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Abstract. Our research focuses on solving the numerous artifacts and geometric 

distortion problems encountered when synthesizing new views from extremely 

sparse input views. We find that enhancing global features under such sparse 

conditions helps the network better understand the spatial relationships of the 

scene, thereby improving rendering quality. Our method is divided into two main 

parts: In the first part, our method emphasizes global feature extraction. In the 

case of sparse views, we use more global features to make up for the shortcom-

ings of other view features and utilize these features to provide the network with 

a comprehensive grasp of the overall layout and structure of the scene. The sec-

ond part uses a mechanism similar to the visual transformer to fuse features from 

each input view, and uses Vit to enhance the model's understanding of different 

spatial relationship features to solve the problem of multi-viewpoint geometric 

consistency. Experiments show that when tested on the most popular real-sce-

nario forward datasets and synthetic datasets, our approach exhibits state-of-the-

art performance and demonstrates richer performance compared to previous ex-

cellent work on synthesizing new views. details and a more complete outline 

structure. 
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1 Introduction 

Before our approach, there were numerous strategies for reconstructing new views from 

sparse inputs, including RegNeRF [1], DDP-NeRF [2], DS-NeRF[3], ViewFormer [4], 

and the recently introduced GBT [5], DiffusioNeRF [6], ViP-NeRF [7], and FreeNeRF 

[8], each providing robust solutions to the sparse view reconstruction dilemma. For 

instance, FreeNeRF [8] leverages the regularization of the visible spectrum to mitigate 

smooth transitions, thereby incrementally enriching the radiance field with high-fre-

quency details. RegNeRF [1], a patch-based regularizer, enhances geometic integrity 

by minimizing floating artifacts. However, these methods predominantly focus on ad-

dressing sparse perspective challenges and remain confined to rendering new 
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viewpoints within isolated scenes. Models like MVSNeRF [9], pixelNeRF [10], SRF 

[11], and IBRNet [12] surmount these limitations. While these models exhibit general-

izability to new scenes, their performance falters under extreme view sparsity; the fea-

ture extraction from limited viewpoints becomes inadequate, causing structural distor-

tions, marked degradation in image fidelity, and pronounced artifact and “floater” man-

ifestations. 

To address these challenges, our method is trained by sparsely sampling the input 

views around the target pose and incorporating them into an end-to-end network frame-

work. This strategy enables our model to generalize to new data domains, thus over-

coming the limitation of NeRF [13] requiring individual scene optimization. In the fea-

ture extraction stage of the input view, we integrated the Transformer encoder to 

broaden the receptive field and enhance global feature extraction, so that more global 

features can serve as features of the corresponding structure of the unknown perspec-

tive, making up for the difficulties caused by sparse perspectives. At the same time, the 

recent breakthroughs in image processing achieved by the Vision Transformer (ViT 

[14]) model, especially its powerful capability in feature fusion within a single image, 

motivate us to leverage the power of ViT to perform multi-view fusion tasks. In partic-

ular, we utilize ViT to merge and merge features from each viewpoint, solving the com-

plex problem of multi-view geometric and photometric consistency. Our extensive ex-

perimental studies demonstrate that our approach outperforms previous methods. Es-

sentially, our contribution is: 

1. To make up for the difficulties caused by view sparsity, we use advanced encoder-

decoder and Transformer hybrid architecture to enhance global features, so that more 

global features can be used as features of unknown view corresponding structures. 

2. We integrate a Vision Transformer (ViT) component to amalgamate features from 

input views with varying poses, thereby augmenting the geometric and photometric 

coherence. 

3. We successfully synthesize clearer novel views from sparse input data, markedly 

diminishing the incidences of artifacts and geometric distortions. 

2 Related work 

More recent work, like Neural Radiance Field (NeRF [13]), conceptualizes a scene by 

representing each point in space as a compact, continuous 5D function. This method 

uses a multilayer perceptron (MLP) to model the scene’s radiance field, detailing the 

color and direction of each point. However, training for a single scene requires hun-

dreds of nearby views and extensive optimization for each scene. To address the issue 

of numerous input views, subsequent research such as DS-NeRF [3] proposes solutions 

like deriving sparse depth from structure from motion and integrating depth regulariza-

tion into the loss function. Yet, these approaches do not eliminate the need for per-scene 

optimization. Meanwhile, the recent MVSNeRF [9] has also shown excellent perfor-

mance. However, creating 3D features from planar scanned volumes typically demands 

significant memory resources. While 2D feature extraction is more memory-efficient, 
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reconstructing new views with limited input frequently results in severe degradation of 

synthetic image quality due to the insufficiency of 2D features. 

3 Method 

Our approach primarily deduces the density and color of 3D points by extracting 2D 

features from the input views. This process unfolds in three pivotal stages: initially, we 

concentrate on extracting 2D features from the input views; subsequent is the phase of 

feature fusion and geometric reasoning; the final partentails the application of neural 

volumetric rendering. The overall model is shown in Fig. 1. 

Fig. 1. Overview of our approach 

 

3.1 Feature Extraction 

As shown in Fig. 2. Our feature extraction model is based on a hybrid model of encoder-

decoder and Transformer to extract 2D features {𝐹𝑖}𝑖=1
𝑉 ∈ 𝑅

 𝐻𝑖
4

 × 
𝑊𝑖

4
 × 𝑑   from all source 

views {𝐼𝑖}𝑖=1
𝑉 ∈ 𝑅𝐻𝑖 × 𝑊𝑖 × 3. We do this by projecting the 3D points 𝑝𝑡𝑠 ∈ 𝑅3 on the 

rendering rays to all input views through the camera parameters, and in order to main-

tain the continuity of features, we use bilinear interpolation [15] to extract the features 

 {𝑓𝑣}𝑣=1
𝑉 ∈ 𝑅𝑑 corresponding to the projected points, where V represents the number of 

input views and d represents the feature dimension: 

 {𝐹𝑖}𝑖=1
𝑉 = 𝑀( {𝐼𝑖}𝑖=1

𝑉  ), (1) 

Where 𝑀(·) represents the hybrid model of the encoder-decoder and Transformer. 
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Fig. 2. Overview of the feature extraction network: During the encoder stage, the convolutional 

layers execute downsampling operations to capture local deep features, such as textures and de-

tails. Subsequently, the network obtains positional information through a sine-cosine positional 

encoder. This information is then fed into N layers of Transformer Encoder modules, which en-

hance the global feature ratio, further augmenting the model’s understanding of the overall spa-

tial relationships. In the decoder stage of the feature extraction network, the upsampling process 

employs bilinear interpolation. Additionally, each layer is connected via skip connections to the 

corresponding features of the encoder layer, providing rich local features to assist the network 

in more accurately depicting small objects and edge textures within the image. 

 

3.2 Volume Density Prediction 

We predict the bulk density of a 3D point (x, d) in two stages, where d denotes the 3D 

spatial ray direction, and x signifies a sampling point along that direction. Initially, our 

method consolidates the single-point features from all input views corresponding to the 

3D point. Subsequently, to overcome the constraints associated with single-point fea-

tures, we implement a multi-head attention mechanism. This mechanism is designed to 

focus on learning the intricate relational dynamics among density features from all sam-

pled points along the identical ray direction. 

We define all sampling points in the same ray direction as {𝑥𝑛}𝑛=1
𝑁 , where N repre-

sents the number of sampling points in the ray direction, and each sampling point is 

mapped to the feature map { 𝐹𝑖  }𝑖=1
𝑉  corresponding to all input views to obtain a single 

point feature  { 𝑓𝑛,𝑣 }𝑣=1
𝑉 . Next, we add global feature 𝑀𝐸𝐴𝑁({𝑓𝑛,𝑣}𝑣=1

𝑉 ) and feature 

dispersion 𝑉𝐴𝑅 ({𝑓𝑛,𝑣}
𝑣=1

𝑉
) to avoid outliers and focus on important features. 
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Specifically, the global features and feature dispersion are respectively spliced to all 

single-point features to obtain{𝑓𝑒𝑎𝑛,𝑣}𝑣=1
𝑉 : 

 {𝑓𝑒𝑎𝑛,𝑣}𝑣=1
𝑉 = ⟨ {𝑓𝑛,𝑣}𝑣=1

𝑉  | 𝑀𝐸𝐴𝑁{𝑓𝑛,𝑣}𝑣=1
𝑉  | 𝑉𝐴𝑅{𝑓𝑛,𝑣}𝑣=1

𝑉  ⟩, (2) 

Where ⟨· | · | ·⟩ represents the connection operation of feature dimensions,  

{𝑓𝑒𝑎𝑛,𝑣}
𝑣=1

𝑉
 represents the input feature after the single-point feature is spliced with 

global features and discreteness. Next, we use part of the architecture in ViT to com-

plete the fusion of input feature {𝑓𝑒𝑎𝑛,𝑣}
𝑣=1

𝑉
. Since there is no positional correlation 

between our input features {𝑓𝑒𝑎𝑛,𝑣}
𝑣=1

𝑉
 and no Patch operation is needed to aggregate 

local features, we abandon the position encoding stage and Patch stage in ViT, and treat 

the input feature {𝑓𝑒𝑎𝑛,𝑣}
𝑣=1

𝑉
 as the input sequence in ViT. Within the ViT model, the 

features {𝑓𝑒𝑎𝑛,𝑣}
𝑣=1

𝑉
 of different input views learning cross-view correlation through 

self-attention mechanism. Next, we chose to add Class Token (clt) as the final fusion 

density token {𝑓𝑒𝑎𝑛
′ }𝑛=1

𝑁 , which can effectively balance the features from different 

views and reduce the bias caused by single view features and improve the overall con-

sistency of the synthesized image. Through this method, the ViT model is able to gen-

erate a global feature representation that not only contains the information of each in-

dividual view, but also contains the interaction information between multiple views: 

 {𝑓𝑒𝑎𝑛
′ } = 𝑇𝑟𝑎𝑛𝑠×𝑝 ( [ {𝑓𝑒𝑎𝑛,𝑣}

𝑣=1

𝑉
 , {𝑓𝑒𝑎𝑛

′ }] )   ∀𝑛 ∈ {1,2, … , 𝑁}, (3) 

Where [·  , ·] represents dimension splicing, 𝑇𝑟𝑎𝑛𝑠×𝑝 represents p-layer Transformer 

Encoder. 

 We further regularize the fused density token using the Multihead Attention Mech-

anism (MHA) so that each sampling point can learn a global density feature on the ray: 

 {𝑓𝑛
𝜎}𝑛=1

𝑁 = 𝑀𝐻𝐴({𝑓𝑒𝑎𝑛
′ }𝑛=1

𝑁 ). (4) 

Finally, we use a multilayer perceptron to reason about the density of a spatial point 

{ 𝜎𝑛 }𝑛=1
𝑁 : 

 {𝜎𝑛}𝑛=1
𝑁 = 𝑀𝐿𝑃𝑑( {𝑓𝑛

𝜎}𝑛=1
𝑁  ), (5) 

Where 𝑀𝐿𝑃𝑑(·) represents a four-layer perceptron. 

3.3 Color Prediction 

For color prediction, we add relative parallax information to the input features as a way 

to learn the similarity between the novel view and the input view. The smaller the par-

allax, the more likely we consider the input view to be similar to the novel view, and 

the larger the corresponding input feature weights. The addition of parallax information 

ensures that information captured from different viewing angles is geometrically and 

color consistent during composition, resulting in images that look natural and are geo-

metrically correct. Specifically, we use the geometric parallax {∆𝑑𝑣}𝑣=1
𝑉  between the 
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input view and the target view to splice with the input feature {𝑓𝑒𝑎𝑛,𝑣}
𝑣=1

𝑉
 . Next, we 

predict the color weight of each input view mapping point by a multilayer perceptron: 

 𝑤𝑛,𝑣 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑀𝐿𝑃𝑐({𝑓𝑒𝑎𝑛,𝑣}𝑣=1
𝑉  | {∆𝑑𝑣}𝑣=1

𝑉 ))   ∀𝑛 ∈ {1,2, … , 𝑁}, (6) 

Where 𝑀𝐿𝑃𝑐(·)  represents the multi-layer perceptron that infers color features, 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(·) represents the normalized exponential function to predict color weights. 

 Next, the color weight is multiplied by the corresponding color and summed to ob-

tain the color 𝑐̂𝑛 of the space point: 

 𝑐̂𝑛 = ∑ 𝑤𝑛,𝑣𝑟𝑔𝑏𝑛,𝑣     ∀𝑛 ∈ {1,2, … , 𝑁} ,𝑉
𝑣=1  (7) 

Where 𝑟𝑔𝑏𝑛,𝑣 represents the color of all input view mapping points corresponding to 

each spatial sampling point. 

3.4 Volume Rendering 

For volume rendering, we follow the NeRF [13] volume rendering principle by 

weighting the color of each point on the ray according to its volume density and trans-

mission function along the ray direction, and then accumulating these colors to get the 

final color 𝐶̂(𝑟) of the ray: 

 𝐶̂(𝑟) =  ∑ 𝑇𝑛(1 − exp (−𝜎𝑛))𝑐̂𝑛
𝑁
𝑛=1 , (8) 

 𝑇𝑛 = 𝑒𝑥𝑝(− ∑ 𝜎𝑗
𝑛−1
𝑗=1 ), (9) 

Where 𝑇𝑛 represents the cumulative transmittance of all points before the light passes 

through point n. 

3.5 Loss Functions 

For the loss function, we employ the Mean Squared Error (MSE). Given our adoption 

of NeRF’s hierarchical volume sampling strategy, we compute the MSE for the ray 

rendering results at both coarse and fine sampling levels relative to the ground truth and 

subsequently aggregate these errors. 

 𝑙𝑜𝑠𝑠 = ∑ [‖𝐶̂𝑐(𝑟) − 𝐶(𝑟)‖
2

2
+ ‖𝐶̂𝑓(𝑟) − 𝐶(𝑟)‖

2

2
]𝑟∈𝑅 , (10) 

where R represents the set of rays during training, 𝐶(𝑟) represents the true color, 𝐶̂𝑐(𝑟) 

and 𝐶̂𝑓(𝑟) represent the final rendered colors of coarse sampling and fine sampling re-

spectively. 
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4 Experiments 

Fig. 3. Qualitative comparison of methods on synthetic datasets[13] (Drums, Lego, Mic, Mate-

rials, and Ship) and the real forward datasets[18] (Fortress) demonstrates our proposed 

method's significant enhancement in scene detail retention, geometric appearance accuracy, and 

reduction in visual artifacts (floaters). Conversely, IBRNet exhibits pronounced artifacts and 

blurry boundaries. For instance, in processing the Fortress scene, our model effectively main-

tains structural continuity and integrity, in stark contrast to the image fracturing observed with 

IBRNet. Additionally, when addressing boundary details, such as the edge processing in Mic 

and Ship scenes, our approach substantially minimizes blur artifacts, thereby preserving the im-

age's overall visual quality. 

 

Dataset. Our training dataset consists of three parts in total. The first part of the dataset 

utilizes Google Scanned Objects [16], which renders images centered on the object. We 

use the Spaces dataset [17] as our second part. For the final part, we used 67 real scenes 

captured by mobile phones, collected from the IBRNet collection [12]. Among these, 

the Google Scanned Objects Dataset [16] contains 1023 models. The Spaces dataset 



8  Q. He et al. 

[17] includes 100 scenes captured by 16 cameras. As for the dataset of real scenes cap-

tured by mobile phones [12], each scene comprises 20-60 images taken by the front-

facing camera, roughly distributed on a 2D grid [18]. Our evaluation dataset employs 

synthetic renderings of objects and real images of complex scenes. For the synthetic 

rendering dataset of objects, we utilize the NeRF synthetic dataset [13], which includes 

100 training views and 200 test views at 800 × 800 resolution, sampled on the upper 

hemisphere or the entire sphere. For real datasets, we use roughly forward images from 

NeRF [18], with each scene consisting of 20 to 62 images captured at a 1008 × 756 

resolution. 

4.1 Experimental Results 

Our evaluation of the model is divided into two parts. Initially, our model was compared 

against existing generalizable NeRF models such as IBRNet [12], GeoNeRF [19], and 

MVSNeRF [9] without per-scene optimization; the comparison details are shown in 

Fig. 3. Subsequently, under the context of per-scene optimization, comparisons are 

drawn between our model and other models including DietNeRF [20], RegNeRF [1], 

DS-NeRF [3], DDP-NeRF [2], and ViP-NeRF [7]. 

In the field of visual rendering and reconstruction, quantitative evaluation metrics 

such as Peak Signal-to-Noise Ratio (PSNR [21]), Structural Similarity Index (SSIM 

[22]), and Learned Perceptual Image Patch Similarity (LPIPS [23]) play a pivotal role 

in gauging model performance. In our study, we conducted a quantitative comparison 

using these metrics on a synthetic dataset, as depicted in Table 1. The findings demon-

strate that our proposed model surpasses existing generalizable models in processing 

input images with identical viewing angles and quantities, exhibiting superior image 

reconstruction precision and visual quality. Notably, our model exhibits outstanding 

perceptual consistency on the LPIPS metric, thereby enhancing the image content’s 

realism. Table 2 presents a comparative evaluation on a real-world dataset, illustrating 

our model’s exceptional capability to restore image details and overall structure, par-

ticularly excelling in high-contrast areas and preserving luminance consistency. 

Table 1. Performance on SYNTHETIC DATASETS [13]. 

Method Settings 

Synthetic Data [13] 

 

PSNR SSIM LPIPS 

IBRNet [12]  21.38    0.850    0.195 

MVSNeRF [9] No per-scene Opt 22.60    0.867    0.238 

GeoNeRF[19]  16.09    0.653    0.390 

Ours  22.96    0.876    0.155 
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Table 2. Evaluation on Real Forward-Facing Datasets [18]. 

Method Settings 

Real Forward- 

Facing Data[18] 

 

PSNR SSIM LPIPS 

IBRNet [12]  21.22    0.681    0.339 

MVSNeRF [9] No per-scene Opt 17.08    0.574    0.463 

GeoNeRF[19]  17.41    0.415    0.528 

Ours  21.13    0.691    0.322 

Table 3. Model convergence experiments on SYNTHETIC DATASETS [13]. 

Method Settings 

Synthetic Data [13] 

 

PSNR SSIM LPIPS 

Oursno-ft  22.96    0.876    0.155 

Ours10k No per-scene Opt 24.71    0.899    0.119 

Ours30k  25.04    0.901    0.114 

Table 4. Comparison of per-scene rendering work with sparse input. 

Method Number of Views 

Real Forward- 

Facing Data[18] 

 

PSNR SSIM LPIPS 

DietNeRF[20]  11.89    0.320    0.726 

RegNeRF[1]  16.90    0.487    0.440 

DS-NeRF [3] No per-scene Opt 17.06    0.506    0.454 

DDP-NeRF [2]  17.21    0.537    0.422 

ViP-NeRF [7]  16.76    0.522    0.401 

Ours  22.34    0.732    0.286 

 

Additionally, the per-scene optimization experiments are structured into two seg-

ments. In the initial segment, our objective is to assess the model’s performance post a 

finite series of fine-tuning iterations for each distinct scene. Specifically, we conducted 

two experimental sets, entailing 10k and 30k finetuning iterations per scenario. The 

pertinent outcomes and analyses are depicted in Table 3, illustrating that the model 

exhibits considerable performance enhancement following merely 10k iterations, in-

dicative of its swift convergence properties. In the subsequent segment, We compared 

our model with previous models that failed to generalize under sparse input conditions. 

These methods rely on providing sparse input views for each scene and synthesizing 



10  Q. He et al. 

novel views through a limited number of iterations, without the ability to generalize 

across scenes. We compare these models by setting the same number of input views 

and fine-tuning 1k times. Verified through extensive experiments, our model is able to 

achieve higher quality view rendering with limited inputs, as shown in Table 4. 

4.2 Ablation Experiments 

In this paper, a series of ablation experiments were conducted to analyze the effective-

ness and robustness of each module under extremely sparse input conditions. Initially, 

we eliminated the Transformer from the feature extraction module to assess its impact. 

Subsequently, we chose to remove both the Transformer in the feature extraction mod-

ule and the Class Token (clt) in the ViT module. After removal, we select the input 

feature 𝑓𝑒𝑎𝑛,1 corresponding to the input view closest to the target view as the final 

fusion density token {𝑓𝑒𝑎𝑛,1
′ }. In the final ablation study, we selected Multi-Head At-

tention as our feature fusion module, with the feature extraction module adopting our 

proposed hybrid architecture of encoder-decoder and Transformer. The specific exper-

imental metrics comparison is shown in Table 5. 

Table 5. Ablation study of key components on Synthetic Datasets [13]. 

Ablation Study PSNR SSIM LPIPS 

w/o Transformer 22.92 0.871 0.173 

w/o Transformer + w/o clt 22.58 0.867 0.176 

w/o ViT 22.76 0.874 0.157 

Full model Ours 22.96 0.876 0.155 

5 Conclusion 

We contend that under sparse view conditions, bolstering the extraction of global fea-

tures aids the network in better deciphering the scene’s spatial relationships, thereby 

diminishing artifacts and enhancing novel view synthesis. Technically, our methodol-

ogy incorporates two pivotal components: Firstly, leveraging our devised hybrid archi-

tecture combining an encoder-decoder with a Transformer, we extract comprehensive 

local and global feature information from sparse input views. This dual feature extrac-

tion enables the model to capture intricate scene details and textures, while global fea-

tures assist in comprehending spatial relationships. Secondly, we deploy a Vision 

Transformer (ViT) sub-architecture for feature fusion, facilitating the effective amal-

gamation of features from diverse input views, thus constructing an integrated scene 

representation within the feature space. Based on this representation, our framework 

further predicts the density information of spatial points and employs the original 

NeRF’s volumetric rendering technique to synthesize the final novel view. Although 

our method significantly enhances the rendering quality, Vit has a huge parameter sys-

tem, which leads to a decrease in inference speed and high computational complexity. 

In the future, we will try to use convolution with fewer parameters to replace Vit to 

achieve multi-view feature fusion. 
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