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Abstract. Hierarchical multi-Granularity classification (HMC) aims to assign 

each object a label with multiple granularities from coarse to fine, focusing on 

the hierarchical structure of the label encoding. However, obtaining multi-gran-

ularity image labels through extensive manual labeling by experts is both costly 

and impractical for large-scale Fine-grained visual classification (FGVC) da-

tasets and new scenarios. In this paper, we propose a hierarchical label auto-la-

beling clustering algorithm (HLA) to automatically generate hierarchical multi-

granularity image labels. Additionally, we introduce a hierarchical constraint loss 

(HCL) and propose a hierarchical prediction constraint loss (HPCL) to constrain 

the relationship between different hierarchies. Extensive experiments on three 

commonly used FGVC datasets demonstrate that the proposed HLA can obtain 

similar performance with manual label method on CUB-200-2011, FGVC-

Aircraft and Stanford Cars datasets. The introduced HCL and HPCL achieves 

promising performance on multi-granularity image classification datasets. Mean-

while, the consistent improvement on all object re-identification tasks demon-

strates the effectiveness of our method. 

Keywords: Hierarchical Multi-Granularity Classification, Fine-Grained Visual 

Classification, Automatic Labeling. 

1 Introduction 

Fine-grained visual classification (FGVC) aims to retrieve and recognize images be-

longing to multiple subordinate classes of a superclass. Hierarchical multi-granularity 

classification (HMC) is a classification task for hierarchical structures. Multi-granular-

ity image classification (MIC) is an HMC task in the image area. Previous studies [5, 

29] have demonstrated that HMC can improve the performance of FGVC tasks. How-

ever, these studies necessitate domain-specific experts to manually assign hierarchical 

labels, which is expensive and impractical for large-scale FGVC and MIC datasets and 

new scenarios. The clustering algorithm emerges as the most used auto-labeling ap-

proach. Both the K-means algorithm [14] and Hierarchical clustering [1] demand prior 

knowledge of the number of clusters in each hierarchy, and Hierarchical clustering has 

high computational complexity. 
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Fig. 1. (a) Illustration of ornithologists grouping fine-grained labels. (b) Illustration of network 

grouping fine-grained labels. 

Compared with traditional image classification tasks, FGVC is more challenging due 

to the high similarity in appearance among subordinate classes. Current FGVC methods 

often utilize attention mechanisms or design specific loss functions to optimize feature 

representation [3, 30, 32]. Although these works have achieved remarkable success, 

they rely on discrete labels that fail to adequately exploit the similarity relationships 

between them. To tackle this problem, some works [4, 5, 20] use hierarchical multi-

granularity labels to enhance the fine-grained object features. Chang et al. [4] integrate 

fine-grained features with coarse-grained label prediction and restrict the gradient flow 

to update parameters within each classification head. Labels of different granularity 

will become distinct learning directions for the network. A robust multi-granularity im-

age classification (MIC) model should facilitate interaction between information at dif-

ferent granularities through hierarchical classification. 

Recent studies in HMC have bifurcated into two primary domains: Based on convo-

lutional neural networks (CNNs) study the label hierarchy mapping into the network 

structure [8, 13] and design of hierarchically constrained loss functions [29]. Wang [29] 

uses a linear combination of losses to fuse features from different layers. HRN [5] uses 

residual connections to convert coarse-hierarchy features to current features. However, 

these approaches lack constraints on the prediction results between hierarchies when 

investigating the relationships between hierarchies. 

In this paper, for the automatic labeling of hierarchical labels, we instruct the net-

work to construct hierarchical pseudo-labels from fine-grained to coarse-grained within 

the learned distribution of fine-grained features. We propose a hierarchical label auto-

labeling clustering algorithm (HLA), specifically designed for the automatic labeling 

of hierarchical labels. Image features can be automatically divided into hierarchical 

structures by emulating experts. Fig. 1 shows the difference between HLA and the man-

ual labeling of the multi-granularity datasets. In Fig. 1. (a) Illustration of ornithologists 

grouping fine-grained labels. (b) Illustration of network grouping fine-grained labels., 

based on domain knowledge of birds, ornithologists’ group ["Black footed Albatross", 

"Laysan Albatross", "Sooty Albatross"] in the family "Diomedeidae" and "Frig-

atebirds" in the family "Fregatidae". Conversely, in Fig. 1(b), the neural network is 

Ornithologist

Diomedeidae

Fregatidae

Same Class

Black footed Albatross

Laysan Albatross

Sooty Albatross

Frigatebird

Black footed Albatross

Laysan Albatross

Sooty Albatross

Frigatebird

Network

(a) (b)



 Hierarchical Label Auto-Labeling and Relationship Constraints for MIC 3 

devoid of explicit prior knowledge about families of birds. Based on the inherent rep-

resentation relationship of the bird image, the network groups ["Frigatebird"] in the 

same class as ["Black footed Albatross", "Laysan Albatross", "Sooty Albatross"]. 

We investigate the constraint relationships between hierarchies. We introduce hier-

archical constrained loss (HCL) to constrain the relationship between predicted values 

of classes in the upper and lower hierarchies. Additionally, we propose a hierarchical 

prediction constrained loss (HPCL), which utilizes a class prediction value at the upper 

hierarchy to constrain the output at the lower hierarchy. HPCL aims to prevent serious 

prediction bias in network learning. Specifically, the lower hierarchy considers the up-

per hierarchy's prediction more when generating the prediction results. 

In summary, the primary contributions of this paper are as follows: 

• We propose a hierarchical label auto-labeling clustering algorithm (HLA) to auto-

matically generate hierarchical multi-granularity labels. Extensive experiments on 

three widely used datasets for the MIC task demonstrate our auto-labeling can sig-

nificantly reduce labor and time costs. 

• We introduce hierarchical constrained loss (HCL) and propose hierarchical predic-

tion constrained loss (HPCL) to constrain and enhance the relationship between dif-

ferent hierarchical features. 

• Extensive experiments on three widely used FGVC datasets illustrate that HCL and 

HPCL achieve promising performance. Compared to manual labeling method, our 

HLA exhibit better convenience and reliability. Furthermore, by applying our 

method to object re-identification (ReID) baseline models, we demonstrate our 

method significantly improves the baseline. 

2 Related work 

2.1 Automatic labeling 

The most widely used auto-labeling approach is the clustering algorithm. K-means al-

gorithm [14] obtains the clustering results by an iterative method. It results in different 

results for each clustering. The number of clusters needs to be specified in advance. 

Hierarchical clustering [1] performs clustering based on distance rules, which can re-

veal the hierarchical relationships of classes. However, hierarchical clustering has a 

high computational complexity. The number of clusters in each layer still needs to be 

known in advance when constructing the label hierarchy. Therefore, we propose a hi-

erarchical label auto-labeling clustering algorithm (HLA) to obtain the predicted label 

order for each class. After quickly locking the range of the clusters number, the optimal 

number of clusters is determined by subsequent tests, which is used to auto-labeling the 

hierarchical labels. 

2.2 Fine-grained visual classification 

Recent works [4, 6, 25, 34] applied hierarchical label structures to FGVC. Zhang [34] 

proposed a new triplet loss between different coarse-grained classes, the same coarse-
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grained class but different fine-grained classes, and the same fine-grained class. Shi 

[25] proposed a generalized large-margin loss that makes subclasses of the same coarse-

grained class more similar than subclasses of different coarse-grained classes in the 

feature space. Chen et al. [6] use coarse-level prediction score vectors as a prior 

knowledge to learn feature representations on finer levels. Chang et al. [4] fuse fine-

grained features with coarse-grained label prediction and restrict the gradient flow to 

update the parameters within each classification head. All these methods enhance fea-

ture representation at the same hierarchy, but they ignore the relationship between hi-

erarchical labels. For instance, parent class information should contain the child class 

information, and the child class information should inherit the relevant properties of the 

parent class. 

2.3 Hierarchical multi-granularity classification 

HMC is a classification task for hierarchical structures. In image classification, HMC 

has been applied to diatomic image classification [9] and fine-grained image classifi-

cation [4, 5]. In the recent studies, the research direction of HMC is divided into two 

main parts: Based on deep neural networks (DNNs) study the label hierarchy mapping 

into the network structure [8, 13] and design of hierarchically constrained loss func-

tions. In HMC with local multi-layer perceptron (HMC-LMLP) [2], each MLP network 

corresponds to a hierarchical level. The input of each MLP network is the output of the 

previously trained MLP. This process is carried out from the first level to the last level. 

HMC Network (HMCN) [31] proposes a combination of local and global information 

to solve the HMC problem. Each level corresponds to a local output layer. The global 

output layer captures information across the entire network. Then, the entire local out-

put is converged with the global output to generate a final consistent prediction. 

In HMC-LMLP and HMCN network structures, the labels between the levels are 

independent of each other, and there is no semantic information interaction between the 

levels. Coherent HMC neural network (C-HMCNN) [13] modifies the cross-entropy 

loss between the levels to constrain the relationship between them. According to C-

HMCNN, if a sample is predicted to belong to a certain class, it also belongs to the 

parent class of that class. 

Fan [18] and Zhao et al. [35] defined the correlation between levels in a tree classi-

fier. We propose a simple and effective inter-level feature fusion model. Concretely, 

the finer-level subclass features are fused with the coarse-level superclass features to 

obtain more comprehensive information. Meanwhile, the training process can facilitate 

coarse-level superclass feature learning. In addition, our HCL and HPCL constrain the 

relationship between the predicted probability values of each hierarchy output. 
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3 Method 

3.1 Hierarchical Dataset Auto-Labeling 

To save the cost of hierarchical dataset labeling, we propose a hierarchical label auto-

labeling clustering algorithm (HLA) to automatically generate hierarchical multi-gran-

ularity labels. Once the network obtains the prediction results for all fine-grained clas-

ses, HLA constructs hierarchical pseudo-labels from fine to coarse based on this pre-

diction. The specific methods are as follows. 

Firstly, we use the CNN-based network which is pre-trained on ImageNet-1K to train 

the original fine-grained image training set. Next, we load the model training weights 

into the parameters of the network and retest the training dataset. 

Then, we save the prediction results of each class to the prediction labels order table. 

In each row of the prediction labels order table, the larger the predicted value of the 

class probability output, the higher the ranking of the prediction labels. Inspired by k-

reciprocal nearest neighbors, we intercept the results after Top 2 for k-nearest neighbor 

clustering. If the features of two images are k-nearest neighbors to each other, then they 

should be clustered into one class. 

Finally, with HLA clustering algorithm (the detail is described in Section 3.2), we 

can cluster this k-reciprocal nearest neighbor labels to obtain the hierarchical multi-

granularity labels. For example, if we set the number of Hierarchies to be 3, then we 

must use HLA twice to construct the hierarchical labels, i.e., Hierarchy1, Hierarchy2 

and Species, where "Species" is usually denoted as the original single-label of the da-

taset. Therefore, the two k values of input in HLA clustering algorithm are different. 

The second input k value must be smaller than the first input k value. 

 

Fig. 2. A schematic illustration of our model with multi-granularity class probability outputs. 

3.2 HLA Clustering Algorithm 

The input is prediction label order list List_Preds, and class number N. The output is 

hierarchical label set S.  We obtain k_sets, a list of reciprocal nearest neighbors, from 

List_Preds according to k. We define a list of length N called Tag (Tag = [1] * N). It 

records whether each class is accessed, where 0 is accessed and 1 is not accessed. When 

the 1 is still in Tag, we create a new queue q.  Then, we define empty_n records the 

class when the q is empty and class_idx records the hierarchical label number (The 



6  Changwang Mei, Xindong You, Shangzhi Teng, and Xueqiang LYU 

initial value of class_idx is 1). Next, we find the k-reciprocal nearest neighbor predic-

tion labels for class i by traversing the class N and store them to q. Finally, since the 

queue has a first-in-first-out (FIFO) principle, we iterate over q. The class i is then 

stored in empty_n and k_sets. When q is empty, Tag[empty_n] = 0 and S[N + class_idx] 

= k_sets. When S stores k_sets for each time, the value of class_idx is incremented by 

1 and k_sets = []. Repeat until there are no number 1 in Tag. Ultimately, the hierarchical 

label set S is obtained. 

3.3 Loss Function 

As shown in Fig. 2, given any CNN-based network backbone F(·), we feed image x as 

input to extract its feature embedding f = F(x). Our goal is then to correctly predict 

classes across L independent classifiers, g1(·), g2(·), ..., gl(·), ..., gL(·) based on f, i.e., 𝑦̂𝑙 
= 𝑦𝑙 , where L indicates the number of hierarchical granularity, 𝑦̂𝑙 = gl(f) and 𝑦𝑙  denotes 

the correct class of the lth hierarchy. Our optimization objective is L independent cross-

entropy loss ∑ 𝐿𝐶𝐸(𝑦̂
𝑙 , 𝑦𝑙)𝐿

𝑙=1 . 

Inspired by the hierarchical node relationships of decision trees [26], we introduce 

the HCL to enhance the robustness of the hierarchical feature. Specifically, as shown 

in Fig. 2, in the hierarchical structure, the prediction probability value Pl of the finer-

hierarchy subclasses should be lower than the coarse-hierarchy superclasses prediction 

probability values P1, P2, ..., Pl-1. HCL is defined as: 

 ℒ𝐻𝐶𝐿 = ∑ ∑
1

2
𝑚𝑎𝑥{0, 𝑃𝑖 − 𝑃𝑗}

2𝑖
𝑗=1

𝐿
𝑖=2  (1) 

In addition, there is a certain constraint on the predicted values between the hierar-

chies. Specifically, in the same hierarchy l, when the predicted value 𝑃𝑙
𝑆of class S is 

maximal and the predicted label is correct, the set of subclasses of the next hierarchy 

l+1 corresponding to class S is s = {s1, s2, ..., sm} and the maximum value of s is max{s}, 

where m denotes the number of subclasses that belong to S. In hierarchy l+1, except for 

s, the value of max{s} must be higher than the predicted values of the other classes q = 

{q1, q2, ..., qn}, where n denotes the number of classes in the hierarchy l+1 that do not 

belong to s. Thus, the HPCL is defined as: 

 ℒ𝐻𝑃𝐶𝐿 = ∑ 𝑚𝑎𝑥𝑛
𝑖=1 {0, 𝑃𝑞𝑖 −𝑚𝑎𝑥{𝑠}} (2) 

The total loss function Loss can be defined as: 

 𝐿𝑜𝑠𝑠 = ∑ 𝐿𝐶𝐸
𝐿
𝑙=1 (𝑦̂𝑙 , 𝑦𝑙) + 𝜆ℒ𝐻𝐶𝐿 + ℒ𝐻𝑃𝐶𝐿 (3) 

4 Experiments 

In our experiments, we resized the input image to 448×448. We train each experiment 

for 200 epochs. In training phrase, data augmentation is performed via Random Crop 

and Random Horizontal Flip. In testing phrase, data augmentation is center cropping. 

We use Resnet-50 as the backbone network, and we concatenate upper hierarchical 
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features to lower hierarchies to enhance the lower hierarchical feature representations 

as baseline, as shown in Fig. 2. We use stochastic gradient descent (SGD) with a mo-

mentum of 0.9, weight decay of 0.0005 to optimize our model. The batch size is set to 

8. The learning rate of the network is initialized as 0.0002. The learning rate is adjusted 

by cosine annealing strategy [21]. All codes are implemented using the PyTorch library 

and run on a single NVIDIA v40 GPU. 

4.1 Datasets and metrics. 

We evaluate our proposed method on three widely used FGVC datasets. A taxonomy 

for manually constructing label hierarchies by tracing their parent nodes (superclasses) 

in Wikipedia pages. CUB-200-2011 (CUB) [27]is a dataset that contains 11877 images 

belonging to 200 bird species, including a three-hierarchy label hierarchy with 13 or-

ders, 38 families, and 200 species. FGVC-Aircraft (Air) [23] is an aircraft dataset with 

10000 images covering 100 model variants, including a three-hierarchy label hierarchy 

with 30 makers, 70 families, and 100 models. Stanford Cars (Car) [17] contains 8144 

car images categorized by 196 car makers, including a two-hierarchy label hierarchy 

with 9 car types and 196 specific models. 

We follow the standard train/test splits in existing works. We do not use any bound-

ing box annotations in all our experiments. 

We use two evaluation metrics. The first criterion follows the FGVC convention and 

uses fine-grained accuracy to evaluate the designed model. The second evaluation met-

ric is the Top-1 precision of all hierarchical classes. Then, the hierarchical classification 

performance can be evaluated by the weighted average precision (wAP) of all hierar-

chical classes: 

 wAP = ∑
𝑐𝑙𝑎𝑠𝑠_𝑛𝑢𝑚𝑙

∑ 𝑐𝑙𝑎𝑠𝑠_𝑛𝑢𝑚𝑘
𝐿
𝑘=1

𝑃𝑙
𝐿
𝑙=1  (4) 

where 𝑐𝑙𝑎𝑠𝑠_𝑛𝑢𝑚𝑙 and 𝑃𝑙  denote the number of class and Top-1 classification accu-

racy at hierarchy l, respectively. The finer the classification, the greater its weight in 

performance evaluation. The best results for each indicator are shown in bold. 

4.2 Effects of HCL and HPCL 

To verify the effectiveness of HCL and HPCL, we conduct experiments on three man-

ually labeled multi-granularity datasets. As shown in Table 1 and Table 2, compared 

to existing work, Ours(HCL+HPCL) achieves the best performance in terms of both 

fine-grained accuracy and wAP across all three datasets. In addition, in comparison to 

Baseline, HCL and HPCL each obtain significant performance improvements. Experi-

ments demonstrate that HCL and HPCL are effective in constraining the relationships 

between hierarchies and enhancing the performance of the network. 
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Table 1. Performance of our methods in the MIC task on manually labeled hierarchical CUB 

dataset. 

Method 
CUB 

Order Family Specie wAP 

HMC-LMLP [2] 98.45 94.24 79.60 82.79 

HMCN [31] 97.29 93.15 79.15 82.69 

C-HMCNN [13] 98.48 94.63 81.58 84.43 

FGN [4] 97.76 94.17 85.56 87.50 

HRN [5] 98.67 95.51 86.60 88.57 

Baseline 98.48 95.65 85.50 87.71 

Ours(HCL) 98.86 95.74 87.53 89.36 

Ours(HPCL) 98.81 95.70 87.32 89.18 

Ours(HCL+HPCL) 98.93 95.89 88.02 89.78 

Table 2. Performance of our methods in the MIC task on manually labeled hierarchical Air and 

Car datasets. 

Method 
Air Car 

Maker Family Model wAP Type Maker wAP 

HMC-LMLP 97.09 94.39 90.25 92.72 96.98 87.65 88.06 

HMCN 96.07 92.56 87.19 90.40 95.21 88.71 88.99 

C-HMCNN 97.45 95.41 91.69 93.86 96.75 90.64 90.91 

FGN 96.88 95.28 91.92 93.84 96.40 93.65 93.77 

HRN 97.45 95.79 92.58 94.43 97.41 94.03 94.18 

Baseline 95.90 93.82 91.54 92.99 96.24 93.49 93.61 

Ours(HCL) 96.48 94.41 92.73 93.88 96.54 94.38 94.47 

Ours(HPCL) 96.41 94.43 92.54 93.78 96.55 93.98 94.09 

Ours(HCL+HPCL) 97.05 95.38 93.33 94.61 97.39 94.96 95.07 
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Fig. 3. The effect of different k values on the CUB, Air and Car datasets. The H1 of CUB, Air 

and Car denotes Order, Maker and Type respectively. The H2 of CUB and Air denote their re-

spective Family. 

Table 3. Performance of different proportions for manually labeled training set of CUB dataset. 

Proportion 
CUB 

Order Family Specie wAP 

0% - - 87.75 - 

25% 98.53 94.80 87.15 88.90 

50% 98.79 95.71 87.53 89.35 

75% 98.70 95.85 87.96 89.71 

100% 98.84 95.88 88.04 89.79 

Table 4. Performance of different proportions for manually labeled training set of Air and Car 

datasets. 

Proportion 
Air Car 

Maker Family Model wAP Type Maker wAP 

0% - - 93.64 - - 94.87 - 

25% 95.97 95.45 93.53 94.57 94.31 94.69 94.67 

50% 96.52 95.30 93.67 94.67 96.42 94.99 95.05 

75% 97.10 95.65 93.76 94.92 96.68 95.03 95.10 

100% 97.02 95.59 93.85 94.94 96.75 95.12 95.19 

CUB Air Car
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4.3 Validity of HLA 

We use HLA on the three datasets to evaluate the performance. The value of k varies 

for each hierarchy within each dataset. The results are shown in Fig. 3, for CUB dataset, 

both fine-grained accuracy and wAP are the best when k1=3 and k2=1, with 87.75% 

and 89.73%, respectively. Similarly, for Air dataset, both fine-grained accuracy and 

wAP are best when k1=2 and k2=1, with 93.64% and 94.78%, respectively. For Car 

dataset, when k1=2, both fine-grained accuracy and wAP are the best, with 94.87% and 

95.74%, respectively. 

We further study the ability of our HLA in reducing labor and time costs. We choose 

the best wAP accuracy model in Fig. 3 as our pre-training model, and then fine-tune it 

on the manually labeled training set at various proportions (e.g., 25%, 50%, 75%, 

100%). Then test the fine-tuned model on the manually labeled test set. As shown in 

Table 3 and Table 4, on the Air and Car datasets, the performance of the manually 

labeled training set using 50% and 75%, respectively, is better than the performance of 

Ours(HCL+HPCL) of Table 1 and Table 2. Besides, On the CUB dataset, the perfor-

mance of the manually labeled training set using 75% is close to the performance of 

Ours(HCL+HPCL) of Table 1 and Table 2. Experiments demonstrate that HLA can 

diminish the necessity for manually labeled hierarchical labels in hierarchical multi-

granularity classification tasks. 

Table 5. Performance comparisons on traditional FGVC setting with single fine-grained label 

output. 

Method 
Precision (%) 

CUB Air Car 

NTS-Net [33] 87.5 91.4 93.9 

PC [12] 86.9 89.2 92.9 

DCL [7] 87.8 93.0 94.5 

S3N [10] 88.5 92.8 94.7 

ACNet [16] 88.1 92.4 94.6 

SPS [15] 88.7 92.7 94.9 

CHRF [20] 89.4 93.6 95.2 

AAM [28] 88.6 93.5 94.0 

PMG [11] 89.6 93.4 95.1 

Ours 88.0 93.9 95.2 

Ours_PMG 89.9 94.1 95.6 
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4.4 Comparison with FGVC works 

We compare our methods with recent FGVC works. The results are shown in Table 5. 

HCL and HPCL effectively constrain the relationships between hierarchies to enhance 

the fine-grained feature representation and improve the fine-grained performance. Fur-

thermore, PMG [11] introduces a progressive training strategy that effectively fuses 

features from different granularities. Consequently, we apply the proposed HCL and 

HPCL to PMG to obtain Ours_PMG. Experiments show that Ours_PMG further im-

proves performance on three datasets. 

4.5 Visualization 

We further show visualizations to demonstrate the validity of our methods. 

Fig. 4 visualizes image feature distribution of 200 images (20 species for CUB dataset, 

20 makers for Car dataset and 10 images per class) randomly sampled from the test 

dataset with t-SNE [22]. Features extracted by manual labeling approach and our HLA 

are compared. Our HLA can make the features of the same granularity category closer 

to each other, indicating the better feature representation. 

 

Fig. 4. Visualization of image feature distribution. The first row represents the distribution of 

features where the hierarchy is Order in the CUB dataset. The second row represents the distri-

bution of features where the hierarchy is Type in the Car dataset. (a) The method of manual la-

beling. (b) The approach of our HLA. 

(a) Manual Labeling (b) HLA

CUB

Car
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Table 6. Performance comparisons on object re-identification tasks. 

Method 
Market-1501 DukeMTMC-reID VeRi-776 

mAP CMC@1 mAP CMC@1 mAP CMC@1 

Baseline 87.5 95.0 78.7 89.0 79.3 96.5 

Ours 88.6 95.5 79.9 89.2 80.2 96.8 

5 Object Re-identification 

To validate the generalizability of our proposed method, we conduct experiments on 

object re-identification (ReID) tasks (person re-identification and vehicle re-identifica-

tion), where the datasets include Market-1501[36], DukeMTMC-reID [24] and VeRi-

776 [19]. We employ the widely adopted metrics including mean Average Precision 

(mAP) and Rank1 (CMC@1) to quantify the ReID performance. 

As shown in Table 6, HLA automatically generates a single hierarchy of coarse-

grained pseudo-labels for object ReID datasets. Compared to the baseline, our method 

improves the mAP by about 1.1% on average. The experiments demonstrate that our 

proposed method can also improve the performance of object ReID. Especially in the 

context of datasets characterized by high similarity and potential confounding features, 

HLA effectively facilitates the clustering and differentiation of these features. 

6 Conclusion 

This paper addresses the challenge of automatically generating hierarchical multi-gran-

ularity labels for fine-grained visual classification at different granularities. We propose 

the hierarchical label auto-labeling (HLA) method, specifically designed to generate 

hierarchical multi-granularity labels. In the MIC tasks, HLA achieves the equivalent 

performance of full manual labeling while requiring a manual labeling effort of only 

25% or less. This demonstrates HLA's effectiveness in mitigating the cost associated 

with manual labeling. Furthermore, we introduce the HCL and propose HPCL to con-

strain and enhance relationships between different hierarchical features. Extensive ex-

perimentation validates the effectiveness of our approach across FGVC, MIC, and Ob-

ject ReID tasks. Furthermore, the categorization mentioned in this article is typically 

carried out in outdoor environments, generally using mobile devices for portability. 

How to ensure accuracy while simultaneously the model is worthy of further research. 
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