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Abstract. Low-light image enhancement aims to improve the perception of im-

ages captured under low-light conditions. Many previous unsupervised methods 

rely solely on information from a single image and multiple priors for enhance-

ment. However, the information within a single image is limited, and designing 

suitable priors could be challenging. Although some existing methods have ad-

dressed this using paired low-light images, obtaining such images is also intri-

cate. To tackle this problem, we first generate paired low-light images with con-

sistent content, noise independence, and slightly different illumination from a 

single low-light image. Second, we propose an unsupervised low-light enhance-

ment network based on the paired images. Leveraging consistent image content, 

we establish mutual constraints between the two images to achieve identical en-

hancement results. To accomplish this, the Retinex theory is employed to decom-

pose the images into illumination and reflectance components, ensuring con-

sistency in the reflectance components of the two images, which facilitates the 

preservation of image content and avoids artifacts and color deviations. Moreo-

ver, as the images exhibit independent noise, we adopt the Noise2Noise for noise 

removal, ensuring comprehensive denoising without affecting image details, 

which further improves the quality of the enhanced images. Extensive experi-

ments demonstrate that our approach has superior denoising capability while en-

suring enhancement performance, and achieves results comparable to state-of-

the-art methods. 

Keywords: Low-light Image Enhancement, Unsupervised, Generated Low-

light Image Pairs, Retinex Theory, Noise2Noise. 

1 Introduction 

When capturing photos in low-light conditions, the resulting images typically exhibit 

poor quality due to environmental and equipment limitations. These images usually 

exhibit low contrast and severe noise, potentially affecting the performance of subse-

quent visual tasks. Low-light image enhancement is demanded to improve the visual 

quality of the images and the accuracy of subsequent tasks. 

Among existing low-light enhancement methods, supervised methods utilize paired 

low-light and normal-light images, yet collecting such paired images is challenging. To 

eliminate the problem, unsupervised learning methods are proposed, and many 
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unsupervised methods [3, 12, 32, 33] learn enhancement from only a single image, re-

lying on handcrafted priors. However, the information contained in a single image is 

limited, and the handcrafted priors are difficult to set. To solve this problem, PairLIE 

[2] utilizes paired low-light images and fewer handcrafted priors. This method does not 

require any normal-light reference image but requires multiple low-light images of the 

same scene. However, it is also difficult to obtain such images in reality, especially for 

moving scenes. 

 

   
   

   

Fig. 1. The restoration results of our method, with the low-light images input above and the en-

hanced images below. 

To tackle the challenges of insufficient information within a single image and the 

difficulty in designing suitable priors, along with the difficulty in obtaining paired low-

light images in unsupervised learning methods. We propose a novel low-light enhance-

ment method based on unsupervised learning, which does not require a special collec-

tion of datasets. It uses a single low-light image to generate a pair of images with con-

sistent content, independent noise, and slightly different illumination. This allows us to 

use consistent reflectance and Noise2Noise [9], which well makes up for the shortcom-

ings of relying on many handcrafted priors. 

We first generate paired low-light images by downsampling the original image to 

create two sub-images with consistent content and independent noise. We then apply a 

linear transformation to one image, varying coefficient values from 1 to 1.5, introducing 

a slight difference in illumination components between the sub-images. Second, based 

on the paired images, we propose an unsupervised low-light enhancement network ar-

chitecture. Considering the consistent contents of the two images, we constrain them to 

each other and maintain the intrinsic properties of the objects in the images during the 

enhancement process, which avoids issues like color deviations and artifacts often en-

countered in single-image enhancement methods. To achieve this, we apply Retinex 

theory, decomposing the images into illumination and reflectance components. The de-

composed illumination represents brightness levels, whereas the reflectance embodies 

the intrinsic properties of the objects. Thus, the reflectance in both images should align. 

We utilized reflectance consistency to constrain the reflectance components of the two 

images, facilitating the restoration of object properties in the images. Moreover, low-

light images often contain noise due to a low signal-to-noise ratio. Previous unsuper-

vised methods, lacking reference images, mainly rely on TV Loss for denoising and 
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frequently lead to incomplete noise reduction or excessive smoothing, resulting in the 

loss of fine details. Considering the independence of noise in the two images, we em-

ploy the Noise2Noise [9] for noise removal, which efficiently reduces noise while pre-

serving original details, consequently further enhancing the image quality. Fig. 1 shows 

that our method can effectively improve contrast, restore details and remove noise. 

Our contributions are summarized as follows: 

– We generate a pair of images with consistent content, independent noise, and 

slightly different illumination from a single low-light image, which not only retains the 

original image information but also meets the training requirements. 

– To ensure that the image content does not migrate during the enhancement pro-

cess, we use the Retinex theory to decompose the generated image and maintain the 

reflectance consistent. 

– To reduce noise in low-light images, we take advantage of the independent noise 

characteristics of the images and utilize Noise2Noise. 

2 Related Work 

2.1 Low-light image enhancement 

Low-light image enhancement is an area of great interest, and a variety of solutions 

have emerged. Next, we will introduce related research from two aspects: traditional 

methods [5, 6, 11, 19–21] and deep learning-based methods [2, 3, 8, 12–16, 23, 25, 30–

33]. 

Traditional methods include histogram equalization methods [19, 20], which achieve 

the purpose of image enhancement by stretching the dynamic range of the image to 0-

255, and methods based on Retinex theory [5, 6, 11, 21], which decomposes the original 

low-light image into illumination and reflectance. Generally, the reflectance is directly 

used as the result of enhancement.  

Deep learning-based methods mainly include methods based on supervised learning 

[13–15,23,25,30,31] and methods based on unsupervised learning [2,3,8, 12, 16, 32, 

33].  

Supervised learning-based methods have strong learning capabilities, but require 

paired low-light and normal-light images and have poor generalization capabilities. 

LLNet [13] is the first deep learning-based low-light enhancement method. MBLLEN 

[15] is an end-to-end multi-branch enhancement network that implements enhancement 

through feature extraction, enhancement, and fusion modules. TBEFN [14] is a multi-

ple-exposure fusion network. Retinex-Net [23] includes decomposition and enhance-

ment modules for decomposing images and adjusting illumination. KinD [31] is com-

posed of three sub-networks for decomposition, reflectance recovery, and illumination 

adjustment. The improved KinD is called KinD++ [30]. URetinex-Net [25] uses a reti-

nex-based deep unfolding network to improve adaptability. 

Unsupervised learning methods do not require paired low-light and normal-light im-

ages. EnlightenGAN [8] uses U-Net and global-local discriminator to ensure the en-

hancement results are realistic. RRDNet [33] decomposes the input image into 
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illumination, reflectance, and noise and designs specialized denoising losses. Reti-

nexDIP [32] uses random noise to generate illumination and reflectance components. 

Zero-DCE [3] is a deep curve estimation network that utilizes high-order curves to per-

form pixel-level adjustments to dynamic range. RUAS [12] is a Retinex-inspired un-

rolling method that uses cooperative architecture search to discover prior architectures 

of basic blocks. SCI [16] is a self-calibrating illumination learning framework. PairLIE 

[2] uses pairs of low-light images and denoising before decomposition. Our network 

has a similar idea to PairLIE. The difference is that it does not require a paired dataset. 

Also, PairLIE uses single-image for denoising, but we use paired downsampling images 

for denoising. 

 

2.2 Image denoising 

Image denoising is also a hot issue. Traditional denoising algorithms like BM3D [1] 

and Anscombe [17] are generally designed for specific types of noise. Recently, deep 

learning-based denoising methods are becoming more and more popular. Supervised 

learning-based methods [4, 24, 27, 28] utilize noisy-clean image pairs for training. 

However, acquiring the datasets is challenging. Self-supervised learning-based meth-

ods do not require paired noisy-clean images. A typical method is Noise2Noise [9], 

which uses two noisy images of the same scene to restrict each other. The model can 

achieve the same effect as supervised learning when the amount of data is sufficient, 

but it is also very difficult to collect paired noise images in the same scene. Noise2Fast 

[10], Neighbor2Neighbor [7], and Zero-Shot Noise2Noise [18] are improved versions 

of Noise-2-Noise, which do not require paired images. These methods downsample two 

images as noise-noise pairs from a single original image. We follow the idea in Zero-

Shot Noise2Noise [18] for noise removal. 

3 Method 

In this section, we will introduce the generation of low-light image pairs, network 

architecture, and loss functions. 

 

3.1 Generation of low-light image pairs 

We introduce a downsampler to generate low-light image pairs from a single low-light 

image for training. As depicted in Fig. 2, the original low-light image I  of size 

 [H,  W,  C]is convolved independently with two different convolution kernels: 

 

𝑘1  = [
0.5 0
0 0.5

] , (1) 

and 

𝑘2  = [
0 0.5

0.5 0
] . (2) 
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This process results in generating two downsampled images, each with dimensions 

[H/2, W/2, C]. Since adjacent pixel values have similar content but independent noise, 

the two images have the same content but independent noise [18]. To facilitate subse-

quent Retinex decomposition, we introduce a slight difference in illumination between 

the two images, specifically, we use linear transformation to slightly enhance one of 

the images: 

𝐼2 = α ⋅ 𝐼2
𝑡𝑚𝑝

,  αϵ[1,1.5], (3) 

where 𝛼 is the transformation coefficient, ranging from 1 to 1.5. As shown in Fig. 2, 

the enhancement is slight and will not cause color deviations. 

 

Fig. 2. An overview of the generation of low-light image pairs. First, the original image is 

downsampled to obtain two sub-images with consistent content and independent noise, and 

then a slight linear transformation is performed on one of them. 

3.2 Network structure 

We use the paired images generated in the previous part with independent noise, con-

sistent content, and slightly different illumination to complete the training of the en-

hancement model. In this way, we can not only take advantage of its consistent reflec-

tance characteristics, but also facilitate self-supervised denoising, and it removes noise 

well while enhancing. 

Considering that the illumination component is generally smooth and noise often 

exists in the reflectance component, we use: 

𝐼 = 𝐿⨀(𝑅  + 𝑁), (4) 

𝐼1 = 𝐿1⨀(𝑅1  + 𝑁1), (5) 

𝐼2 = 𝐿2⨀(𝑅2  + 𝑁2), (6) 
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where represents pixel-wise multiplication, 𝐼, 𝐼1 , and 𝐼2  are input image and its two 

sub-images, 𝐿, 𝐿1, and 𝐿2 represent illumination components, R, 𝑅1, and 𝑅2 represent 

reflectance components, 𝑁, 𝑁1, and 𝑁2represent noise. 

 As illustrated in Fig. 3, In the training stage, 𝐼, 𝐼1, and 𝐼2 are first input to the illumi-

nation network L−Net and the reflectance network R−Net respectively for decomposi-

tion, and get the smooth Illumination components 𝐿, 𝐿1, and 𝐿2 and noisy reflectance 

components 𝑅𝑛, 𝑅1
𝑛, and 𝑅2

𝑛. L−Net and R−Net are both CNNs with five convolutional 

layers. Each layer consists of several convolution kernels with size 3×3 and stride 1, 

followed by ReLU activation function. After the last convolutional layer is the Sigmoid 

activation function. The difference is that the output result of  L− Net is a single-channel 

illumination map, while the output result of R−Net is a three-channel reflectance map. 

 

Fig. 3. The proposed framework involves a training phase and a testing phase. In the training 

phase, the original image and its two sub-images are decomposed by L-Net and R-Net to obtain 

illumination and noisy reflectance. The decomposition process is constrained using the illumi-

nation loss LossL, reconstruction loss 𝐿𝑜𝑠𝑠𝐿, and reflectance consistency loss 𝐿𝑜𝑠𝑠𝐶 . N-Net 

estimates the noise in the noisy reflectance and uses noise loss 𝐿𝑜𝑠𝑠𝑁 to constrain the noise es-

timation process. In the testing phase, a low-light image is input, and L-Net is used to obtain 

the illumination. R-Net and N-Net are used to obtain the denoised reflectance. The final result 

is obtained by multiplying the denoised reflectance and the illumination enhanced by gamma 

transformation. 

 The noise within the noisy reflectance components is estimated by inputting them 

into the N−Net for noise assessment, which generates 𝑁, 𝑁1, and 𝑁2. Subtracting this 

noise from the noisy reflectance components 𝑅𝑛, 𝑅1
𝑛, and 𝑅2

𝑛 results in the clean reflec-

tance components R, 𝑅1, and 𝑅2. N−Net is a CNN with five convolutional layers. Each 

layer consists of several convolution kernels with size 3 × 3 and stride 1, followed by 

ReLU activation function. The last convolutional layer is followed by the Tanh activa-

tion function. 



 Unsupervised LIE with Generated Low-light Image Pairs 7 

 In the testing phase, a low-light image I is input, and after L−Net, a smooth illumi-

nation L is obtained. After R−Net and N−Net, a clean reflectance R after denoising is 

finally obtained, then perform gamma transformation on the illumination L to obtain 

enhanced illumination 𝐿̂: 

L̂  =  Lγ, (7) 

where 𝛾 represents the illumination correction factor. 

 

The results of image decomposition, denoising, and enhancement are shown in Fig. 4. 

It can be seen that it can denoise well while ensuring enhancement. 

     
(a) Input (b) Illumination (c) Noisy reflectance (d) Reflectance (e) Result 

Fig. 4. An example of our decomposition, denoising, and enhancement. Please zoom in for de-

tails. 

3.3 Loss Function 

Illumination loss We constrain the illumination map by illumination loss, which con-

sists of illumination consistency loss and illumination smoothness loss: 

𝐿𝑜𝑠𝑠𝐿(𝐿) = 𝜆1||𝐿 − 𝐿0||
2

+Δ(𝐿), (8) 

where λ1 denotes the weight, 𝐿0 represents the initial illumination of  𝐼, Δ(L) repre-

sents the gradient operation of  𝐿. 𝐿0 usually takes the maximum value of the three 

channels of  𝐼 : 

𝐿0(𝑥) = 𝑚𝑎𝑥
𝑐∈{𝑅,𝐺,𝐵}

 𝐼𝑐 (𝑥), (9) 

where 𝑥 represents each pixel, 𝑐 represents the channel. 

Reconstruction loss The input image 𝐼 is decomposed into smooth illumination and 

noisy reflectance. The original image is reconstructed by multiplying the two. In addi-

tion, image reconstruction can also be considered from the perspective of reflectance 

reconstruction. The aim is to make the noisy reflectance consistent with the input image 

divided by the smooth illumination: 

𝐿𝑜𝑠𝑠𝑅(𝐼,  𝐿 , 𝑅𝑛) = ‖𝐼 − 𝐿⨀𝑅𝑛‖2 + ‖𝑅𝑛 −
𝐼

𝑠𝑡𝑜𝑝𝑔𝑟𝑎𝑑(𝐿)
‖

2

. (10) 

When constraining reflectance, the illumination is fixed and reverse propagation is 

stopped to ensure stable training. 

Reflectance consistency loss We generate low-light paired images with consistent con-

tent and slightly different illumination. We use the reflectance components of the two 

low-light images to refer to each other and introduce a reflectance consistency loss: 

𝐿𝑜𝑠𝑠𝐶(𝑅1
𝑛 , 𝑅2

𝑛) = ||𝑅1
𝑛 − 𝑅2

𝑛||
2

. (11) 

Noise loss The images we generate are content-consistent and noise-independent, one 

image approximates another by subtracting estimated noise from noisy reflectance to 

achieve the purpose of denoising. To make full use of the image, a symmetric loss is 

used: 
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𝐿𝑜𝑠𝑠𝑁_𝑠𝑦𝑚(𝑅1
𝑛, 𝑁1, 𝑅2

𝑛 , 𝑁2) = ‖(𝑅1
𝑛 − 𝑁1) − 𝑅2

𝑛‖2 + ‖(𝑅2
𝑛 − 𝑁2) − 𝑅1

𝑛‖2. (12) 

To better ensure consistency, we fully utilize the image pre-sampling by directly input-

ting it into the network. Subsequently, we ensure consistency between the results ob-

tained by sampling first and then decomposing, denoising, or decomposing, denoising 

first and then sampling, by using a consistency loss: 

𝐿𝑜𝑠𝑠𝑁_𝑐𝑜𝑛(𝑅𝑛 , 𝑁, 𝑅1
𝑛 , 𝑁1, 𝑅2

𝑛, 𝑁2) 

= ‖𝐷1(𝑅𝑛 − 𝑁) − (𝑅1
𝑛 − 𝑁1)‖2 + ‖𝐷2(𝑅𝑛 − 𝑁) − 𝑅2

𝑛 − 𝑁2‖2, (13) 

among them, 𝐷1(𝑅𝑛 − 𝑁) and 𝐷2(𝑅𝑛 − 𝑁) represent the reflectance of two sub-im-

ages obtained by downsampling the denoised reflectance of the original input image. 

The noise loss consists of 𝐿𝑜𝑠𝑠𝑁_𝑠𝑦𝑚 and 𝐿𝑜𝑠𝑠𝑁_𝑐𝑜𝑛: 

𝐿𝑜𝑠𝑠𝑁 = 𝐿𝑜𝑠𝑠𝑁_𝑠𝑦𝑚 + 𝐿𝑜𝑠𝑠𝑁_𝑐𝑜𝑛 . (14) 

Total loss The total loss is a combination of each loss: 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = λ2𝐿𝑜𝑠𝑠𝐿   + λ3𝐿𝑜𝑠𝑠𝑅 + 𝐿𝑜𝑠𝑠𝐶 +  λ4𝐿𝑜𝑠𝑠𝑁 , (15) 

where 𝜆2, 𝜆3, and 𝜆4 denote the weights. 

Table 1. Comparison of our and other methods on LOL-v1 [23] and LOL-v2-real [26] datasets. 

“S”, and “U” represent “Supervised”, and “Unsupervised” methods. The optimal and subopti-

mal values of the supervised and unsupervised methods are marked in red and blue respec-

tively. 

Method Type 
LOL-v1 LOL-v2-real 

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ 

MBLLEN [15] S 17.562 0.729 0.173 17.296 0.680 0.221 

TBEFN [14] S 17.350 0.777 0.209 20.283 0.830 0.171 

Retinex-Net [23] S 16.774 0.424 0.473 16.097 0.407 0.542 

KinD [31] S 17.647 0.771 0.174 20.588 0.817 0.143 

KinD++ [30] S 17.751 0.758 0.197 17.660 0.760 0.216 

URetinex-Net [25] S 21.328 0.832 0.120 19.780 0.842 0.107 

RRDNet [33] U 11.311 0.456 0.362 13.909 0.485 0.317 

RetinexDIP [32] U 9.094 0.325 0.449 11.462 0.361 0.404 

Zero-DCE [3] U 14.860 0.562 0.335 18.058 0.579 0.312 

RUAS [12] U 16.405 0.503 0.270 15.325 0.493 0.309 

EnlightenGAN [8] U 17.483 0.651 0.322 18.639 0.676 0.308 

SCI [16] U 14.783 0.525 0.339 17.303 0.539 0.307 

PairLIE(λ = 0.2) [2] U 18.468 0.742 0.243 19.884 0.773 0.234 

Ours U 18.809 0.783 0.189 19.181 0.780 0.212 
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4 Experiments 

In this section, we first introduce the experimental details, and datasets, and then con-

duct quantitative and qualitative comparisons with the latest models. Finally, ablation 

experiments are performed in various settings. 

4.1 Experimental details 

We use the Pytorch framework to complete experiments on NVIDIA GeForce RTX 

3080 GPU, setting λ1 = 10, λ2 = 5,λ3 = 5,λ4 = 0.5, γ =  0.2. The number of convo-

lution kernels of the five-layer R-Net and N-Net is [64,64,64,64,3], and the number of 

convolution kernels of I-Net is [64,64,64,64,1]. We trained the model for 400 epochs 

with a learning rate of 0.0001 and decayed it by half every 100 epochs. 

Our approach is compared quantitatively and qualitatively with supervised learning-

based methods such as MBLLEN [15], TBEFN [14], Retinex-Net [23], KinD [31], 

KinD++ [30], URetinex-Net [25], as well as unsupervised learning based methods in-

clude EnlightenGAN [8], SCI [16], PairLIE [2], Zero-DCE [3], RRDNet [33], Reti-

nexDIP [32], RUAS [12]. 

Table 2. Comparison of our and other methods on LOL-v2-synthetic [26] dataset. “S”, and “U” 

represent “Supervised”, and “Unsupervised” methods. The optimal and suboptimal values of 

the supervised and unsupervised methods are marked in red and blue respectively. 

Method Type 
LOL-v2-synthetic 

PSNR↑ SSIM↑ LPIPS↓ 

MBLLEN [15] S 17.822 0.778 0.134 

TBEFN [14] S 18.260 0.842 0.175 

Retinex-Net [23] S 17.136 0.756 0.255 

KinD [31] S 17.275 0.757 0.252 

KinD++ [30] S 17.477 0.785 0.231 

URetinex-Net [25] S 18.770 0.822 0.190 

RRDNet [33] U 14.838 0.654 0.246 

RetinexDIP [32] U 15.976 0.762 0.210 

Zero-DCE [3] U 17.756 0.813 0.168 

RUAS [12] U 13.404 0.639 0.363 

EnlightenGAN [8] U 16.572 0.771 0.211 

SCI [16] U 15.427 0.744 0.232 

PairLIE(λ = 0.2) [2] U 19.074 0.794 0.229 

Ours U 19.741 0.829 0.185 
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4.2 Datasets and Metrics 

We evaluate our method on LOL-v1 [23] and LOL-v2 [26]. LOL-v2 is further divided 

into LOL-v2-real and LOL-v2-synthetic, with LOL-v2-synthetic showing significant 

content differences from LOL-v1 and LOL-v2-real. The training and testing set pro-

portions for LOL-v1, LOL-v2-real, and LOL-v2-synthetic are 485:15, 689:100, and 

900:100, respectively. We only use low-light images from the LOL-v1 training dataset 

for training, and LOL-v1, LOL-v2-real, and LOL-v2-synthetic testing datasets for val-

idation. As these datasets provide reference images, we assess our method’s perfor-

mance using the metrics PSNR, SSIM [22], and LPIPS [29]. Higher PSNR and SSIM 

values indicate better results, while the opposite holds for LPIPS. 

 

     
(a) Input (b) MBLLEN (c) TBEFN (d)Retinex-Net (e) KinD 

     
(f) URetinex-Net (g) RRDNet (h) RetinexDIP (i) Zero-DCE (j) RUAS 

     
(k) EnlightenGAN (l) SCI (m) PairLIE (n) Ours (o) GT 

     

Fig. 5. Comparison of the enhancement performances between our method and others. Please 

zoom in for details. 

4.3 Quantitative Comparison 

Table. 1 and Table. 2 present a quantitative comparison of our method and other meth-

ods on LOL-v1 [23] and LOL-v2 [26] datasets, where the illumination adjustment fac-

tor λ of PairLIE [2] is set to the default value of 0.2. It can be observed that our method 

outperforms all unsupervised methods, particularly in SSIM [22] and LPIPS [29], 

which are designed to align with human-perceptive image quality. This improvement 

is attributed to our method of generating paired low-light images, avoiding color devi-

ations and artifacts through consistent reflectance, and effectively denoising using 

Noise2Noise. PairLIE also performs well, but PairLIE requires paired low-light images 

for training. In addition, our method is also competitive compared with most supervised 

algorithms. It can be seen that our method performs best on LOL-v2-synthetic [26] 
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because this dataset is significantly different from LOL-v1 [23] and LOL-v2-real [26], 

which means that our method has better generalization. 

 

4.4 Qualitative Comparison 

Fig.5 illustrates a visual comparison between our method and others. It can be observed 

that our method produces an image with better brightness and contrast and fewer arti-

facts, resulting in a more natural appearance, and other methods exhibit issues such as 

underexposure, overexposure, severe color deviations, and artifacts. Furthermore, Fig.6 

shows the visual comparison of the denoising capabilities of our method and others. It 

is evident that our method thoroughly denoises the image, while other methods such as 

PairLIE [2], Retinex-Net [23], and SCI [16] still have noise in their results. It shows 

that the denoising module we designed based on Nose2Noise is effective. Additionally, 

other methods have problems such as over-enhancement, insufficient enhancement, and 

color deviation. 

 

     

     
(a) Input (b) MBLLEN (c) TBEFN (d)Retinex-Net (e) KinD 

     

     
(f) URetinex-Net (g) RRDNet (h) RetinexDIP (i) Zero-DCE (j) RUAS 

     

     
(k) EnlightenGAN (l) SCI (m) PairLIE (n) Ours (o) GT 

Fig. 6. Comparison of the denoising performances between our method and others. Please 

zoom in for details. 

4.5 Ablation Study 

We conduct an ablation study to examine the impact of each component in our model 

across different settings. We try the following settings: 1) without slight linear trans-

formation(LT) when generating images. 2) without 𝐿𝑜𝑠𝑠𝐿. 3) without 𝐿𝑜𝑠𝑠𝑅. 4) with-

out 𝐿𝑜𝑠𝑠𝐶 . 5) without 𝐿𝑜𝑠𝑠𝑁. 
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As indicated in Table. 3, the setting we select is the best and every component is 

effective. Additionally, the illumination loss, reconstruction loss, and noise loss have a 

more significant impact on the results.  

Fig. 7 illustrates visual comparisons under different settings. In Fig.7 (c), the absence 

of illumination loss 𝐿𝑜𝑠𝑠𝐿 prevents the restored image from reaching a normal illumi-

nation level. In Fig.7 (d), if the reconstruction loss 𝐿𝑜𝑠𝑠𝑅 is missing, the result will lose 

color and detail information. Fig.7 (f) illustrates that the absence of noise loss 𝐿𝑜𝑠𝑠𝑁 

results in severe noise in the output. Fig.7 (e) demonstrates that the missing reflectance 

consistency loss 𝐿𝑜𝑠𝑠𝐶  has minimal impact on the resulting image, primarily because 

𝐿𝑜𝑠𝑠𝑁 also encompasses the consistency constraints of reflectance. In Fig. 7 (b), not 

applying a linear transformation during image generation may not have a noticeable 

effect on the resulting image visually. However, quantitatively, the operation still 

works. 

Table 3. Comparison of different settings on LOL-v1 [23] dataset, the best results are in bold. 

Setting PSNR↑ SSIM↑ LPIPS↓ 

w/o LT 18.788 0.779 0.191 

w/o 𝐿𝑜𝑠𝑠𝐿 8.901 0.333 0.433 

w/o 𝐿𝑜𝑠𝑠𝑅  12.221 0.508 0.798 

w/o 𝐿𝑜𝑠𝑠𝐶  18.709 0.779 0.191 

w/o 𝐿𝑜𝑠𝑠𝑁 17.659 0.591 0.366 

Ours 18.809 0.783 0.189 

 

    
(a) Input (b) w/o LT (c) w/o 𝐿𝑜𝑠𝑠𝐿 (d) w/o 𝐿𝑜𝑠𝑠𝑅 

    
(e) w/o 𝐿𝑜𝑠𝑠𝐶  (f) w/o 𝐿𝑜𝑠𝑠𝑁 (g) Ours (h) GT 

Fig. 7. Comparison of different settings. Please zoom in for details. 

5 Conclusion 

In this paper, we propose an unsupervised low-light image enhancement method that 

exclusively relies on low-light images for training. First, we construct paired images 

with consistent content, noise independence, and slightly different illumination. Sec-

ond, we leverage reflectance consistency to facilitate the restoration of image content. 

Moreover, we use Noise2Noise to remove noise in low-light images. Extensive 
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experiments on public datasets have validated the efficacy of our method in enhancing 

images and removing noise. Our future endeavors will focus on addressing the chal-

lenge of adaptive illumination adjustment. 
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