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Abstract. In recent years, subspace clustering has received increasing attention 

for its ability to accurately discover the underlying subspace in high-dimensional 

data. Among them, end-to-end subspace clustering methods compute cluster as-

signments by mapping points to subspaces. However, such methods ignore hard 

samples when computing the clustering assignment, i.e., low-value samples in 

the correct clustering assignment and high-value samples in the incorrect cluster-

ing assignment. To address this problem, in contrast to the previous instance-

level hard samples, we mine hard samples at the subspace cluster-level. We first 

construct a deep embedded subspace clustering framework as the clustering tar-

get and learn subspace bases in iterations to obtain clustering assignments. Sec-

ondly, we utilize pseudo-supervised information and clustering assignments to 

mine hard samples at subspace cluster-level. Finally, a weight modulation strat-

egy is proposed to dynamically focus the hard samples and obtain more accurate 

subspace clustering assignments. Through extensive experiments, we show that 

our method outperforms state-of-the-art subspace clustering algorithms on four 

benchmark datasets. 
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1. Introduction 

Clustering is the process of achieving high intra-class similarity and low inter-class 

similarity by some measure of similarity in the absence of labelling information. Sub-

space clustering assumes that high-dimensional data tends to exist in low-dimensional 

structures. With the emergence of high dimensional data, subspace clustering is often 

proposed for clustering high dimensional data and is a practical approach in various 

clustering tasks such as motion segmentation, face clustering and image segmentation. 

Classical subspace clustering algorithms such [1,2,3] are based on self-expressive mod-

els. These algorithms are based on a two-stage framework. The first step in each itera-

tion first learns an affinity matrix and the second step is to perform spectral clustering 

on the affinity matrix. These algorithms do not give fast clustering results and cannot 

be applied to large datasets. 
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Fig. 1. (a) Input samples are compared with hard-positive samples belonging to the same cluster 

and hard-negative samples from other clusters to learn to distinguish confusing samples. (b) Input 

samples are compared with the subspace bases to which they belong and with other subspace 

bases, with samples being more compact with the correct subspace and more distant from the 

other subspace bases, thus obtaining more discriminative cluster assignments. 

 
There are now many subspace clustering methods that move away from the self-

expressive framework [4,5,6] . SENet [5] uses an appropriately designed neural net-

work to learn the self-expressive representation of the data. Jicong Fan et al. [4] which 

pursues structured sparsity in the matrix decomposition model by directly decomposing 

the data into K-groups. End-to-end deep embedded clustering [6,7,8] can move away 

from self-expressive models, e.g., EDESC [6] learns a set of subspace bases from ex-

tracted latent features based on end-to-end embedded clustering and optimizes the clus-

tering objective together with the network. Although these algorithms enable end-to-

end subspace clustering, none of them take hard samples into account. 

Hard samples are considered an important part of many deep learning algorithms 

[9]. Hard samples can provide more information, by focusing more on hard samples 

rather than simple samples, more discriminative results can be obtained. In clustering, 

hard samples are generally used for the selection of positive and negative sample pairs 

for contrastive learning. However, all these methods mine hard samples at instance-

level [10,11], ignoring the fact that hard positive and negative samples also exist at 

cluster-level. 

Unlike previous instance-level hard sample mining, we perform hard sample min-

ing at the subspace cluster-level. Fig. 1 illustrates the comparison between previous 

instance-level hard samples and our proposed  subspace cluster level hard samples. In 

subspace clustering, since we are able to capture low-dimensional subspace bases, these 

low-dimensional subspace bases can approximately characterize subspaces in high-di-

mensional data [13]. Sample points and subspace bases can be assigned to clusters by 

some metric. Specifically we utilize the subspace bases to represent the clusters with 

the sample points to compute the cluster assignment probability values. The probability 
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distribution between pseudo-supervised information and soft assignments is utilized to 

mine hard samples and dynamically adjust the weights, guided by high-confidence clus-

tering results. Hard samples mining at subspace cluster-level makes the samples closer 

to the correct subspace and farther from the incorrect subspace. Compared to consider-

ing only hard positive and negative sample pairs at instance-level, we can capture the 

assignment of samples to clusters more accurately with hard sample mining at subspace 

cluster-level, which improves the subspace clustering performance. The main contribu-

tions of the proposed method in this paper are summarised as follows: 

 

1.  We construct an deep embedded subspace clustering framework that generates sub-

space bases through iterative refinement while obtaining soft assignments for cluster-

ing. 

2. We propose a hard sample mining method at subspace cluster-level that combines 

pseudo-supervision infilormation and clustering soft assignment under high confidence 

guidance to discover hard samples. 

3.  We propose a sample weight modulation strategy to dynamically focus hard sam-

ples in a subspace clustering framework to enhance the discriminative power of sub-

space clustering assignment. 

4.  Experimental results are reported on four benchmark scale datasets to demonstrate 

the clustering performance of our method. 

 

2. Related Works 

2.1 End to End clustering 

The end-to-end clustering method aggregates feature learning and clustering processes 

to obtain clustering results. DEC [7] is an important end-to-end deep embedding clus-

tering method. It learns the embedding representation of the samples through an auto-

encoder and learns a set of prime centers to compute the soft assignments,and continu-

ously optimizes the prime centers of the clusters to obtain the soft assigments. IDEC 

[8] integrates autoencoder reconstruction loss and clustering loss into a unified frame-

work. JULE [14] uses the aggregated clustering result of an image as a supervised sig-

nal to learn the embedding representation, which in turn facilitates image clustering. 

DAC [15] treats pairs of images as a binary classification problem, where the cosine 

distance between image labeled features is used as a similarity, making the learned la-

beled features tend to be a hotspot vector. DSEC [16] Defines the clustering task as a 

binary pairwise classification problem to estimate whether the pairwise patterns are 

similar or not. All of these methods allow for fast end-to-end clustering, but all ignore 

the problem of hard samples. 

 

2.2 Hard Sample Mining 

In recent years, hard samples are commonly used in clustering tasks. Chuang et al. 

[16]proposed that hard negative samples of images should be considered, i.e., samples 

with higher similarity in the negative sample pairs. Xia. et al. [10] established a new 

measure suitable for negative samples by designing probabilistic ability estimators. 
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Jang. et al. [18] went beyond statistical methods to explore the link between hard neg-

ative samples and data bias. All these methods use hard samples for negative sample 

pairs. Liu. et al. [11] proposed that not only hard negative sample pairs should be con-

sidered, but also hard positive sample pairs, i.e., samples with lower similarity in the 

same category, should be carefully learned. All these methods mine hard samples at 

instance-level, we mine hard samples at subspace cluster-level in subspace clustering. 

 
Fig. 2. Architecture of the proposed method. The input X  are mapped by the encoder to Z , 

which is then reconstructed to X̂ by the decoder. p is the output of the classifier module  ( ),P z  . 

w is the soft assignment of the deep embedded subspace clustering algorithm. H  is a sample 

weight modulation function constructed by finding Kullback-Leibler Divergence between 

pseudo-labels and soft assignment. 
 
 

3. Methods 

In this section, we construct a deep embedded subspace clustering framework based on 

hard samples. The framework is shown in Fig. 2. 

3.1 Feature Extractor 

Autoencoders [19] are deep feature learning architectures commonly used for unsuper-

vised tasks. We use an autoencoder as a feature extractor to extract features suitable for 

subspace clustering from the raw data. The encoder F and decoder G  are parameter-

ised by e  and d  respectively. The input to the feature extraction network is n dX R  ,

( )( )ˆ
d ei iX G F X = is a reconstruction of iX , specifically, AE can be optimised by the fol-

lowing objective function:  

 ( )( ) 2 2

2 2
, ,

1 1

min min ˆ
e e

e d e d

n n

ae i i i i

i i

X G F X X X 
   

= =

= − = −   (1) 
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3.2 Deep embedded subspace clustering 

The problem of subspace clustering can be considered as follows: 

 
 

( )
1
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, , ,
1

1
min , , 1, , .
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h i n
n

=

−  = 
z z

x z z SW
W

   (2) 

where Wh denotes a multilayer neural network with a parameter set W , n denotes the 

number of samples and iS denotes the real clusters to which iX  belongs, iZ is an embed-

ded representation that iX  has undergone an autoencoder. However, it is not possible to 

solve this problem directly due to the unknown iS . Now we introduces a new variable 

(1) (2) ( ), , , kS  =  S S S which contains k  blocks, ( )

p d

jS  , and ( ) 1u

jS = , 1, ,u d=  , 1, ,j k=  . For 

all j l , ( ) ( )

T

j l F
S S  should be small enough in order to ensure that there is no similarity 

between the different subspaces: 

 
( ) ( ) ,T

j l FS S j l   (3) 

where   is a small constant. Each sample iZ  is assigned to a subspace ( )jS , iZ  is highly 

correlated with only one block of S . 

                             ( ) ( )max , 1, , .
ji

i j i j i n  = z S z S
晻

 (4) 

The goal of subspace clustering is to learn the optimal k subspaces on the set of samples 

and assign them to the nearest subspace. Unlike previous two-stage subspace clustering 

algorithms, we fuse the computation of high-dimensional subspace bases and the as-

signment of samples to the k subspaces in a single framework using an iterative refine-

ment: 

 
   

2

, 2
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k ik
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Desc ik i k k iS w
k i

w z S S z
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where d q

kS R  , {1, , }k K   is the k -th subspace basis, Knw R  , ikw  denotes the assign-

ment of ix  to kS . H  is the weight modulation function we introduce. In this paper, We 

use k-means clustering to initialise the subspace base  1, , kS S , defining ikw  as the 

probability value, samples can be assigned to the nearest subspace by the following 

equation: 

 

( )

2

2

1

T

i i k F
ik K

T

i i k F
k

H z S d
w

H z S d




=

 +
=

 +

 (6) 

where   is the parameter controlling the smoothness, d is the dimension of the sub-

space, K is the number of clusters. Thus ikw  denotes the probability that the embedding 

vector iz  belongs to the k -th subspace kS , which will be used as the result of our deep 

embedded subspace clustering. H helps us to keep adjusting the sample weights during 

the iteration process so as to focus the clustering target on the samples that are hard to 



6  L. Zou et al. 

separate at subspace level. We write the constraints of (3) and (4) on the subspace basis 

as loss terms as follows: 

 
2 2

basis 

T

F F
S S O= − +S S I I

•
 (7) 

where  represents the Hadamard product, and I is an identity matrix of size kd by kd. 

O is a matrix in which all d-size diagonal block elements are zeros and all others are 

ones. 

When training is complete, the final clustering labels can be obtained in the following 

ways: 

 
( ) argmaxi

pred k iky w=  (8) 

3.3 Hard-Sample Mining 

After obtaining the latent representations from the feature extractor, we can compute 

the pseudo-labels by introducing a classification layer designed as a fully connected 

layer on top of the feature extractor module: 

 ( )arg maxi i k
k

p P z
 =    (9) 

where ( )P   denotes the transformation of the fully connected layer, which can pro-

duce one-hot pseudo-labels. 

However, it is not possible to directly solve for the optimal one-hot pseudo-labels 

due to its non-convexity. To avoid obtaining a mundane solution, we select high-con-

fidence pseudo-labels to participate in the subsequent mining of hard samples by setting 

a threshold for the probability [20]. We do this by setting a threshold  for the proba-

bility ( )maxi i k
p P z

 =   . Samples above the threshold are used as the high-confidence sam-

ple set V . Unlike the comparative clustering approach of finding pairs of positive and 

negative hard samples [11,21], in this paper we try to mine hard samples by finding 

Kullback-Leibler Divergence between the soft assignment probability distribution of 

the subspace and pseudo-labels distribution guided by high confidence. The difference 

between the two probability distributions will be higher for hard samples than for sim-

ple samples. We propose a weight modulation function H  to dynamically adjust the 

weights of sample during the training process. H is formulated as follows: 

 ( )

( )( )
1, , ,

( )
Norm ,  others 

i i

i i

p w
H i

KL p w

 
= 


V

‖
 (10) 

where ip  is the clustering pseudo labels of the i -th sample,
n kp R  . iw is the clus-

tering soft assignment of the i -th sample, n kw R  . Norm denotes the min-max normali-

zation. Specifically, when neither distribution satisfies high confidence, H keeps the 

sample weights constant. When both distributions satisfy high confidence, H dynami-

cally adjusts the sample weights for the next iteration, up-weight to hard sample while 

down-weighting the easy ones. 

 

3.4 Training Settings 

To train our network, we propose a two-stage training strategy. The first stage is pre-

training using only to initialize the network. The second stage fine-tunes the entire 
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network by (11), where 1 , 2  are tuning parameters. The training flows of the proposed 

method is presented in Algorithm 1. 

 ae 1 basis 2 Desc = + +  (11) 

Table 1. Detailed information of the benchmark datasets 

 

Table 2. Clustering performance compared with the baseline methods. Note that the best results 

are marked in bold. 

 

4. EXPERIMENTATS 

4.1 Datasets and Evaluation Metrics 

To evaluate the clustering performance of our method, we conduct experiments on four 

widely used benchmark datasets. Including three image datasets (Fashion-MNIST, 

CIFAR-10, STL-10) and one text dataset (REUTERS-10K).The details of the datasets 

are given in Table 1.We quantify the clustering performance using clustering accuracy 

ACC, normalized mutual information NMI and adjusted rand index ARI. 

 

Dataset name Total samples Classes Size 

Fashion-

MNIST 
70,000 10 2828 

CIFAR-10 6,0000 10 32323 

REUTERS-

10K 
10,000 4 2,000 

STL-10 1,3000 10 96963 

 Fashion-MNIST CIFAR-10 REUTERS-10K STL-10 

ACC NMI ACC NMI ACC NMI ACC NMI 

DEC 0.590 0.601 0.301 0.257 0.618 0.314 0.359 0.276 

IDEC 0.592 0.604 0.316 0.273 0.684 0.351 0.378 0.324 

JULE 0.563 0.608 0.272 0.192 0.626 0.405 0.277 0.182 

DAC 0.615 0.632 0.522 0.396 - - 0.470 0.366 

DSEC - - 0.477 0.437 0.783 0.708 0.481 0.403 

k-SCN 0.600 0.623 0.601 0.515 0.801 0.598 - - 

k-FSC 0.727 0.692 - - 0.798 0.573 0.759 0671 

EDESC 0.631 0.670 0.627 0.464 0.825 0.611 0.745 0.687 

Ours 0.731 0.693 0.672 0.610 0.833 0.634 0.751 0.689 
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4.2 Experiment Settings 

In the experiments, for Fashion-MNIST and REUTERS-10K, the encoder and decoder 

consist of fully connected networks of m-500-500-1000 and 1000-500-500-m. For 

CIFAR-10 and STL-10, we applied ResNet50 [22] to extract their 2048-dimensional 

features. We set 5 =  for all datasets. We use the Adam optimizer [23] to minimize the 

objective function and set the learning rate to 0.001. k-means algorithm is used to to 

initialize the subspace. 

 

4.3 Comparisons with Baseline Methods 

End-to-end clustering methods are used as comparison methods, including DEC[7], 

IDEC[8], JULE[1], DAC[14], DSEC[15], kSCN [23], k-FSC[4], EDESC[6]). The re-

sults of our method and the compared methods are listed in Table 2. From the Table 2, 

we can see that our method significantly outperforms other baselines on the four da-

tasets. For example, on the Fashion-MNIST dataset, the method proposed in this paper 

improves 1.4% and 0.6% on ACC and NMI, respectively, compared to k-FSC. On the 

text dataset Reuters-10K we outperform the recent work EDESC, where we improve 

0.8% and 2.3% on ACC and NMI, respectively. On the large datasets CIFAR-10 and 

STL-10, our method similarly outperforms other methods. The reason why our method 

outperforms other end-to-end subspace clustering methods is that we perform hard sam-

ple mining to obtain better cluster assignments. 

 

Table 3. Results of ablation experiments on two benchmark datasets. 

 

4.4 Ablation Study 

In this section, we conduct an ablation study to explore the impact of each loss term in 

the proposed method on the clustering performance, and we construct four degenerate 

models through the remaining loss terms. Since Descl  is an indispensable prerequisite for 

clustering, we remove only the sample weight modulation function H  in ikw . We con-

ducted ablation experiments on the CIFAR-10 and REUTERS-10K datasets. Table 3 

summarizes the experimental results of the ablation study. Firstly, the reconstruction 

loss can maintain data structure information, which is a necessary part of deep embed-

ded clustering. Secondly, the sample weight modulation function plays an important 

role to handle hard samples. Finally the constraints on the subspace bases further im-

prove the clustering performance. 

 CIFAR-10 REUTERS-10K 
ACC NMI ACC NMI 

𝑤/𝑜 ℓ 0.672 0.610 0.833 0.634 

𝑤/𝑜 ℓ𝑎𝑒 0.610 0.479 0.771 0.539 
𝑤/𝑜 ℓ𝐷𝑒𝑠𝑐 0.560 0.379 0.752 0.474 

𝑤/𝑜 ℓ𝑏𝑎𝑠𝑖𝑠 0.654 0.603 0.829 0.590 
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Fig. 3. 2D Visualization of the embedded representations using t-SNE on CIFAR-10 and REU-

TERS-10K. 

 
Fig. 4. Model sensitivity varies with the two hyperparameters λ1,λ2. The x-axis and y-axis denote 

λ1,λ2, from left to right z-axis are ACC,NMI,ARI. 

 
Fig. 5.  Parameter sensitivity of subspace dimension d of the proposed method on REUTERS-

10K and CIFAR-10. 
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Fig. 6.  Online clustering performance on two datasets. 

 

4.5 Qualitative Study 

The first row of  Fig. 3 shows the t-SNE visualization of the embedding representation 

learned from 10,000 images randomly sampled on the real-world dataset CIFAR-10. 

The second row of Fig. 3 shows the t-SNE visualization of the embedding representa-

tion of REUTERS-10K. We show the embedding representation at different stages, and 

it can be observed that similar samples are discriminatively assigned to a group during 

the training process, and the clustering results become increasingly clear. 

 

4.6 Parameter Sensitiveness Analysis 

We tested the sensitivity of the hyperparameters 1  and 2 in the method on Reuters-

10K. We search for 1  from  0.4,0.5,0.6,0.7,0.8,0.9   and 2  from  0,0.1,0.2,0.3,0.4,0.5 . The 

results from the grid search are shown in Fig. 4. We can observe that our method is not 

sensitive to the hyperparameter 1  and it is easy to set in real applications, we set 1 1 = . 

For 2 , the clustering accuracy first rises and then there is a slow decrease, so we set 

2  to 0.1. 

In addition, we also tested the effect of subspace dimension d  on clustering. We 

conducted experiments on Reuters-10K and CIFAR-10, respectively, and the results 

are shown in Fig. 5, which shows that the subspace dimensionality has an effect on 

clustering. For Reuters-10K, the best ACC and ARI are achieved at d =3. For CIFAR-

10, we achieve the best performance at d =4. Good performance can also be achieved 

when d =8, 9, but there will be a large expenses, so in this paper we set d =3 on Reu-

ters-10K, d =4 on CIFAR-10. 

 

4.7 Online Clustering 

In this section, we conducted online clustering experiments on CIFAR-10 and REU-

TERS-10K. Fig. 6 records the results of ACC, NMI, and ARI changes during the train-

ing process. We can observe that the REUTERS-10K results in a continuous steady 

increase before reaching convergence around the 80th round. While CIFAR-10 will 

show an increase and then a rapid decrease due to the randomness of the k-means algo-

rithm at the initialization, and then gradually increase to reach the convergence state 

during the training process. 
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5. Conclusion 

In this paper, we construct a deep embedded subspace clustering framework with hard 

sample mining. We construct subspace bases to obtain clustering assignments and com-

bine them with a sample weight modulation strategy to solve the hard sample problem 

of deeply embedded clustering. Experimental results are reported on four benchmark-

sized datasets to demonstrate the clustering performance and efficiency of our ap-

proach. 
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