
Enhancing Sequence Model with Mathematical

Reasoning in Symbolic Integration

Xingqi Lin1, Liangyu Chen1(), Zhengfeng Yang1 and Zhenbing Zeng2

1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shang-

hai 200062, China
2 Department of Mathematics, Shanghai University, Shanghai 200444, China

lychen@sei.ecnu.edu.cn

Abstract. Sequence model has shown its efficiency in tackling integration prob-

lems, outperforming traditional mathematical software on specific datasets.

However, it also encounters some challenges: robustness against minor perturba-

tions, compositionality for decomposable operations, and out-of-distribution

generalization when dealing with larger values, longer problems, and functions

not covered in the training set. These issues arise from the fact that integration

problems can only be partially regarded as a language translation task because

integration follows its own mathematical rules. To address the above issues, this

paper proposes a novel approach that enhances sequence model with mathemat-

ical reasoning. We introduce the abstraction of coefficients, perform expression

decomposition, and substitute known functions for unknown counterparts. Our

model achieves 83.6% accuracy in integration testing, 100% accuracy in robust-

ness testing and 100% accuracy in additive composite expressions. By the math-

ematical rewriting, it also exhibits notable performance in extrapolation beyond

the distribution. Moreover, our model passes the SAGGA test. In general, we

obtain a robust symbolic integrator.

Keywords: Sequence Model, Deep Learning, AI Mathematics, Indefinite Inte-

gral.

1 Introduction

With the rapid development of artificial intelligence, deep learning has recently

achieved significant breakthroughs in various fields, such as computer vision, natural

language processing, and pattern recognition. These remarkable achievements have led

researchers to focus on other fields, such as mathematics, which was previously more

reliant on human intelligence. LC model is a pioneering work, which uses neural net-

works to solve mathematical problems of symbol integration[11]. LC model converts

mathematical expressions into sequences and considers the integration problem as a

sequence-to-sequence translation task, where the goal is to translate one sequence (the

original expression) into another sequence (the indefinite integral expression). Alt-

hough LC model has no mathematical knowledge, it achieves near-perfect test accu-

racy. More specifically, LC model outperforms several commercial symbolic

2 X. LIN et al.

computation software systems (such as Maple, Matlab, and Mathematica) and can even

solve indefinite integration problems that commercial software systems cannot handle.

 LC model has sparked heated discussions and debates. Davis [4] questioned the

high accuracy of the model and doubted that it might benefit from bias in the test set

and the lack of special functions. Noorbakhsh et al. [15] used pre-trained large language

models with fine-tuning strategies to effectively reduce training costs. Welleck et al.

[22] evaluated the generalization of LC model and found that it performs poorly in

terms of robustness, compositionality, and out-of-distribution generalization. Specifi-

cally, LC model (1) is fragile to small perturbations(for example, it can correctly solve

∫ 26𝑥42𝑑𝑥 but fails to integrate ∫53𝑥24𝑑𝑥 , which should follow the same rule

∫ 𝑘1 𝑥
𝑘2𝑑𝑥 =

𝑘1

𝑘2+1
𝑥𝑘2+1 + 𝐶 for all constants 𝑘1, 𝑘2); (2) struggles to combine known

solutions, not conforming to the rule ∫ 𝑓1𝑑𝑥 + ∫𝑓2𝑑𝑥 = ∫(𝑓1 + 𝑓2)𝑑𝑥; (3) has diffi-

culty in generalizing to longer expressions, larger numbers, and special functions.

From the above issues, it is evident that integration problems can only be partially

regarded as a language translation task because integration follows its own mathemati-

cal rules. Therefore, this paper extends LC model and enhances sequence model with

mathematical reasoning in symbolic integration. In summary, our main contributions

are listed as follows:

• Numbers in mathematical expressions are abstracted with coefficients. This ap-

proach resolves the model's brittleness issue in simple primitive functions.

• To achieve compositionality, expressions are decomposed under mathematical rules

and then processed separately by neural networks. All mathematical operations that

can be decomposed are suitable for this method, and we take addition as an example.

• Out-of-distribution generalization is enhanced by employing mathematical transfor-

mations to handle data beyond the training set, which means that our model can solve

the integral problem with new mathematical functions.

The rest of the paper is organized as follows. We discuss the related work in Section

2 and introduce the methodology in Section 3. Experimental results are provided in

Section 4. Finally, the paper is concluded in Section 5.

2 Related Work

As early as the 1980s, the application of artificial neural networks (ANN) to matrix

inverse and Fourier transform was first proposed [13]. Subsequently, neural networks

were also applied to solve differential equations [12,3,9]. However, these researches

were not put into practical use due to the limited computing power and the complexity

of neural networks.

With the development of computer technology, neural networks have been quickly

developed and have been increasingly applied in mathematical domains, such as mixed

boolean-arithmetic expressions [6], logical reasoning [5], boolean satisfiability prob-

lem (SAT) [18], and so on [20,14,16]. In 2020, Lample and Charton proposed the ap-

plication of the transformer in two problems of symbolic calculation: function

 Enhancing Sequence Model with Mathematical Reasoning 3

integration and ordinary differential equations [11]. Their work is the beginning of deep

learning for symbolic integration problems.

Davis [4] outlined five issues about LC model. (1) In most cases, the integral of a

nontrivial elementary function is not an elementary function itself. What's worse, the

question of whether the integral of an elementary function is also an elementary func-

tion is, in principle, undecidable [17]. The integration from elementary to non-elemen-

tary functions is impossible with LC model but can be achieved with Mathematica. (2)

The training and test set of LC model are self-generated and do not include non-simpli-

fied expressions. (3) The vocabulary of LC model lacks special functions common in

differential problems. So, LC model is limited to a much smaller space of the elemen-

tary functions than Mathematica when searching for solutions. (4) For problems that

cannot be solved, LC model will provide an incorrect answer while Mathematica will

either stop the calculation or show time out. Of course, the preference between the

wrong and the non-response is subjective. (5) The test set of LC model has significant

built-in biases, which is unfair to Mathematica.

In addition, it is noteworthy that LC model requires a large amount of training data

to achieve high accuracy since it is based on the transformer architecture [21]. To solve

this issue, there is a two-step approach: first training a transformer-based model for

language translation tasks and then fine-tuning the pretrained model to solve the down-

stream task of symbolic mathematics [15]. Noorbakhsh et al. used the mBART (and

Marian-MT) transformer and explored the impact of different multilingual tasks on in-

tegration accuracy, such as English to Romanian, English to Arabic, and French to Eng-

lish. The enhanced model achieves comparable accuracy on the integration task, using

around 1.5 orders of magnitude fewer training samples than LC model.

The generalization of LC model beyond the test set needs evaluation. Unfortunately,

LC model has challenges in achieving robustness, compositionality, and out-of-distri-

bution generalization [22]. That is to say, despite the perfect accuracy of LC model, it

has some flaws that include vulnerability to minor perturbations, difficulties in com-

bining known solutions, inability to handle longer problems, larger values, and func-

tions not covered in the training set. Consequently, further research is required to en-

hance the generalization of LC model.

3 Methodology

3.1 Problem Formulation

The problem of solving indefinite integrals can be stated as follows: given a mathemat-

ical expression 𝑓, find its indefinite integral 𝐹 with respect to the variable 𝑥, denoted

as 𝐹 = ∫𝑓 𝑑𝑥. For example, ∫ 2𝑥𝑑𝑥 = 𝑥2 + 𝐶 where 𝐶 is a constant number. To be

more concise, we will omit 𝐶 in the following discussion.

Although there are some symbolic computation software systems like Maple,

Matlab, and Mathematica now, improvement is still possible, such as faster execution

or effective solutions for complex problems. The neural sequence integrator, LC model

[11], achieves high accuracy in its own generated test set (even surpassing the commer-

cial computation software mentioned above). Nevertheless, test accuracy alone does

4 X. LIN et al.

not guarantee powerful generalization. According to [22], the following content lists

three vulnerability aspects of LC model.

Robustness is the ability of a system or algorithm to maintain stable performance

and functionality in the presence of uncertainties, variations, or unexpected conditions.

For symbolic integrator, robustness refers to whether integrating an in-distribution

problem means success on nearby problems being governed by the same underlying

rule. Even when ignoring more complex situations, the robustness of LC model on sim-

ple primitive functions is relatively poor, leading to some ridiculous errors. For in-

stance, when solving ∫ 𝑘1 sin 𝑘2 𝑥𝑑𝑥, the correctness of the answer varies as 𝑘1 and 𝑘2

change, which is unreasonable.

Compositionality refers to the property of a system or model where complex expres-

sions or structures can be formed by combining simpler, known components or ele-

ments through specified operations. A compositional integral model should correctly

integrate

 𝑓 = 𝑓1 ∘ 𝑓2 ∘ ⋯ ∘ 𝑓𝑘, (1)

where 𝑓1, 𝑓2, …, 𝑓𝑘 are expressions the model can correctly handle, and ∘ is a binary

operation (e.g., addition). Theoretically, if the model succeeds in a collection of prob-

lems, it should be able to solve the composition of those problems. For example, a

system that successfully integrates 𝑥 and sin 𝑥, should correctly integrate 𝑥 + sin 𝑥.

Furthermore, for indefinite integration, the rule ∫ 𝑓1 + ∫𝑓2 = ∫(𝑓1 + 𝑓2) exists. Thus,

it is reasonable to expect LC model to possess additive compositionality. However, the

reality is quite different. As the number of compositions increases, the accuracy of LC

model decreases sharply.

Out-of-distribution generalization refers to the ability of the model to handle data

that are not in the training set [1,10,2,7]. Generalizing to out-of-distribution data is cru-

cial for integral models since real-world mathematical expressions are diverse and im-

possible to be completely included in the training data. However, the performance of

LC model is not satisfactory in this case. The range of numbers in the training set is

limited to [−10,10], and as the integers in the problem increase, the accuracy of LC

model decreases. Additionally, LC model struggles to solve problems with more than

30 operators. Moreover, since LC model only considers elementary functions, it be-

comes powerless when encountering special functions not present in its vocabulary.

Therefore, the problem this paper aims to address is: how to enhance the model's

generalization capabilities in robustness, compositionality, and out-of-distribution data

without compromising accuracy and then establish a more reasonable neural sequence

integrator.

3.2 Framework

In response to the above problem, we propose an approach to enhance the sequence

model with mathematical reasoning. LC model is a general text sequence model that

does not understand the components in mathematical expressions such as coefficients,

variables, integers, and operators. Consequently, we extract individual parts of

 Enhancing Sequence Model with Mathematical Reasoning 5

Fig. 1. The architecture of our model Rosymtor. The model consists of three parts: pre-pro-

cessing, transformer, and post-processing. The abstraction of coefficients is highlighted in or-

ange, decomposition and composition in green, and mathematical substitution in red.

expressions for special processing. First, we substitute unknown special functions with

known primitive functions according to mathematical rules, avoiding unknown words

into the sequence model. Moreover, we decompose expressions based on decomposa-

ble operators which can divide them into multiple components equally in mathematics,

employing the divide-and-conquer strategy for longer expressions to enhance the effi-

ciency and accuracy of integration problems. Lastly, while coefficients subtly impact

solving mathematical problems, they significantly influence the sequence model. Thus,

we use parameters to replace coefficients in the expression to improve generalization.

In summary, we present an improved model called Rosymtor (Robust Symbolic In-

tegrator), whose framework is depicted in Figure 1, consisting of the following three

parts:

• Pre-processing of mathematical expression. To start with, we transform an origi-

nal mathematical expression into a formal sequence. Then, the abstraction of coeffi-

cients is introduced for robustness and additive decomposition for compositionality.

Out-of-distribution generalization is taken into consideration too. This part combines

machine translation and symbolic computation techniques, laying the foundation for

follow-up steps.

• Transformer neural network. The input of the transformer part is a sequence de-

rived from a mathematical expression. Then the transformer utilizes an encoder-de-

coder architecture to translate this sequence. By minimizing the loss computed with

predicted output and actual results, the model learns the integration rules and tech-

niques for solving indefinite integrals.

• Post-processing of prediction. After the transformer generates a sequence repre-

sented by indices, we map them to corresponding words and obtain a prefix

 s

 s

6 X. LIN et al.

expression. The coefficients in the prefix expression are replaced with their matching

numbers. Besides, addition combinations and mathematical transformations are per-

formed when necessary.

In the part of pre-processing of mathematical expression, these expressions can be

represented as trees, with operators as internal nodes and numbers or variables as

leaves. A pre-order traversal of a tree generates a computer-friendly prefix expression,

shown in Table 1. During parsing, the words “INT+” and “INT-” are introduced as

prefixes for numbers. For example, “-5” is parsed as [INT-, 5], while “108” is parsed

as [INT+, 1, 0, 8]. For more details such as tokenizer, refer to [11].

Table 1. Infix and prefix notation of mathematical expression.

Infix Prefix

𝑎0 × (𝑥 + ln(𝑥)) mul 𝑎0 add 𝑥 ln 𝑥

𝑒𝑎0−𝑥 exp add 𝑎0 mul INT- 1 𝑥

ln(𝑥) + tan(𝑥) add ln 𝑥 tan 𝑥

𝑎0 × 𝑥2 mul 𝑎0 pow 𝑥 INT+ 2

This paper concentrates on the processing of mathematical expressions, with the ab-

straction of coefficients elaborated in Section 3.3, decomposition and composition in

Section 3.4, and the out-of-dataset situation in Section 3.5.

3.3 Abstraction of Coefficients

To improve robustness, this paper introduces the abstraction of coefficients, which in-

volves two steps highlighted in orange in Figure 1: substitute numbers with coefficients

and substitute coefficients with numbers. The process is illustrated in Figure 2.

Substitute numbers with coefficients. Based on the number parsing, we can imple-

ment coefficient substitution. Specifically, the infix expression is first converted into a

prefix expression, and then the prefix expression is traversed from left to right. When

encountering “INT+” or “INT-”, the following numbers are read, and the coefficients

𝑎0, 𝑎1, 𝑎2, … are sequentially used to replace the numbers while simultaneously record-

ing the mapping between coefficients and numbers.

To adapt to the expressions with abstracted coefficients, we redesign the model's

training dataset. Many expressions with coefficients are generated as training data,

which differ from LC model, whose expressions only contain numbers. It is worth not-

ing that although the generation probabilities for variables (i.e., 𝑥) and coefficients (i.e.,

𝑎0, 𝑎1, 𝑎2, …) are both 50%, and the probability for numbers is set to 0, numbers inev-

itably appear during expression simplification. Therefore, the integrator also needs to

handle numbers.

Substitute coefficients with numbers. After substituting coefficients for numbers,

expressions are input into the trained transformer for solving. Results are then replaced

with the corresponding numbers instead of coefficients. Finally, expressions are

 Enhancing Sequence Model with Mathematical Reasoning 7

simplified and converted back to infix form. At this point, we obtain the answer for the

integral.

Fig. 2. Abstraction of coefficients in our model.

3.4 Decomposition and Composition

According to the compositionality of integration, we adopt the divide-and-conquer

strategy for long mathematical expressions, which involved two steps in Figure 1: De-

composition and Composition.

Decomposition. We decompose longer expressions into smaller components to

achieve compositionality before they enter the neural network. This process doesn't

impact the result in mathematics but reduces the computational complexity. Taking the

addition decomposition in integral as an example. The original integrand is decomposed

into several parts according to the addition rule.

Composition. Every decomposed part is solved separately, and the results are col-

lected and combined. The concatenated result is then simplified to obtain the final an-

swer. The process of decomposing expressions by addition splits complex expressions

into several relatively simpler parts, further simplifying the structure of expressions.

3.5 Out-of-distribution Generation

For sequence models, unknown words that are out of the training vocabulary will dras-

tically decrease the translation performance. As to the integral task, if the input se-

quence contains unknown functions, the model is hard to handle them correctly. In-

spired by the word synonym, we design the rewriting module to substitute the unknown

function with the composition of other known functions, namely, two steps highlighted

in red in Figure 1.

5 3

 0 1

5

 0 1 1

 +
 +

 =
 =

8 X. LIN et al.

Substitute known functions for unknown counterparts. For instance, focusing on

trigonometric functions, there exists the formula tan(𝑥) = sin(𝑥) / cos(𝑥) . If the

transformer model does not know the function 𝑡𝑎𝑛 but knows 𝑠𝑖𝑛 and 𝑐𝑜𝑠, it can

learn the transformation principle of 𝑡𝑎𝑛 during training and then handle integrals in-

volving 𝑡𝑎𝑛. Therefore, as long as we provide the transformer with mathematical re-

writing rules, the model can handle unknown functions.

Substitute unknown functions back. After generating predictions by the trans-

former model, which may include unknown words, it is necessary for post-processing.

For example, upon identifying the structural pattern 𝑠𝑖𝑛/ 𝑐𝑜𝑠, we should substitute it

with 𝑡𝑎𝑛. As a result, the final result may include unknown words. This approach en-

ables out-of-distribution generalization without expanding the predefined vocabulary.

4 Experiments

In this section, we conduct experiments to compare the performance of Rosymtor and

LC model. Specifically, we answer the following four research questions.

• RQ1: How do Rosymtor and LC model perform on a generic test set?

• RQ2: How is the robustness of Rosymtor and LC model?

• RQ3: How is the compositionality of Rosymtor and LC model?

• RQ4: How is the out-of-distribution generalization of Rosymtor and LC model?

We describe the datasets in Section 4.1 and introduce some implementation details

of the experiments in Section 4.2. Afterward, we present the explanations to answer the

above research questions in Section 4.3 ~ 4.6 respectively. Code is available at

https://anonymous.4open.science/r/Rosymtor-8EAB/.

4.1 Datasets

In our experiments, the training, validation, and test sets are all generated by the method

of backward generation provided by [11]. As is well known, integrating long expres-

sions is time expensive, while differentiation is relatively simpler. Therefore, backward

generation is to produce a mathematical expression 𝐹 and then compute its derivative

𝑓. Afterward, the pair (𝑓, 𝐹) is included in the dataset.

The validity of mathematical expressions is not considered when generation, result-

ing in a few invalid expressions, which we should filter in advance. Excessive nesting

is so challenging that expressions with a maximum nesting level greater than are re-

garded as invalid. Besides, components like √−3 and ln(−5) are meaningless in ele-

mentary mathematics which are also excluded from the dataset. After data cleaning, the

dataset is divided into three parts, namely, 10,000 for validation, 10,000 for testing,

and 10,000,000 for training.

The datasets in this work are different from those in LC model, shown in Table 2.

The probability of leaf nodes being coefficients in the LC model is 0, whereas 50% in

Rosymtor. The size of our training set is smaller than that of LC model because the

abstraction of coefficients reduces expression redundancy. Our training set includes all

the numbers, operators, and functions in LC model.

https://anonymous.4open.science/r/Rosymtor-8EAB/

 Enhancing Sequence Model with Mathematical Reasoning 9

Table 2. The comparison between the training sets of LC model and Rosymtor.

 LC model Rosymtor

Size of dataset 40 million 10 million

Storage Size 14.4GB 2.6GB

Max length of equations 512 512

Probability of coefficients 0 0.5

Probability of numbers 0.25 0

Probability of variables 0.75 0.5

4.2 Implementation Details

Sympy is a Python library for symbolic mathematics. Infix expressions shown in Table

1 are essentially strings without mathematical meaning. We convert these infix expres-

sions into Sympy expressions to perform simplification, expansion, integration and dif-

ferentiation. By the way, infix expression, prefix expression, and Sympy expression

can be mutually converted in pairs.

As to the model implementation, we use Adam [8] to optimize our model. Similar

to LC model, Rosymtor has 8 attention heads, 6 layers, and a dimensionality of 512.

We set the learning rate to 0.0001 and the batch size to 32.

All models are implemented by PyTorch 1.12 using Python 3.7, and all experiments

are executed on a CentOS Linux server with the main configuration of GPU RTX

2080Ti, CPU@3.60GHz, 8GB RAM, and 1TB SSD Disk.

4.3 Evaluation of Accuracy

In this experiment, four different models are tested and compared. They are: (1) the LC

model; (2) LCAC, the LC model plus the abstraction of coefficients; (3) LCDC, the LC

model plus the decomposition and combination; and (4) our model Rosymtor, the LC

model plus the abstraction of coefficients, the decomposition and composition, and out-

of-distribution generation.

The results are shown in Table 3. The LCAC and LC models have approximately

equal accuracy, indicating that coefficient substitution has little impact on accuracy.

The LCDC model has minor improvement in accuracy because decomposing complex

expressions into several simpler ones makes it easier for the integrator to work. The

Rosymtor model further improves accuracy, which is reasonable: coefficient substitu-

tion alone may lead to too many coefficients, and decomposition in advance can par-

tially address this issue. Overall, coefficient substitution and additive decomposition

have a limited impact on accuracy; they are designed to enhance generalization.

10 X. LIN et al.

Table 3. Accuracy comparison among four models.

 LC LCAC LCDC Rosymtor

Accuracy 80.4% 79.0% 82.3% 83.6%

4.4 Evaluation of Robustness

Next, we test robustness on simple primitive functions such as 𝑘1 ln(𝑘2𝑥) , 𝑘1𝑥 ,

𝑘1 cos(𝑘2𝑥), etc., where 𝑘1 and 𝑘2 are random integers ranging from 1 to 100. Table 4

compares the accuracy of the models before and after coefficient substitution. Higher

accuracy indicates better robustness.

From a positive perspective, LC model demonstrates robustness on 𝑘1 ln(𝑘2𝑥), as it

learns the rule ∫ 𝑘1 ln(𝑘2𝑥) 𝑑𝑥 = 𝑘1𝑥(ln(𝑘2𝑥) − 1). However, on other primitive func-

tions, especially trigonometric functions, the performance of LC model is poor. In com-

parison, Rosymtor perfectly solves integrals for all primitive functions. Note that 100%

accuracy is mathematically impossible for neural networks, which makes our experi-

mental results questionable. But as stated in Section 3, all test cases of 𝑘1 ln(𝑘2𝑥) are

just one rule for Rosymtor. The abstraction of coefficients effectively solves the jitter

problem, reducing its occurrence to almost negligible.

Table 4. Accuracy comparison on robustness test.

 LC model Rosymtor

𝑘1 ln(𝑘2𝑥) 100.0% 100.0%

𝑘1𝑒
𝑘2𝑥 24.5% 100.0%

𝑘1𝑥
𝑘2 19.3% 100.0%

𝑘1 sin(𝑘2𝑥) 31.8% 100.0%

𝑘1 cos(𝑘2𝑥) 31.8% 100.0%

𝑘1 tan(𝑘2𝑥) 30.7% 100.0%

4.5 Evaluation of Compositionality

Afterward, we test the compositionality of the models. We randomly sample 1,000

composite expressions 𝑓1, 𝑓2, … , 𝑓𝑘, where 𝑘 ∈ 2,3, , and 𝑓1, 𝑓2, … , 𝑓𝑘 are all primitive

functions that the model can accurately integrate. These expressions form test sets,

where we test the accuracy of LC model and Rosymtor, as shown in Table 5.

For LC model, while the accuracy of solving individual primitive functions is

100.00%, it decreases to 96.2% when solving two composite functions, 15.7% for three

added together, and disappointingly drops to only 14.4% for four added together. By

decomposing the expressions, Rosymtor achieves a remarkable 100% accuracy,

demonstrating generalization in the aspect of compositionality. Note that all simple

 Enhancing Sequence Model with Mathematical Reasoning 11

function can be integrated correctly, and the integration is satisfied with the composi-

tionality of addition. Therefore, 100% accuracy is reasonable.

Table 5. Accuracy comparison on compositionality test.

 LC model Rosymtor

𝑓1 100.0% 100.0%

𝑓1 + 𝑓2 96.2% 100.0%

𝑓1 + 𝑓2 + 𝑓3 15.7% 100.0%

𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 14.4% 100.0%

4.6 Evaluation of Out-of-distribution Generation

Finally, we test the out-of-distribution generalization, including larger values, longer

problems, and functions not covered in training.

For larger values, we select the problems which both LC model and Rosymtor can

originally integrate and then randomly scale up the coefficients by 10 times, 20 times,

50 times, and 100 times. We test whether the models can still predict these modified

expressions accurately. LC model's accuracy sharply declines to 53% when the integers

are changed by 50 times, while Rosymtor maintains a 100% accuracy throughout.

As to longer problems, we test accuracy on expressions with more operators, as

shown in Table 6. Rosymtor shows a slightly stronger ability to handle longer problems,

because additive decomposition allows solving parts separately, reducing the complex-

ity of longer problems to some extent. However, not all long expressions can be de-

composed by addition. Therefore, the accuracy of Rosymtor will also decrease as the

number of operators increases.

Table 6. The impact of longer problems on models.

Operators LC model Rosymtor

1-15 97.4% 98.8%

20 89.1% 95.9%

25 81.7% 90.4%

30 59.3% 72.6%

35 46.3% 67.0%

We test learning ability for unknown functions using two trigonometric substitu-

tions: 𝑡𝑎𝑛 = 𝑠𝑖𝑛/ 𝑐𝑜𝑠 and 𝑠𝑖𝑛 = 𝑐𝑜𝑠 × 𝑡𝑎𝑛. Taking 𝑡𝑎𝑛 = 𝑠𝑖𝑛/ 𝑐𝑜𝑠 as an exam-

ple, we select expressions from the dataset containing the function 𝑡𝑎𝑛 and replace it

with 𝑠𝑖𝑛/ 𝑐𝑜𝑠 so that the model is unaware of the existence of 𝑡𝑎𝑛. After obtaining

the answers through the neural network, we check if they contain structures like

𝑠𝑖𝑛/ 𝑐𝑜𝑠 and replace them with 𝑡𝑎𝑛. The results of accuracy are shown in Table 7.

When removing expressions containing 𝑡𝑎𝑛 from the training set of LC model and

12 X. LIN et al.

testing it on expressions containing 𝑡𝑎𝑛, LC model exhibits a significantly lower ac-

curacy. In comparison, we find that substitution has little effect on accuracy, and our

model displays generalization capabilities beyond the training data.

Table 7. The impact of unknown functions on models. (Beam size determines how many alter-

native sequences the beam search algorithm [19] keeps track of during the process of generating

output.)

 Beam 1 Beam 5 Beam 10

𝑡𝑎𝑛 = 𝑠𝑖𝑛/ 𝑐𝑜𝑠 72.1% 90.6% 97.8%

s𝑖𝑛 = 𝑐𝑜𝑠 × 𝑡𝑎𝑛 69.9% 90.0% 98.3%

4.7 Experiment Summary

From the above experiments, it is easily observed that the combination of the se-

quence characteristic in machine translation and the mathematical characteristic in in-

tegration, can result in a more rational neural sequence integrator.

After replacing specific numbers, the neural network receives the same sequence

with the abstraction of coefficients, thereby eliminating the influence of number

changes. Decomposing expressions in advance makes the model adhere to the mathe-

matical decomposition rules required for integration. Besides, by mathematical substi-

tution, we avoid the troubles of expanding the vocabulary and achieve a cost-effective

way to handle unknown words.

Although coefficient substitution and expression decomposition are not originally

aimed at out-of-distribution generalization, they effectively improve the model's per-

formance for larger values and longer problems. Coefficient substitution allows the

model to process values based on their mathematical properties rather than common

strings. Regardless of the magnitude of values, they can be extracted and replaced with

coefficients that remain unaffected. On the other hand, expression decomposition may

break longer expressions into shorter ones, which can reduce the difficulty and com-

plexity of solving.

SAGGA is a genetic algorithm which can automatically discover diverse failures of

neural sequence integrators [22]. We execute SAGGA on Rosymtor and get a result of

no counterexample output after two hours, indicating that Rosymtor has passed the

SAGGA test.

5 Conclusion

In this paper, we extend the work of [11] and propose a new integrator Rosymtor by

enhancing sequence model with mathematical reasoning. Abstraction of coefficients

makes Rosymtor more stable in minor perturbations. Moreover, expressions are first

decomposed and then processed separately by the neural network, which enables

Rosymtor to adhere to the compositional requirements of integration. Lastly, we

 Enhancing Sequence Model with Mathematical Reasoning 13

evaluate out-of-distribution generalization and achieve satisfactory experimental re-

sults. More specifically, Rosymtor also passes the SAGGA test. The success of Rosym-

tor means combining sequence model with mathematical reasoning can promote the

performance of AI-based models and solve more complex problems.

Acknowledgments. This work is supported by NSFC (No. 62272416) and the National Key Re-

search Project of China (No. 2023YFA1009402).

References

1. Agrawal, A., Batra, D., Parikh, D.: Analyzing the behavior of visual question answering

models. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language

Processing. pp. 1955-1960 (2016)

2. Bahdanau, D., Murty, S., Noukhovitch, M., Nguyen, T.H., de Vries, H., Courville, A.: Sys-

tematic generalization: What is required and can it be learned? In: Proceedings of the 7th

International Conference on Learning Representations (2019)

3. Chen, T., Chen, H.: Approximation capability to functions of several variables, nonlinear

functionals, and operators by radial basis function neural networks. IEEE Transactions on

Neural Networks 6(4), 904-910 (1995)

4. Davis, E.: The use of deep learning for symbolic integration: A review of (Lample and Char-

ton, 2019). arXiv preprint arXiv:1912.05752. (2019)

5. Evans, R., Saxton, D., Amos, D., Kohli, P., Grefenstette, E.: Can Neural Networks Under-

stand Logical Entailment. In: Proceedings of the 6th International Conference of Learning

Representations (2018)

6. Feng, W., Liu, B., Xu, D., Zheng, Q., Xu, Y.: NeuReduce: Reducing mixed Boolean-arith-

metic expressions by recurrent neural network. In: Proceedings of the Findings of the 2020

Empirical Methods in Natural Language Processing. pp. 635-644 (2020)

7. Hupkes, D., Dankers, V., Mul, M., Bruni, E.: Compositionality decomposed: How do neural

networks generalize? In: Proceedings of the Twenty-Ninth International Joint Conference

on Artificial Intelligence. pp. 5065-5069 (2020)

8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proceedings of the

3rd International Conference on Learning Representations (2015)

9. Lagaris, I., Likas, A., Fotiadis, D.: Artificial neural networks for solving ordinary and partial

differential equations. IEEE Transactions on Neural Networks 9, 987-1000 (1998)

10. Lake, B., Baroni, M.: Still not systematic after all these years: On the compositional skills

of sequence-to-sequence recurrent networks. In: Proceedings of the 6th International Con-

ference on Learning Representations (2018)

11. Lample, G., Charton, F.: Deep learning for symbolic mathematics. In: Proceedings of the

8th International Conference on Learning Representations (2020)

12. Lee, H., Kang, I.S.: Neural algorithm for solving differential equations. Journal of Compu-

tational Physics 91(1), 110-131 (1990)

13. Mitsuo, Takeda, Goodman, J.W.: Neural networks for computation: Number representations

and programming complexity. Applied Optics 25(18), 3033-3046 (1986)

14. Nogueira, R.F., Jiang, Z., Lin, J.: Investigating the limitations of the transformers with sim-

ple arithmetic tasks. arXiv preprint arXiv:2102.13019. (2021)

15. Noorbakhsh, K., Sulaiman, M., Sharifi, M., Roy, K., Jamshidi, P.: Pretrained language mod-

els are symbolic mathematics solvers too! arXiv preprint arXiv:2110.03501. (2021)

14 X. LIN et al.

16. Piotrowski, B., Urban, J., Brown, C.E., Kaliszyk, C.: Can neural networks learn symbolic

rewriting? In: Proceedings of the 9th International Conference on Learning Representations

(2021)

17. Richardson, D.: Some undecidable problems involving elementary functions of a real vari-

able. The Journal of Symbolic Logic 33(4), 514-520 (1968)

18. Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a SAT solver

from single-bit supervision. In: Proceedings of the 7th International Conference on Learning

Representations (2019)

19. Tillmann, C., Ney, H.: Word Reordering and a Dynamic Programming Beam Search Algo-

rithm for Statistical Machine Translation. Computational Linguistics 29(1), 97-133 (2003).

20. Trask, A., Hill, F., Reed, S.E., Rae, J., Dyer, C., Blunsom, P.: Neural arithmetic logic units.

In: Advances in Neural Information Processing Systems, 8046-8055 (2018)

21. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Polosu-

khin, I.: Attention is all you need. In Advances in Neural Information Processing Systems

30, 6000-6010 (2017)

22. Welleck, S., West, P., Cao, J., Choi, Y.: Symbolic brittleness in sequence models: on sys-

tematic generalization in symbolic mathematics. In: Proceedings of the 36th AAAI Confer-

ence on Artificial Intelligence. pp. 8629–8637 (2022)

