodic seasonal term inherent in the time series, we employ a deep sub-
module Multi-Scale Polishing Sequence Decomposition inside the architecture. This 
enables the model to obtain progressive decomposition capabilities based on multi-pe-
riod planning. Our method achieves favorable accuracy on the five time series forecast-
ing datasets, especially on significantly periodic data.  

The contributions are summarized as follows: 
– We propose a multi-scale periodic-dependent long-term time series forecasting 

method that makes full use of periodic information in multiple different stages to im-
prove feature representation capabilities. 

– We design a Multi-Layers Periodic Stacked Embedding model, a Multi-Head Fore-
sight Attention, and a Multi-Scale Polishing Sequence Decomposition. These three 
modules utilize periodic information from different perspectives and form a continuous 
framework of periodic relationship interaction. 

– We conduct extensive experiments on five benchmarks and the results demonstrate 
that our method achieves favorable performance. 

2 Methodology 

2.1 Overview of algorithm 

The encoder-decoder architecture is designed as the basic architecture of our model, 
and it has been used in various areas of deep learning with effective performance. It 
extracts the information of the input representation 𝑋௧ and turns it into a hidden repre-
sentation 𝐻௧, then the decoder is responsible for decoding 𝑌௧ from the hidden represen-
tation. In this process, each sub-module works closely together to continuously disen-
tangle the trend and season of the series and extract the complex correlation information 
of the variables within the time series to model period-dependent representation. 

In the input phase of encoder and decoder, we embed the temporal feature data, the 
relevant covariance, and the location information required by the attention mechanism, 
respectively.  This is based on extensive transformer-based related work that has been 
proven effective.  Inside the Multi-Layers Periodic Stacked Embedding, we perform 
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periodic calculation by frequency domain analysis to capture the periodicity depend-
ence of the sequence and transmit it to each sub-module, then we embed the multi-
layers period encoded in the model input.  Next, we construct a Multi-Head Foresight 
Attention mechanism designed to capture long-range temporal aggregation of time se-
ries local representation. To enable the model to progressively decompose seasonality 
and tendency, we add the Multi-Scale Polishing Sequence Decomposition module and 
string it across multiple sub-modules of the overall architecture.  Two identical feed-
forward network structures composed of one-dimensional convolution, linear layer, and 
norm are used to model the trend term and season term, respectively, then the output is 
combined.  Finally, we use a generative decoder to obtain extensive sequence outputs, 
thus avoiding the spread of cumulative errors in the inference phase. 

 

Fig. 2. Framework of the proposed method. 

2.2 Multi-Layers Periodic Stacked Embedding 

 

Fig. 3. Multi-scale periodic patterns of the time series data. Different periodic patterns denote 
different scale information. 

As shown in Fig.3, periodic patterns are temporal variations that occur in series and 
they reveal recurring regularity and underlying fluctuation of seasonality and provide a 
basis for building predictive models. By identifying cyclicality, we can use historical 
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data to predict future cyclical changes. In order to obtain and embed the various peri-
odic patterns in the time series, we need to first find the specific period length and 
significance. Technically, we switch the sequence 𝒳 that is embedded with original 
values, covariables, and location information to the frequency domain for specific anal-
ysis as follows: 

𝒜 ൌ |𝐹𝐹𝑇 ሺ𝒳ሻ|  , ሼ𝑓ଵ, ⋯ , 𝑓௞ሽ ൌ arg Topk
௙∈ቄଵ,⋯,ቂ

ಽ
మ

ቃቅ

ሺ𝒜ሻ,

𝑙௜ ൌ ቒ
௅

௙೔
ቓ , 𝑖 ∈ ሼ1, ⋯ , 𝑘ሽ,

𝒮መሺ𝑙ଵሻ, ⋯ , 𝒮መሺ𝑙௞ሻ ൌ 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ൫𝒜௙భ, ⋯ , 𝒜௙ೖ
൯.

                    (1) 

We use the fast fourier transform(FFT) for calculation of amplitude values 𝒜 of the 
time series data. Specifically, 𝒜 is the calculated amplitude of each frequency, and the 
𝑖-th value 𝒜𝒾 represents the intensity of the 𝑖-th frequency periodic basis function.  In 
order to reduce meaningless high-frequency noise and atypical period factors in the 
sequence, and to strengthen the important period model, we select the top-𝑘 salient am-
plitudes with 𝒜  to find the significant sequence frequencies ሼ𝑓ଵ, ⋯ , 𝑓௞ሽ, where 𝑘 ൌ
⌊𝑐 ൈ 𝑙𝑜 𝑔 𝐿⌋, 𝑐 is the hyper-parameter. Based on the selected sequence frequencies, we 
can obtain top-𝑘 significant period lengths ሼ𝑙ଵ,   ⋯ , 𝑙௞ሽ. Furthermore, the degree of pe-
riod significance ሼ𝒮መሺ𝑙ଵሻ, ⋯ , 𝒮መሺ𝑙௞ሻሽ under the corresponding period length can be cal-
culated by 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 with their corresponding amplitudes. Then the module performs 
two tasks. One is to pass these period-based dependencies information to each sub-
module of the encoder-decoder architecture. The other task is to summarize and embed 
each significant period into the input of the model as the initial encoding by Multi-
Layers Periodic Stacked Embedding (MPS-Embedding). 

𝑀𝑃𝑆 െ 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛 𝑔ሺ𝒳ሻ ൌ 𝐶𝑜𝑛𝑣1𝑑൫𝒳 ൅ ∑  ௞
௜ୀଵ 𝒮መሺ𝑙௜ሻ𝐿𝑖𝑛𝑒𝑎 𝑟ሺRollሺ𝒳, 𝑙௜ሻሻ൯      (2) 

𝐶𝑜𝑛𝑣1𝑑 and 𝐿𝑖𝑛𝑒𝑎𝑟 stand for convolution and fully-connected network architecture of 
the embedded stage standard, respectively. 𝑅𝑜𝑙𝑙 represents the delay 𝑙௜ operation over 
𝒳, in which elements removed from the first position will be re-introduced into the last 
position. The 𝑅𝑜𝑙𝑙 operation provides a reconstructed sequence with a specified period 
length 𝑙௜, where the first 𝑙௜ time points of this reconstructed time series are the last 𝑙௜ 
time points of the original sequence. The reconstructed sequence expresses the repeat-
able relationship of the sequence every period length 𝑙௜ apart through the mismatch op-
eration as a way of verifying the reliability and confidence of this periodical pattern. 
And, we use linear projection to progressively approximate the potential role of the 
period pattern in the prediction and limit its influence by its significance 𝒮መሺ𝑙௜ሻ. By 
stacking independently modeled multi-layers period patterns, we encode the period-
dependent information into the initial input of the model, so that the data periodic reg-
ularity can be fully considered and completely disassembled throughout the model. 
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2.3 Multi-Head Foresight Attention Mechanism 

 

Fig. 4. Comparison of different attention mechanisms. 

As shown in Fig.4, different from traditional self-attention family and autocorrelation 
mechanism, we propose the Foresight Attention mechanism. This mechanism adopts 
period information convergence and selects certain important sub-sequences for the in-
teraction of stable trends and seasonal fluctuations to expand the information utiliza-
tion. We then describe in detail how Foresight Attention performs period-dependent 
information aggregation and importance filtering. While inheriting the basic multi-head 
structure of transformer that respectively linearly project input 𝑿 into 𝒉 distinct query 
matrices 𝑸𝒊 ൌ 𝑿𝑾𝒊

𝑸, key matrices 𝑲𝒊 ൌ 𝑿𝑾𝒊
𝑲, and value matrices 𝑽𝒊 ൌ 𝑿𝑾𝒊

𝑽 , with 
𝒊 ൌ 𝟏, ⋯ , 𝒉. After these linear projections with learnable parameters, the canonical self-
attention is defined based on tuple inputs and performs the scaled dot-product. How-
ever, in the forecast task requirements, the output that needs to be modeled is a subse-
quent paragraph of the current information rather than itself. Therefore, the Query of 
foresight contributes more to their predictive effectiveness if some segments with re-
spect to the aggregation of Query in the future period are highly relevant to the Key's 
information in the past period. Inspired by this intuition, the Foresight Attention mech-
anism carries out a time-serial-oriented design on the classical Query, Key, and Value. 

 
 

Fig. 5. Visualisation of the core concepts of the Foresight Attention mechanism.. 
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As shown in Fig.5, the Query and Key are no longer single sampled points on the time 
series. Instead, the Query is designed as a local sub-sequence aggregation with foresight 
that knows the inside information of the future clearly. Meanwhile, the Key is regarded 
as a summary of past experience that converges the past local known content in the 
temporal sequence without the message of the not occurred events. The Value keeps 
precise and specific time points to ensure that the model prediction granularity and ac-
curacy are not affected by the minor loss of information or ambiguous data during the 
aggregation of adjacent messages. The Foresight Attention mechanism we designed 
computes a sequence of vector outputs, as shown in the following: 

ForesightAttention ሺ𝑸௜, 𝑲𝒊, 𝑽𝒊ሻ ൌ 𝑆𝑜𝑓𝑡𝑚𝑎 𝑥 ൬
𝒒෥೔𝒌೔

఻

ඥௗೡ
൰ 𝑽𝒊          (3) 

 
Similar but different from the scaled dot-product attention. The 𝒒෥ represents the 𝑸𝒊 that 
has been processed by 𝑺𝒆𝒍𝒆𝒄𝒕 which to obtain the local sub-sequence convergence and 
then to screen by importance sparse filtering. Meanwhile, 𝒌𝒊 represents the empirical 
summary of past locally known information that has been processed by ℬ. Technically, 
where 𝒢 denotes the filter of the discretized sliding window convolution, the size of the 
receptive scope is chosen as the most significant period length 𝑙, and using a one-di-
mensional weighted average convolution kernel with a Gaussian-like distribution to 
collect past experience and future development. Meanwhile, to find the difference in 
sequence trend around the current point in time, the filter ℬ is oriented to collect context 
about past experiences on the sequence rather than the local fullness of information 
convergence generated by 𝒢, thus ℬ changing the sliding window size by halving the 
center of the convolution kernel. In general, through the differential of the sense of 
convolutional filter to achieve the similarity sub-sequence calculation and convergence, 
then capture the intrinsic dependence and development trend of the time series. Among 
them, the period length 𝒍 and the corresponding significance degree 𝒮መሺ𝑙ሻ are obtained 
by frequency domain analysis of the Multi-Layers Periodic Stacked Embedding mod-
ule. The sparse screening 𝑺𝒆𝒍𝒆𝒄𝒕 mechanism is responsible for finding salient discrep-
ancy points in the difference before and after the Gaussian filter 𝒢 processing, which 
are generally manifested in turnaround or fluctuant points on the temporal sequence 
and sharp-shaped points that zigzag and meander on the graph. We believe that the 
attention mechanism should rightly pay more attention to and put more effort into such 
sequence changes and time fragments to grasp the deep reason for the sequence char-
acteristics of the undulation. Data points that are sparsely filtered out are replaced with 
a mean value to satisfy the matrix calculation, which is similar to the strategy adopted 
by Informer. 
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2.4 Multi-Scale Polishing Sequence Decomposition 

 

Fig. 6. (a) Multi-Scale Polishing Sequence Decomposition computes multiple moving averages 
of the original sequence based on multiple significant period lengths. (b) The period signifi-
cance degree is then used as a weight in the summation of multiple AvgPool Series, to obtain 
the trend term.  

Instead of using a sequence smoothing operation in the pre-processing stage as in the 
traditional approach, we place the smoothing block as an internal sub-module in the 
model. By running alternately with other sub-modules, the model obtained the inherent 
ability to decompose complex time patterns step by step. In addition, we improve the 
manually specified single-scale and ordinary multi-scale strategies. We use cyclicality 
to guide the multi-scale progressive smooth decomposition. Compared with the sliding 
window size specified by the hyper-parameter, our method can achieve sequence adap-
tation by relying on reliable period-dependent calculation. The multi-scale design al-
lows each period length to be considered, and the corresponding significance ensures 
the rationality of the decomposition degree. In general, the Multi-Scale Polishing Se-
quence Decomposition block can strip the seasonal fluctuation from the long-term sta-
ble tendency of the series intermediate hidden variable, and deliver the regular and un-
learned content to the subsequent module for further analysis. It enables the model to 
progressively capture the overall profile of the time series and grasp the direction of the 
trend. As shown in Fig.6, the Multi-Scale Polishing Sequence Decompositionሺ𝒳ሻ 
process is: 

𝒳௧ ൌ ∑  ௞
௜ୀଵ 𝐴𝑣𝑔𝑃𝑜𝑜 𝑙ሺ Padding ሺ𝒳ሻ, 𝑙௜ሻ𝒮መሺ𝑙௜ሻ

𝒳௦ ൌ 𝒳 െ 𝒳௟
      (3) 

Where 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 represents the average pooling operation, where the second parameter 
points to the sliding window size. Then 𝑙௜ and 𝒮መሺ𝑙௜ሻ are the information of the periodic-
ity pattern that is the period length and significance degree. The single average pooling 
operation will bring about a fixed decomposition mode, while the multi-scale design 
makes decomposition more reliable and reasonable. The smooth kernel size specified 
by the period length has a natural advantage in the decomposition of trend and seasonal 
terms, and the stable fluctuations of the seasonal terms can be perfectly captured by the 
same length of the period. The corresponding degree of significance guarantees the 
range of sequence decomposition of multiple periodic scales. 
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3 Experiments 

3.1 Comparison with state-of-the-art methods 

Table 1. Multivariate long sequence time-series forecasting results on five datasets. A lower 
MSE or MAE indicates a better prediction, and the best results are highlighted in bold. 

 
The proposed model demonstrates satisfactory performance in the majority of cases and 
prediction length settings for multivariate long-term series forecasting, as indicated in 
Table.1. Our model exhibits significantly superior results compared to the classical 
baseline, showcasing an average improvement of 69.6\% (from 1.34 to 0.407) over 
RNN-based LSTNet and 76.2\% (from 1.712 to 0.407) over CNN-based TCN models. 
In comparison to the recently popular and advanced sparse attention-based transformer 
family, including Informer, LogTrans, and Reformer, our method achieves an average 
mean squared error (MSE) reduction of 49.1\% (from 0.801 to 0.407). Particularly note-
worthy is the performance of our method on the ETTm2 dataset. When compared to 
the previous Autoformer model, which performed well in terms of period utilization, 
our method exhibits a relative MSE reduction of 13.7\% (from 0.255 to 0.220) under 
the predict-96 setting, 16.3\% (from 0.281 to 0.235) under the predict-192 setting, 
17.6\% (from 0.339 to 0.289) under the predict-336 setting, and 22.2\% (from 0.422 to 
0.350) under the predict-720 setting. Furthermore, we observe a steady increase in the 
performance of prediction errors in our method as the prediction length 𝒪 grows. This 
finding indicates that our model maintains better long-term robustness and showcases 
its competitiveness in terms of long-term time-series forecasting. It exhibits a win-or-
loss scenario compared to the Preformer model only when applied to the Exchange 
dataset. This phenomenon can be attributed to the anisotropic nature of specific fluctu-
ations observed in the Exchange dataset, which lack evident periodic characteristics. 
Collectively, these results highlight the ability of our method to effectively address 
multivariate time-series forecasting tasks in real-world applications, such as weather 
early warning systems and long-term energy consumption planning. 
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3.2 Model Analysis 

 

Fig. 7. Visualize our proposed multi-scale periodicity metric on real-world datasets.  

The multi-scale period idea of the present model is demonstrated by visualization on 
the dataset used for the large-scale experiments, as shown in Fig.7. In all four datasets 
with different input lengths, our method demonstrates excellent multiscale period anal-
ysis, and the three scales of period stacking can almost reconstruct the original se-
quence. The periodic dependence capture used here relies heavily on Equation.1, which 
calculates the 𝑘 significant periods of each original time series. This includes the prop-
erty of period length and significance degree. The period length is mostly employed in 
the model to specify a reasonable size of the receptive domain, while the significance 
degree is mostly applied to score the content at the corresponding scale. The multi-scale 
period provides an inherent perspective for analyzing the time series inputs, provides a 
reasonable point of view for capturing the periodic dependence, and also allows the 
model to restore and reconstruct the sequence periodicity to the maximum extent pos-
sible. 
3.3 Visualization 

 

Fig. 8. Visualization of predictive effects on Electricity and Traffic datasets. Compare our ap-
proach with the Informer model. 
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The visualization of predicted effects on the two data sets, as depicted in Fig.8, serves 
as a faithful representation of our design philosophy and substantiates the validity of 
our model. Our model adeptly captures and reproduces the periodicity inherent in the 
time series data. Furthermore, it accurately preserves the range and duration of each 
cycle, even in the presence of trend shifts and continuous fluctuations caused by the 
superimposition of multiple cycles. In contrast, the Informer model, lacking the incor-
poration of cycle dependence in its design, exhibits imperfections in terms of capturing 
periodicity. However, our Foresight Attention mechanism effectively predicts the peaks 
and troughs of time series transitions and variations, demonstrating remarkable perio-
dicity. Moreover, our model closely aligns with the trend of the ground truth without 
experiencing premature or delayed predictions. It faithfully adheres to the direction of 
the trend and avoids unnecessary fluctuations, crucial for ensuring realistic forecasting 
outcomes. Conversely, the Informer model's sparse probability screening, while achiev-
ing low complexity, results in the loss of significant sequence transition information. 
This limitation may lead to inadequate learning of seasonality fluctuations and abrupt 
changes in forecast trends. In summary, the comparison between our model and the 
Informer model highlights the superiority of our approach in accurately capturing and 
reproducing the periodicity of time series data. Our Foresight Attention mechanism 
plays a pivotal role in predicting transitions and variations with remarkable periodicity 
while faithfully following the trend direction. The limitations of the Informer model, 
including the loss of sequence transition information and potential fluctuations in sea-
sonality and forecast trends, underscore the advantages of our design. 

4 Conclusions 

This paper proposes a long-term series prediction model based on multi-scale period-
dependent modeling which fully making uses of the periodic characteristics of time 
series. We construct three modules that use period information in different stages and 
these three modules constitute a continuous period relationship interaction. It breaks 
the bottleneck of period information utilization and improves forecasting performance 
by emphasizing the discovery of periodic dependencies and the aggregation of fluctua-
tion sub-sequences information. The proposed method achieves 𝑂ሺ𝐿𝑙𝑜𝑔𝐿ሻ  of time 
complexity, and extensive experiments on real-world datasets demonstrate that it 
achieves the better prediction results than existing comparable Transformer-base meth-
ods, especially on datasets with significant periodicity. In the future, we will continue 
to explore other possible ways of capturing dependencies, and to study the role and 
extend the applicability of periodicity in the field of time series forecasting. 
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