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Abstract. Cardiovascular diseases (CVDs) are a major global health concern. 

Epicardial adipose tissue (EAT) has been identified as playing a significant role 

in the pathogenesis and progression of cardiovascular diseases. While deep learn-

ing-based methods have shown promising results in EAT segmentation, they pri-

marily treat EAT as a whole and do not consider the urgent clinical need for fine-

grained segmentation at different locations. In this work, we propose a position-

aware fine-grained EAT segmentation method that extends existing single-class 

coarse EAT segmentation to multi-class fine-grained segmentation of RV-, LV-, 

and PA-EAT. Our method utilizes a two-branch architecture, where one branch 

specializes in segmentation and the other focuses on precisely positioning cen-

troids of various EATs, thereby enhancing model performance for EAT localiza-

tion and boosting segmentation accuracy. By leveraging prior knowledge of spa-

tial distributions of different tissues, our method demonstrates favorable perfor-

mance on a challenging self-collected dataset and a public dataset. The proposed 

method has the potential to aid in the automatic fine-grained segmentation of 

EAT, enabling more detailed clinical diagnostic needs. 

Keywords: Epicardial adipose tissue (EAT), segmentation, multi-class, posi-

tion regularization. 

1 Introduction 

Cardiovascular diseases (CVDs) are a foremost global health concern, ranking the lead-

ing causes of mortality worldwide [1]. In China, CVD is estimated to affect approxi-

mately 330 million individuals, accounting for 46.74% of all deaths in rural areas and 

44.26% in urban areas [2]. Such a factor not only imposes substantial economic bur-

dens, but also places immense pressure on the nation’s healthcare infrastructure. Epi-

cardial adipose tissue (EAT) (depicted in Fig. 1(a)) is a unique fat depot situated be-

tween the myocardium and the visceral layer of the pericardium, which holds multiple 

implications in cardiology research and clinical practice [3]. Firstly, EAT is believed to 

play a significant role in the pathogenesis and progression of cardiovascular diseases 

such as coronary artery disease, atrial fibrillation, and heart failure [4]. Secondly, the 

volume, thickness and density of EAT have been correlated independently with several 
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cardiovascular events [4-6]. Hence, quantitative analysis of EAT holds crucial clinical 

value. Notably, EAT is not randomly distributed around the cardiac region [4]. Studies  

including [7, 8] suggest that the thickness of EAT around the atrium is an independent 

correlate of atrial fibrillation burden, and increased left atrial EAT tissue may be asso-

ciated with the onset and maintenance of atrial fibrillation [7]. Aliya et al. [8] further 

conducted a quantitative analysis of right ventricular EAT (RV-EAT), left ventricular 

EAT (LV-EAT), and peri-atrial EAT (PA-EAT) using CT imaging. They confirmed 

higher EAT content in both the RV- and LV-EAT among patients with arrhythmogenic 

right ventricular dysplasia (ARVD)/cardiomyopathy, indicating a correlation between 

increased EAT content and disease severity, particularly noticeable in LV-EAT. There-

fore, quantitative analysis of EAT in different cardiac regions aids in assessing the risk 

of related cardiovascular diseases. 

 

Fig. 1. (a) Anatomical diagram of Epicardial Adipose Tissue (EAT). (b) Existing EAT segmen-

tation solution that treating EAT as a whole (in 2D and 3D view). (c) Our fine-grained EAT 

segmentation strategy that categories EAT into LV-, RV-, PA-EAT, which holds greater clini-

cal significance. The original cardiac CT image for segmenting is located at the bottom left. 

(Best viewed in Color) 

Automatic semantic segmentation is a crucial prerequisite for quantifying EAT. 

However, existing solutions treat EAT as a whole (Fig. 1(b)), failing to take into ac-

count the crucial clinical requirement for fine-grained segmentation and quantification 

of different EATs. According to its anatomical distribution and corresponding clinical 

significance, we categorize EAT into RV-, LV-, and PA-EAT, and attempt to perform 

fine-grained segmentation on EAT, as illustrated in Fig. 1(c). In contrast to other organ 

segmentation tasks, fine-grained segmentation of EAT poses greater challenges due to 

the following factors. (1) Class imbalance. Considering EAT is a very thin tissue, in 

cardiac CT images, the volume fraction of EAT is very low. For example, LV-EAT in 
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Fig. 1(c) accounts for only 0.29% of the overall image. Such extreme imbalance be-

tween foreground and background classes poses a greater challenge to segmentation 

models. (2) Complex tissue structure. As illustrated in Fig. 1(b, c), the distribution of 

EAT is irregular, with indistinct shape features and low differentiation from surround-

ing tissues, which reduces the accuracy and stability of segmentation. 

For the task of EAT segmentation, there exist various methods including non-learn-

ing-based traditional methods, traditional machine learning-based methods, and deep 

learning-based methods. Non-learning-based traditional methods typically require 

hand-craft complex features and human intervention, while with suboptimal perfor-

mance. For example, Coppini et al. [9] proposed a method that requires expert inter-

vention to pinpoint the pericardium region of interest, then extract the approximate edge 

of EAT by combining thresholding and active contour model. Machine learning ap-

proaches, on the other hand, can extract the intrinsic features within images and boost 

their performance. For example, Rodrigues et al. [10] employed thresholding and map 

atlas initialization for image segmentation, then using features such as image centroid 

to train a random forest classifier for EAT segmentation. However, these methods suf-

fer from limited model robustness and accuracy due to the need for handcrafted com-

plex features. In contrast, deep learning-based methods have shown remarkable perfor-

mance in EAT segmentation task, largely attributed to their powerful learning capacity. 

Commandeur et al. [11] proposed a multi-task two-stage segmentation model using 

CNNs to accomplish slice classification, pericardium segmentation, and EAT segmen-

tation from chest CT images. They predicted EAT probability distribution in Cartesian 

and cylindrical coordinates, achieving automated EAT segmentation. Their multi-cen-

ter validation achieved segmentation accuracy similar to human experts [12]. Other re-

searchers attempted to modify U-Net model [13] to enhance its performance for EAT 

segmentation tasks [14-16]. However, current deep learning-based methods primarily 

treat EAT as a whole, failing to take into account the practical clinical necessities for 

fine-grained segmentation of EAT at different locations, e.g., RV-, LV-, PA-EAT. 

In this paper, we integrate prior knowledge about the spatial distribution of different 

EATs into the segmentation model, proposing a centroid positioning branch. This 

branch can be easily embedded into existing segmentation frameworks, assisting the 

model in better localizing and perform fine-grained segmentation on different EATs. 

Evaluation on a challenging self-collected dataset and a public dataset demonstrated 

favorable performance. Our main contributions are three-fold: (1) We extend existing 

methods from single-class coarse EAT segmentation to multi-class fine-grained seg-

mentation of RV-, LV-, and PA-EAT, catering to more detailed clinical diagnostic 

needs; (2) We propose a position-aware fine-grained EAT segmentation method that 

harnesses the prior knowledge of spatial distributions of different EAT as an additional 

regularization term. Such design enables the model to effectively learn and discern the 

relative positions of different EAT regions, thereby enhancing segmentation accuracy; 

(3) Our method, combined with the segmentation backbone network, achieved superior 

performance on a challenging self-collected EAT dataset and a public ACDC dataset. 
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2 Method 

In this section, we first provide the method overview in Sec. 2.1, followed by the intro-

duction of the proposed centroid positioning branch in Sec. 2.2, and finally present the 

training and inference processes in Sec. 2.3. 

 

Fig. 2. The overall framework of our model, which adopts a two-branch architecture. The top 

branch is adopted for the segmentation task and the other branch is used for the centroid posi-

tioning task. 

2.1 Method Overview 

We illustrate the overall framework of our model in Fig. 2, which consists of two inte-

gral components: (1) The segmentation branch (on the upper half of Fig. 2) follows the 

conventional segmentation strategy and gives fine-grained segmentation of EAT into 

RV-, LV-, and PA-EAT. (2) The centroid positioning branch (on the lower half of Fig. 

2) which predicts the centroid heatmap (C-map) of RV-, LV-, and PA-EAT. In this 

way, the centroid positioning branch serves as an additional regularization term, 

thereby enhancing the model’s capacity to localize different EAT regions accurately. 

We denote our dataset as 𝐷 =   { 𝑥𝑖 , 𝑦𝑖   }𝑖=1
𝑁 where 𝑥𝑖 and 𝑦𝑖  denote the 𝑖-th image and 

corresponding segmentation mask. The centroid heatmap (C-map) for RV-, LV-, and 

PA-EAT is denoted as 𝐻 = {ℎ𝑖̃, ℎ𝑖}
𝑖=1

𝑁
, where ℎ𝑖̃ denotes the 𝑖-th heatmap prediction, 

and ℎ𝑖 is the corresponding ground truth. The segmentation branch adopts an encoder-

decoder structure as the backbone (such as U-Net, ResU-Net, etc.), and outputs seg-

mentation maps. The output feature of the encoder, denoted as 𝑓, is also fed into the 

decoder of the centroid positioning branch, ultimately producing C-map prediction ℎ𝑖̃. 

Below, we elaborate on the details of the centroid positioning branch in Sec. 2.2. 



 Automatic Epicardial Adipose Tissue Segmentation with Position Regularization 5 

2.2 Centroid Positioning Branch 

To incorporate prior knowledge of the relative position among different EATs into the 

model, we introduce a centroid positioning branch. This branch shares the same encoder 

with the segmentation branch and concurrently predicts the centroids heatmap (C-map) 

for RV-, LV-, PA-EAT using a standalone decoder that has a similar structure to the 

segmentation branch. Specifically, the centroid coordinates for a certain class are de-

rived from the segmentation branch by calculating the average of all pixel locations 

within the predicted class. After obtaining the centroid coordinates for RV-, LV-, and 

PA-EAT, we generate the Gaussian heatmap for each class, which goes as: 

 H(𝑥, 𝑦) =
1

2πσ2 𝑒
−

(𝑥−𝑥0)2+(𝑦−𝑦0)2

2σ2  (1) 

where (𝑥0, 𝑦0) is the centroid coordinates for a certain class. We set σ = 5 to em-

ploy a Gaussian kernel with a standard deviation of 5 on the centroid coordinates. Then 

we formulate the C-map as the concatenation of all Gaussian heatmaps of different 

EATs, which is calculated as: 

 HC−map =  concat(HRV, HLV, HPA) (2) 

where 𝑐𝑜𝑛𝑐𝑎𝑡  is the concatenate operation, while 𝐻𝑅𝑉 , 𝐻𝐿𝑉 , 𝐻𝑃𝐴  is the generated 

Gaussian heatmap for RV-, LV-, and PA-EAT's centroid, respectively. 

2.3 Training and Inference.  

Training procedure. For the loss function of the segmentation branch (ℒ𝓈ℯℊ), we 

adopt DiceCE loss (ℒ𝒟𝒞ℰ), which goes as: 

 ℒ𝓈ℯℊ = ℒ𝒟𝒞ℰ = ℒ𝒟𝒾𝒸ℯ + ℒ𝒞ℰ (3) 

Specifically, ℒ𝒟𝒾𝒸ℯ = − ∑ (1 − 2 ⋅
𝑡𝑖𝑝𝑖

𝑡𝑖+𝑝𝑖
)𝑛

𝑖=1  and ℒ𝒞ℰ = − ∑ 𝑡𝑖
𝑛
𝑖=1 log(𝑝𝑖) , where 𝑡𝑖 

is the ground truth label, and 𝑝𝑖  is the predicted probability for the 𝑖-th class.For the 

loss function of the centroid positioning branch (ℒ𝓅ℴ𝓈 ), we adopt BCE loss (ℒℬ𝒞ℰ ) 

which serves to measure the difference between predicted heatmaps ℎ̃𝑖 and ground truth 

ℎ𝑖. The formulation is given as follows: 

 ℒ𝓅ℴ𝓈 = ℒℬ𝒞ℰ(ℎ̃𝑖  , ℎ𝑖) = −(ℎ̃𝑖 logℎ𝑖
ℎ𝑖 + (1 − ℎ̃𝑖 ) log(1−ℎ𝑖) ℎ𝑖) (4) 

 During training, the total loss (ℒttl) of our network is formulated as: 

 ℒ𝓉ℴ𝓉𝒶ℓ = λ1ℒ𝓈ℯℊ
+ λ2ℒ𝓅ℴ𝓈

 (5) 

We empirically set weights λ1 = λ2 = 0.5. 

Inference procedure. Given a test CT image 𝑥𝑖, we directly obtain the fine-grained 

EAT segmentation prediction 𝑦𝑖̃ through the segmentation branch. 
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Table 1. Comparison of experimental results for various segmentation models with/without the 

proposed position-aware fine-grained EAT segmentation method on the EAT dataset. 

Model DSC(↑) Jaccard(↑) 95HD(↓) ASD(↓)  BIoU(↑) 

U-Net[13] 

+ Ours 

62.23 

63.34 

25.49 

26.02 

20.72 

15.74 

3.11 

3.50 

12.49 

13.06 

SegNet [17] 67.67 29.76 13.66 1.72 14.13 

+ Ours 68.23 31.11 12.22 1.72 14.70 

ResUNet[18] 

+ Ours 

65.21 

68.25 

27.85 

30.82 

17.68 

12.38 

2.72 

1.97 

13.61 

15.50 

PSPNet [19] 70.01 34.01 9.55 1.86 15.53 

+ Ours 71.63 34.78 9.10 1.66 16.57 

Swin-UNet [25] 67.40 37.19 7.92 1.74 17.74 

+Ours 69.25 37.56 7.92 1.60 17.94 

MedT [24] 65.46 35.41 10.08 1.71 16.67 

+Ours 66.72 34.28 10.45 1.70 16.38 

Li et al. [20] 71.28 35.65 9.33 1.73 17.27 

+ Ours 72.74 35.68 8.72 1.53 17.54 

Commandeur et al. [12] 69.50 32.10 10.46 1.71 14.46 

+Ours 70.88 32.49 10.08 1.64 14.82 

Hoori et al. [21] 64.07 27.05 16.15 3.41 13.52 

+ Ours 64.86 27.91 14.45 3.23 14.02 

Zhao et al. [22] 63.26 25.35 16.78 3.16 12.74 

+Ours 64.86 27.06 15.68 3.10 13.82 

 

3 Experiments and Results 

3.1 Materials and Evaluation Metrics 

Dataset description. In this study, a self-collected EAT dataset and a public ACDC 

dataset [26] were adopted for model learning and evaluation. The EAT dataset contains 

97 cardiac CT cases with RV-, LV-, and PA-EAT manually annotated and validated by 

three professionals who are either experienced physicians or medical Ph.D. students 

with over three years of tenure. All these cases were obtained from The First Affiliated 

Hospital of Fujian Medical University. The acquired data is fully anonymized and has 

been approved by the corresponding ethics committee (No: MRCTA, ECFAH of FMU 

[2021]072). All the CT images were scanned by a GE 256-row Revolution CT machine. 

The data is gathered and annotated in the axial view, with an average of 67 slices per 

case, totaling 6,575 slices. The spacing between slices is either 2.5𝑚𝑚 or 3𝑚𝑚, and 

the resolution is 512*512 pixels. The ACDC dataset is a short-axis MR-cine dataset 

containing MR images of 100 patients. All the short-axis slices are with a slice thick-

ness of 5 to 8 mm, and the resolution goes from 0.83 to 1.75 𝑚𝑚2/pixel. Each image is 
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labelled with the left ventricle(LV), myocardium(Myo) and right ventricle(RV) of that 

patient.  

Table 2. Comparison of experimental results for various segmentation models with/without the 

proposed centroid positioning branch on the ACDC dataset.  

Model DSC(↑) Jaccard(↑) 95HD(↓) ASD(↓)  BIoU(↑) 

U-Net[13] 

+ Ours 

90.24 

91.67 

82.97 

84.94 

2.24 

1.67 

0.68 

0.29 

76.73 

79.05 

SegNet [17] 90.31 82.75 1.21 0.40 76.12 

+ Ours 91.05 83.95 1.18 0.36 76.75 

Res-UNet[18] 

+ Ours 

91.48 

91.87 

84.68 

85.33 

1.50 

1.30 

0.33 

0.46 

79.19 

79.89 

PSPNet [19] 88.43 79.81 1.30 0.38 73.06 

+ Ours 88.54 79.85 1.97 0.51 73.45 

Swin-UNet [25] 88.20 79.45 2.61 0.83 71.64 

+Ours 88.93 80.50 1.48 0.46 72.09 

MedT [24] 88.57 80.18 1.94 0.58 72.55 

+Ours 89.61 80.50 1.30 0.43 73.23 

 

Evaluation metrics. To demonstrate the effectiveness of our model, we conduct the 

five-fold cross-validation on EAT dataset, where 77 cases were utilized for training 

purposes, leaving the remaining 20 cases for testing. For the ACDC dataset, we use 70 

cases for training, 10 cases for validation and 20 cases for testing. We adopt two types 

of evaluation metrics. One is from the perspective of region overlap, including Dice 

Similarity Coefficient (Dice) and Jaccard Index (Jaccard). The other is from the per-

spective of boundary similarity, including 95% Hausdorff Distance (95HD), Average 

Surface Distance (ASD), and Boundary Intersection-over-Union (BIoU). 

3.2 Implementation Details 

We implement our model using PyTorch [23] 1.13 on a machine with two NVIDIA 

RTX A4000, each with 16GB GPU memory. The images of both datasets were uni-

formly resized to 256 ∗ 256, and then normalized to zero mean and unit variance for 

better convergence. Random flipping with ratio of 0.5 is performed for data augmenta-

tion. We utilized the Adam optimizer with a learning rate of 1𝑒 − 4 and a weight decay 

factor of 1𝑒 − 5. For the EAT dataset, we set the training epoch and batch size to 40 

and 8, respectively. For the ACDC dataset, training employed 40 epochs with a batch 

size of 12. 



8  Q.Yuan et al. 

 

 

 

Fig. 3. Qualitative results of different backbone segmentation models with/without the proposed 

centroid positioning branch on the EAT dataset. 

3.3 Comparative Experiments 

We evaluate the proposed model on the EAT dataset, comparing it with both classical 

medical image segmentation models including: (1) U-Net [13], (2) SegNet [17], (3) 

Res-UNet [18], (4) PSPNet [19], (5) Swin-UNet [25], (6) MedT [24]; And the existing 

promising EAT segmentation models including: (5) Li et al. [20]: A new lightweight 

U-shaped segmentation model utilizing residual multi-scale dilated convolution blocks. 

(6) Hoori et al. [21]: A novel bisect technique, dividing the heart into upper and lower 

halves, adjusts the image input sequence to enhance the model’s comprehension. (7) 

Commandeur et al. [12]: A multi-task model that includes slice classification and 
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segmentation tasks, enhancing the performance of the model. (8) Zhao et al. [22]: A 

modified 2D Dense U-Net specifically designed for EAT segmentation. 

Fig. 4. Qualitative results of classic medical segmentation model with/without the pro-

posed centroid positioning branch on the ACDC dataset. 

Quantitative results. The quantitative comparing results are summarized in Table 1 

and Tabel 2. From these tables, we have the following observations. (1) Our model can 

help classical segmentation models achieve promising improvement across different 

metrics. As illustrated by the second to the fifth rows of Table 1, after integrating our 

model, all comparing classical segmentation models achieve improvements across most 

metrics. For example, after integrating our model, the DSC (↑), Jaccard (↑), and BIoU 

(↑) of Res-UNet have each improved by 3.04%, 2.97% and 1.89%, respectively. While 

the 95HD (↓) and ASD (↓) have decreased by 5.3 and 0.75 voxels, respectively. Table 

2 demonstrates the effectiveness of our model on the ACDC dataset. Our model on the 

UNet improved the segmentation performance by 1.43%, 1.97% and 2.32% in terms of 

DSC (↑), Jaccard (↑) and BIoU (↑); (2) The existing EAT segmentation methods, after 

being integrated with our model, demonstrate consistent enhancements across different 

metrics. Considering the existing EAT segmentation models, our model can also aid in 

segmenting different EATs. For example, compared with the original model proposed 

by Zhao et al. [22], after introducing our model, the DSC (↑), Jaccard (↑), and BIoU (↑) 

have each improved by 1.6%, 1.71% and 1.08%, respectively. While the 95HD (↓) have 

decreased by 1.1 voxel. 
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Qualitative results.  Fig. 3 illustrates the qualitative results of different backbone seg-

mentation models on the EAT dataset with/without the proposed centroid positioning 

branch. The results demonstrate that segmentation models with the centroid positioning 

branch yield enhanced segmentation results, especially in terms of improved differen-

tiation between various adjacent types of EAT.  As shown in the first two rows of Fig. 

3, the segmentation results using only backbone segmentation show large category pre-

diction errors, and the model distinguishes categories more accurately with the inclu-

sion of the centroid positioning branch. Fig. 4 shows the segmentation results of our 

model on ACDC dataset. The segmentation results likewise confirm the effectiveness 

of our model. The myocardium appears in the lower left corner of the U-Net plot in the 

first row of Fig. 4 with a large positional offset. With the addition of centroid position-

ing branch network, the positional accuracy of all types of location is improved while 

the segmentation accuracy is enhanced. 

4 Conclusion 

In this paper, we propose a position-aware fine-grained EAT segmentation method that 

harnesses the prior knowledge of the spatial distribution of different EATs as an addi-

tional regularization. Our method extends existing solutions from single-class coarse 

EAT segmentation to multi-class fine-grained segmentation of RV-, LV-, PA-EAT, ca-

tering to more detailed clinical diagnostic needs. Our model can be easily integrated 

into existing segmentation backbones, and achieve favorable performance on a chal-

lenging self-collected EAT dataset and a public ACDC dataset. We believe that our 

work can contribute to the development of more accurate and efficient EAT segmenta-

tion methods, ultimately improving the diagnosis and treatment of cardiovascular dis-

eases. 
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