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Abstract. The growth of the autonomous driving industry in recent years has 

spurred research on intelligent transportation systems. However, predicting long-

term traffic patterns is a complex task that can lead to overfitting and fluctuations 

in model predictions. To address these challenges, this paper proposes a spatio-

temporal modeling approach called STASG that captures both the spatial and 

temporal features of traffic data. The method fuses these features using a gated 

fusion mechanism and then applies feedforward neural networks to transform the 

spatio-temporal data into predictions for future time steps. To mitigate overfit-

ting, the paper introduces a novel loss function called the mean loss function. By 

minimizing fluctuations in model predictions, this approach aims to improve the 

accuracy of long-term traffic forecasts. Overall, this paper presents a promising 

approach to improving the performance of intelligent transportation systems, par-

ticularly in the area of long-term traffic prediction. The proposed method com-

bines several techniques, including spatio-temporal modeling, neural networks, 

and a new loss function, to address the challenges of overfitting and prediction 

fluctuations. After conducting multiple experiments on the publicly available 

transportation network datasets, METR-LA and PEMS-Bay, our proposed model 

demonstrated improved performance in long-term traffic flow prediction. 

Keywords: Traffic prediction · Gated attention unit · Mean Value loss · Graph 

neural network. 

1 Introduction 

With the advancement of GPS and sensor technology, the proliferation of spatiotem-

poral data has surged from diverse sources such as mobile phones, car navigation sys-

tems, and traffic sensors. Urban traffic forecasting, which serves as a fundamental re-

search topic, has laid a foundation for exploring the dynamic characteristics of urban 

traffic networks. Traffic forecasting provides a significant technical basis for intelligent 

transport [1], low-carbon city construction, and urban traffic management. 
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The objective of traffic flow data prediction is to leverage historical time-step traffic 

flow and other sensor-gathered features to predict future traffic conditions. Given the 

rapid growth of autonomous driving [2], electronic maps [3], and other transportation 

industries, solving this problem has become a crucial strategy to reduce traffic conges-

tion, optimize driving routes, enhance road efficiency, and tackle road traffic issues. 

Moreover, long-time traffic flow prediction is a prerequisite and fundamental basis for 

intelligent traffic systems [4]. In recent years, deep learning has gained extensive atten-

tion in diverse industries for predictive modeling of data. 

To address spatial modeling of images and temporal modeling of time series, deep 

learning researchers have devised convolutional neural networks and their defor-

mations [5] as well as recurrent neural networks and their deformations [6, 7]. Never-

theless, traffic data represents non-Euclidean structured data, which employs an adja-

cency matrix to depict the position relationship between sensor nodes. The spatial fea-

tures of this non-Euclidean structure cannot be captured by simple convolutional neural 

networks. The emergence of graph neural networks [8, 9] has brought a completely new 

research perspective to this field. Although graph neural networks [10, 11] have been 

utilized to model the structure of traffic maps, the spatio-temporal nature of traffic flow 

data presents a significant challenge to this research. 

In our quest to dissect and understand the complex world of sensor networks and 

traffic flow, we’ve masterfully combined an adaptive adjacency matrix with a tradi-

tional sensor node adjacency matrix, enabling us to not only uncover the static spatial 

attributes of sensor nodes but also reveal their hidden spatial connections. Tackling the 

challenge of over-smoothing inherent in multi-layer graph convolution, we’ve stream-

lined the process with a graph convolutional neural network adept at capturing spatial 

features by embracing the insights from multi-hop neighbor nodes. For temporal anal-

ysis, the Gate Attention Unit stands at the forefront, elegantly preserving global feature 

interaction while simplifying the complexity typically associated with attention mech-

anisms, thus enhancing processing speed. Our model is the use of a gating mechanism 

that intelligently merges spatio-temporal features, adeptly mimicking the complex in-

terplay of space and time within traffic dynamics. This holistic approach not only sheds 

light on the intricacies of traffic flow but also paves the way for advanced models ca-

pable of predicting the rhythmic dance of urban traffic with unprecedented precision. 

2 Related Work 

2.1 Traffic Prediction 

Whether it is a short-term traffic forecasting or long-term traffic forecasting problem, 

the focus is on a data-driven approach, i.e., forecasting based on historical data. The 

traffic forecasting problem is more challenging than other time series forecasting prob-

lems because it involves large data volumes with high dimensionality and data trans-

formation in different dimensions, specifically large data volumes with high dimen-

sionality and multiple dynamic factors, including emergency situations such as traffic 

accidents. Examples include historical average and integrated moving average 

(ARIMA) models [12]. This spatio-temporal prediction problem cannot be handled. 
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Machine learning (ML) and deep learning techniques have been introduced in this field 

to improve prediction. Gridding data in spatial domain using CNN [13], Using RNN 

and its deformation LSTM in time distribution prediction [14, 15]. However, all these 

modeling approaches have shortcomings. For CNNs, it ignores that the underlying 

graph structure of traffic data is non-Euclidean. At the same time, RNNs and their de-

formations cannot effectively exploit the spatial properties of traffic data for long-term 

traffic prediction. Recent research has built traffic prediction on graphs and used GNNs 

to model non-Euclidean structures in road networks. GNNs can capture complex rela-

tionships between objects and make inferences based on the described data as a neural 

network acting directly on graph structures. GNNs are effective for node-level, edge-

level, and graph-level prediction tasks in various situations. GNNs are currently con-

sidered state-of-the-art for traffic prediction problems, and these non-Euclidean struc-

ture-based models generate future traffic data through a multi-step prediction approach 

[17, 18]. 

2.2 Self-Attention Mechanism 

The attention mechanism was first introduced in the field of natural language pro-

cessing, and the popularity of the Transformer [19] has led to a wide range of applica-

tions, including the Transformer in machine translation, the BERT [20], and GPT fam-

ilies of pre-training models [21, 22]. It is also used in computer vision in the Vision 

Transformer [23] and Swin Transformer [24]. It eliminates the problem of gradient dis-

appearance or gradient explosion when training models with long data sequences and 

can effectively exploit the parallel computing power of GPUs to improve the training 

speed and prediction accuracy significantly. In addition, there has been some research 

on using attention mechanisms in traffic prediction. Using appropriate spatio-temporal 

location embeddings, researchers have captured the spatio-temporal characteristics of 

traffic data using attention mechanisms to predict future changes in traffic conditions 

by annotating the location information of spatio-temporal sequences. For example, Ge-

oMAN [25] is the first to introduce a multi-layer attention mechanism to the spatio-

temporal data prediction problem, modeling the dynamic spatio-temporal correlations 

between sensors, and GMAN [26] adds a transformed attention layer between Encoder 

and Decoder to transform the encoded historical features to generate future feature rep-

resentations. Our capture of temporal dependencies is an improvement on this [36]. 

Nonetheless, since the computation of the previous temporal self-attention mechanism 

is too computer resource-intensive, we slightly improve the existing self-attention 

mechanism by structurally fusing it with gated linear units to achieve computational 

efficiency [37]. 

2.3 Graph neural network 

For graph data graph neural network is a network with good learning performance, 

which can extract a large amount of spatial information from non-Euclidean structured 

data, thus providing new opportunities for transportation prediction. Based on graph 
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theory, nodes, and edges have features that can be convolved or aggregated. These fea-

tures reflect various traffic conditions, such as traffic volume, speed, number of lanes, 

and road class, spatial data. Graph neural networks can be seen as an extension of deep 

neural networks to graph data [27]. Since graph structures are not traditional grid-struc-

tured data, traditional deep neural networks cannot be extended to graph-structured 

data. Using node features and graph structures as input, the researchers aim to learn 

representative features of each node, which can be of great help in subsequent classifi-

cation and regression tasks. 

3 Methodology 

3.1 Problem Definition 

We assume that there are n sensor nodes N on the road traffic network, each sensor 

node can record the traffic flow characteristics of the current location in real time (in 

this paper the characteristics refer to the traffic flow S), the traffic condition in a certain 

time period can be expressed as 𝑋𝑡 belonging to 𝑅𝑛×𝑠. The purpose of the traffic pre-

diction problem in a time 𝑡 is to obtain a model 𝑓 trained by the historical time period 

𝑝, which can predict the traffic conditions in the future time period 𝑞,The specific for-

mula 1 is shown below 

 𝑋𝑡1
, 𝑋𝑡2

, ⋯ , 𝑋𝑡𝑝

f
→ 𝑋𝑡𝑝+1

, 𝑋𝑡𝑝+2
, ⋯ , 𝑋𝑡𝑝+𝑞

 (1) 

3.2 Framework of STASG 

As shown in Fig.1, we present our proposed framework with a graph attention-based 

traffic prediction network model (STASG). Similar to the mainstream spatio-temporal 

prediction models nowadays, STASG also adopts an encoder-decoder structure, and 

our model consists of four parts, which are spatiotemporal embedding location encod-

ing, graph adaptive adjacency matrix, encoder and decoder modules, and the output of 

the final decoder, which first undergoes a nonlinear transformation by a two-layer mean 

prediction network to generate the mean of traffic features for future time step predic-

tion, is also input to a layer of The final result is obtained by the dimensional transfor-

mation of the full connection. The spatio-temporal embedding location coding can ex-

tract the features of our input traffic flow and fuse the temporal and spatial features in 

the original traffic data to obtain the spatio-temporal features that can be more easily 

recognized by the encoder and decoder. The spatio-temporal node features are obtained 

by summing the adaptive adjacency matrix and the known adjacency matrix during the 

training process and inputting them into the spatial graph convolution module to obtain 

more flexible spatial node features. n spatio-temporal modules and two consecutive 

fully connected layers are included in each of our encoders and decoders respectively, 

and each spatio-temporal module we adopt a gating mechanism to fuse the temporal 

gated attention unit and the spatial simple. The spatio-temporal features generated by 



 Spatial-Temporal Attention Simple Graph Neural Network 5 

 

the convolutional unit of the graph. The final STASG model requires the output dimen-

sion of each module to be the same as the input data dimension because it is convenient 

to add jump connection structure to each module to break the symmetry of the model 

structure, which is used to alleviate the model degradation problem common to neural 

network models. 

 

 

Fig. 1. The structure of our model STASG 

 

 

Fig. 2. Structure of spatial embedding and temporal embedding 
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3.3 Spatio-temporal embedding position matrix 

The variation of spatio-temporal correlation of traffic prediction data mainly depends 

on the difference of temporal nodes and the different locations of spatial nodes. The 

self-attentive mechanism can be more effective than the RNN series model and its de-

formation in capturing the corresponding temporal features. However, in the RNN se-

ries model, the input features naturally carry sequential features, and the self-attentive 

mechanism obviously does not have the advantage in this regard. As shown in Fig.2, 

Encode the original road network data and the adjacency matrix data with spatial and 

temporal embedding locations. Firstly, in the spatially embedded location coding, we 

use the node2vec method to learn the distance and connectivity of sensor nodes with 

fixed point representation, and the previously trained vector of each node will be trained 

adaptively as the model runs, and at the end of each training session, the training enters 

the two-layer 2D convolutional network for dimensional transformation to obtain the 

spatially embedded representation vector 𝑆𝑒 subset 𝑅𝐷, and in this paper we use 𝑆𝑒 for 

the representation. The specific formula 2 is shown below: 

 𝑆𝑒 = 𝑐𝑜𝑛𝑣1×1 (𝑐𝑜𝑛𝑣(1×1)(𝑛𝑜𝑑𝑒2𝑣𝑒𝑐(𝑎𝑑𝑗, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒))) (2) 

𝑎𝑑𝑗 represents the connectivity adjacency matrix between each sensor node, and 

distance represents the distance matrix between different sensor nodes. 

The spatial embedding representation vector can only represent the regional connectiv-

ity representation of the whole dataset, when our traffic dataset is used as a static graph, 

the spatial embedding vector is sufficient. Most of the spatio-temporal characteristics 

of the traffic flow prediction dataset are dynamic, and based on this feature, we adopt 

a temporal embedding method. Firstly, we extract the temporal features of the data by 

using the unique thermal coding method. Each data is encoded with two temporal loca-

tions, 𝑑𝑎𝑦𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  for 7 days in a week and 𝑝𝑜𝑖𝑛𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 for 24 hours in a day. The 

two global location codes are concatenated to obtain the initial temporal embedding 

representation vector, The specific formula 3 is shown below: 

 𝑇𝑒̂ = 𝑐𝑜𝑛𝑐𝑎𝑡(d𝑎𝑦p𝑜𝑠𝑖𝑡𝑖𝑜𝑛, p𝑜𝑖𝑛𝑡p𝑜𝑠𝑖𝑡𝑖𝑜𝑛) (3) 

Next, we apply a two-layer two-dimensional 1×1 convolutional network to transform 

the dimensionality of the time-embedded vector to d dimensions. 

 𝑇𝑒 = 𝑐𝑜𝑛𝑣1×1 (𝑐𝑜𝑛𝑣1×1(𝑇𝑒̂)) (4) 

To obtain dynamic and static representations of traffic data, we sum the temporal em-

bedding representation vector and the spatial embedding representation vector men-

tioned above to obtain the temporal embedding vector 𝑆𝑇𝑒 that fuses the features of 

both for the subsequent temporal gating attention mechanism. 

 𝑆𝑇𝑒 = 𝑆𝑒 + 𝑇𝑒 (5) 
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3.4 Graph Adaptive Adjacency Matrix 

We define a self-learning adjacency matrix 𝐴𝑙𝑒𝑎𝑟𝑛  in addition to the traditional adja-

cency matrix of sensor nodes in order to preserve the generalization of the spatial struc-

ture data. 

 𝐴𝑙𝑒𝑎𝑟𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑟𝑒𝑙𝑢(𝐴1𝐴2)) (6) 

where 𝐴1 ∈ 𝑅𝑁×𝑐  and 𝐴2 ∈ 𝑅𝑁×𝑐  denote two randomly initialized learnable parame-

ters. We use the 𝑟𝑒𝑙𝑢() function to maintain the nonlinear variation of the self-learning 

adjacency matrix. Finally, the self-learning adjacency matrix is normalized using the 

softmax function. The normalized self-learning adjacency matrix can be used as a dy-

namic representation of the current spatial state. Then the random initialized self-learn-

ing adjacency matrix 𝐴𝑙𝑒𝑎𝑟𝑛  is fused with the initial adjacency matrix 𝐴𝑠𝑢𝑝𝑝𝑜𝑟𝑡. This 

fusion operation can be defined as follows: 

 𝐴𝑎𝑑𝑗 = 𝐴𝑠𝑢𝑝𝑝𝑜𝑟𝑡 + 𝐴𝑙𝑒𝑎𝑟𝑛 (7) 

The fused adjacency matrix 𝐴𝑎𝑑𝑗 is input to the spatial graph convolution module to 

simulate the spatial features of each road. The adaptive adjacency matrix 𝐴𝑎𝑑𝑗 can dy-

namically complete the missing graph structure in the initial adjacency matrix to im-

prove the accuracy of model prediction by continuously improving the graph structure. 

 

 

Fig. 3. Structure of ST-Block 
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3.5 ST-Block 

As shown in Fig.3, the ST-Block we define consists of a temporal gated attention unit, 

a spatial graph convolution unit and a gated fusion unit. We denote the output of the m-

th block as 𝐻(𝑚−1), where the hidden state of vertex 𝑣𝑖 at time step 𝑡𝑗 is denoted as 

𝐻(𝑚−1). The outputs of the time-gated attention and spatial graph convolution units of 

the m-th block are denoted as 𝐻𝑆
(𝑚)

 and𝐻𝑇
(𝑚)

, respectively, where the temporal hidden 

states of the vertex 𝑣𝑖 at the time step 𝑡𝑖 are denoted as  ℎ𝑣𝑖,𝑡𝑗

𝑡(𝑚)
 and ℎ𝑣𝑖,𝑡𝑗

𝑠(𝑚)
. Finally, we 

input the temporal hidden state and spatial hidden state to the gated fusion unit, denoted 

as 𝐻(𝑚). 

 

Temporal Gated Attention Unit In the past, spatio-temporal prediction models usu-

ally use RNN and its deformations, especially Long Short Time Memory (LSTM) and 

Gated Recursive Unit (GRU) are applied to model temporal correlation, although the 

RNN model establishes the temporal correlation of each unit, we can also see that the 

LSTM model widely identifies the nonlinear variation of traffic data and effectively 

eliminates the gradient decrement, but cannot identify the temporal periodicity and dy-

namic trend of real-time traffic data. Therefore, we propose a temporal gated attention 

mechanism in ST-Block, which not only captures the temporal trend and periodicity, 

but also dynamically obtains global temporal information in multiple time ranges, and 

focuses attention on the most important information of current traffic prediction, which 

has a faster speed and lower memory consumption than the temporal multiheaded at-

tention units proposed by other similar models. It has faster speed, lower memory con-

sumption, and better results than other similar models. We find that the current time 

traffic flow prediction has a non-linear correlation with the previous multiple time 

steps. We design an adaptive modeling of the temporal characteristics of temporal data 

for the past t time steps by fusing an attention mechanism with a gated linear unit. 

Specifically, we connect the current state with a temporal embedding matrix to adap-

tively model the nonlinear correlation between different time steps and use a gated at-

tention method to calculate the attention scores. Formally, we first consider the corre-

lation between the vertex vi, the other nodes v using the multi-headed attention ap-

proach defined as: 

 𝑋̂ = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑋, 𝑆𝑇𝑒) (8) 

 𝑆𝑐𝑜𝑟𝑒𝑣𝑖,𝑣
(𝑘)

=
(𝐹𝐶𝑞(𝑥𝑣𝑖,𝑡𝑗

)(𝐹𝐶𝑘(𝑥𝑣𝑖,𝑡𝑗
)))

√𝑑
 (9) 

 ℎ𝑣𝑖,𝑣
(𝑘)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑆𝑐𝑜𝑟𝑒𝑣𝑖,𝑣
(𝑘)

) ∙ 𝐹𝐶𝑣 (𝑥̂𝑣𝑖,𝑡𝑗
) (10) 

𝑋̂ consists  of  the  initial  data  𝑋  and  the  spatio-temporal  embedding  vector through 

the connection function 𝑐𝑜𝑛𝑐𝑎𝑡(), 𝐹𝐶𝑞(), 𝐹𝐶𝑘(), 𝐹𝐶𝑣() denote three different nonlin-

ear mappings, 𝑥̂𝑣𝑖,𝑡𝑗
 and  𝐹𝐶𝑘(), mapping,  multiply to get the similarity of the node, 
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divide by √𝑑 to get 𝑆𝑐𝑜𝑟𝑒𝑣𝑖,𝑣
(𝑘)

 , use softmax function to normalize the exponential, mul-

tiply with the mapping of 𝐹𝐶𝑣(), and get the hidden state ℎ𝑣𝑖,𝑣
(𝑘)

. 

 The use of multi-headed temporal attention mechanism can calculate the temporal 

correlation between each vertex, but it requires more time and space overhead due to 

the global calculation. We can analyze the structure of the gated linear unit and the 

multi-headed attention mechanism through the model structure, and the gated linear 

unit can not realize the interaction between different vertex time features. 

 In T-GAU 𝐹𝐶𝑞(), 𝐹𝐶𝑘() represent two different simple affine transformations, i.e., 

multiplying by a trainable parameter γ, and adding a trainable parameter β. The 𝑟𝑒𝑙𝑢2 

() used here is equivalent to 𝑟𝑒𝑙𝑢2, which normalizes the obtained attention matrix by 

using the attention fraction 𝐴𝑣𝑖,𝑣𝑗
 by adaptively selecting the relevant temporal features 

over all historical P time steps„ and to avoid neuron death during training, in 𝐹𝐶𝑢 , 𝐹𝐶𝑣 

we use 𝑠𝑖𝑙𝑢() instead of 𝑟𝑒𝑙𝑢() in the original GLU to perform the nonlinear transfor-

mation. Finally, we get the temporal features of the corresponding nodes ℎ𝑣𝑖,𝑣
(𝑘)

. The use 

of multi-headed temporal attention mechanism can calculate the temporal correlation 

between each vertex, but it requires a huge time and space overhead due to the global 

computation. We can analyze the structure of the gated linear unit and the multi-headed 

attention mechanism through the model structure, which has many similarities. 

 𝐴𝑣𝑖,𝑣 = 𝑟𝑒𝑙𝑢2
𝐹𝐶𝑞(𝑥𝑣𝑖,𝑡𝑗

)𝐹𝐶𝑘(𝑥𝑣𝑖,𝑡𝑗
)

√𝑠
 (11) 

 ℎ𝑣𝑖,𝑣,𝑡𝑗
= ((𝐹𝐶𝑢 (𝑥̂𝑣𝑖,𝑡𝑗

𝑊𝑢) ⊙ A ∙ 𝐹𝐶𝑣 (𝑥̂𝑣𝑖,𝑡𝑗
𝑊𝑣))) 𝑊ℎ (12) 

For temporal feature capture, we use the original data and spatio-temporal embedding 

position encoding to aggregate the feature information from different temporal levels 

after transformation. We incorporate the temporal attention mechanism into the gated 

linear unit for better efficiency of the model, and define the temporal attention gated 

unit, which not only has a substantial speedup over the temporal attention mechanism, 

but also obtains better time-transformed capture results. 

 

Simple Spatial Graph Convolution Unit Arranging neurons into small convolutional 

kernels that traverse local spatial locations is the key to CNN success. The feasibility 

of this design lies in the Euclidean structure of image data, allowing matrix convolu-

tions, and the translation invariance of image objects. Therefore, spatial translation re-

lations are not useful at all in the spatial modeling of many graphs. The graph Fourier 

transform first fuses the structural data with the adjacency of the represented edges 

using a Laplacian matrix, and this fused information can be easily transformed into the 

spectral domain due to the properties of the Laplacian matrix i.e., a spectral decompo-

sition. The nodes can be projected into the spectral domain space, thus completing the 

combination of the three. Then we can do the convolution operation in the spectral 

domain, and after the operation, we can go back to the null domain. We originally used 

the spatial map convolution unit to extract spatial features ℎ𝑠
(𝑙+1)

 from the input initial 

road network data and the adaptive adjacency matrix: 
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 ℎ𝑠
(𝑙+1)

= 𝜎 (𝐷−
1

2𝐴̃𝐷−
1

2ℎ𝑠
(𝑙)

𝑊(𝑙)) (13) 

 𝐴̃ = 𝐴 + 𝐼 (14) 

where A represents the adjacency matrix, ℎ𝑠
(𝑙)

represents the hidden state of the lth layer, 

𝑊(𝑙) represents the spatial weight matrix randomly initialized at the lth layer, I repre-

sents the unit matrix, D is the degree matrix of the node, and σ represents the nonlinear 

activation function 𝑟𝑒𝑙𝑢(). 

However, we found after several experiments that when we stack multiple layers of 

GCNs, we find that the performance of our model degrades sharply. Current spatial 

graph convolution models in the traffic domain are using shallow GCN stacking archi-

tectures, which we believe not only leads to limitations in the expressiveness of GCNs, 

but also constrains the deep mining of spatial features for traffic data. Research on graph 

neural networks has found that when GNN models are stacked with multiple layers, 

there is always a phenomenon that the output representation of nodes becomes indis-

tinguishable, i.e., the problem of over-smoothing. Some researchers found that while 

expanding the number of convolution layers of large input graphs and adjacency matri-

ces alone increases the risk of the over-smoothing problem, the performance is only 

slightly affected, but if the number of nonlinear transformation layers is increased sim-

ultaneously, the performance will drop sharply. We therefore decided to mitigate the 

model performance degradation caused by increasing the number of network layers by 

removing the nonlinear layers between the GCN layers and collapsing the resulting 

hidden states into a single nonlinear transformation: 

 ℎ𝑠
(𝑙+1)

= (𝐷−
1

2𝐴̃𝐷−
1

2)
𝑙

𝑋𝑊 (15) 

 𝐻𝑠 = 𝜎(ℎ𝑠𝑒𝑛𝑑
) (16) 

X represents the input road network data, 𝐴̃ represents the adaptive adjacency matrix, 

W represents the weights uniformly initialized by the simple spatial graph convolution 

unit, 𝑙 represents the number of layers of the graph convolution, ℎ𝑠end
 represents the 

hidden state of the last layer, and the σ function uses sigmoid(). The simple spatial graph 

convolution unit increases the number of layers in capturing deep spatial features while 

maintaining the same number of layers in the perceptual field. 

3.6 Gated Fusion Mechanism 

The traffic conditions of the current road at the current time step are highly correlated 

with the traffic conditions of all other roads in the previous traffic. We design a gating 

mechanism to adaptively fuse spatial and temporal features. In the lth block, the outputs 

of the spatial and temporal attention mechanisms are denoted as 𝐻𝑠
(𝑙)

 and 𝐻𝑡
(𝑙)

 respec-

tively, in the encoder as 𝑅𝑃×𝑁×𝐷 and in the decoder as 𝑅𝑄×𝑁×𝐷. The 𝐻𝑠
(𝑙)

 and 𝐻𝑡
(𝑙) 

 are 

fused as: 
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 𝐻(𝑙) = 𝑧 ⊙  𝐻𝑠
(𝑙)

+ (1 − 𝑧) ⊙  𝐻𝑡
(𝑙)

 (17) 

 𝑧 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐻𝑠
(𝑙)

𝑊𝑠 + 𝐻𝑡
(𝑙)

𝑊𝑡 + 𝑏𝑧) (18) 

where 𝑊𝑠 ∈ 𝑅𝐷×𝐷, in 𝑊𝑡 ∈ 𝑅𝐷×𝐷, 𝑏𝑧 ∈ 𝑅𝐷are learnable parameters, ⊙ denotes Hada-

mard product, and z is the gating coefficient controlling the distribution of spatio-tem-

poral features of the traffic flow. The gated fusion mechanism adaptively controls the 

spatially and temporally dependent flow of each vertex and timestep. 

3.7 Mean Scope Loss Function (MSL) 

We found that the model is mean shifted when predicting traffic flow in future time 

periods. To cope with this situation, we add a mean penalty term to the original mean 

absolute relative error (MAE). We first add a dimensionally transformed fully con-

nected layer 𝐹𝐶𝑚  outside the STASG network architecture for predicting the mean 

Mean at the next n time steps. and then subtract it from the true mean to obtain the mean 

penalty term 𝑀𝑒𝑎𝑛̂. We set a hyperparameter γ as the weight coefficient of the penalty 

term. Finally, it is added with MAE to get the final mean error 𝑀ean_MAE: 

 𝑀𝑒𝑎𝑛 = 𝐹𝐶𝑚(𝑆𝑇𝐴𝑆𝐺(𝑋)) (19) 

 𝑀𝑒𝑎𝑛̂ = 𝑦_𝑀𝑒𝑎𝑛 − 𝑀𝑒𝑎𝑛 (20) 

 𝑀𝑒𝑎𝑛_𝑀𝐴𝐸 = 𝑀𝐴𝐸 + 𝑀𝑒𝑎𝑛̂ (21) 

Where 𝑀ean represents the predicted mean of STASG, 𝑦_𝑀𝑒𝑎𝑛 represents the true 

mean of the future time step, and 𝑀𝐴𝐸 represents is the mean of the absolute error. 

4 Experimental Methodology 

In this section, we give experimental results of STASG and baseline models on traffic 

datasets, i.e., Metra-LA, PEMS-Bay, published by Li et al. We also analyze the model 

performance of different types of attention and model configurations for ablation stud-

ies. 

4.1 Datasets 

METR-LA recorded four months of traffic speed statistics for 207 sensors on Los 

Angeles County freeways. PEMS-BAY contains six months of traffic speed infor-

mation for 325 sensors in the Bay Area. Detailed distribution information for both da-

tasets is shown in Fig. 6. We used the same data preprocessing procedure as other traffic 

prediction methods. As a time window of traffic flow, we use the sensor's recorded 

traffic flow every five minutes. The adjacency matrix of nodes is constructed from the 
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road network distance with a threshold Gaussian kernel. z-score normalization is ap-

plied to the input. The dataset is divided chronologically, 70% for training, 10% for 

validation, and 20% for testing. The detailed dataset statistics are shown in Table 1. 

 

 

 
Table 1: Introduction of METR-LA and PEMS-BAY datasets 

Data Nodes Edges Time Steps 

PEMS-BAY 325 2369 52116 

METR-LA 207 1515 34272 

4.2 Experimental Settings 

Our experiments were conducted on a GPU server with two GeForce GTX 3090Ti 

graphics cards. As a benchmark evaluation, the following settings were kept constant 

for each model. Both training and prediction steps were set to 3,6,12. The ratio of data 

for training, validation, and testing was set to 7:1:2. Adam was set as the default opti-

mizer, where the learning rate was set to 0.001 and the batch size was set to 64 by 

default. the average absolute error was unified as a loss function. If the validation error 

converges within 20 calendar hours, the training algorithm is stopped early or after 200 

calendar hours and the best mod on the validation data is saved. mods are trained for 

prediction using L=2 and L=3, and L=3 is used as the main comparison criterion. root 

mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage 

error (MAPE) are used as inference-time measures, where zero values will be ignored. 

4.3 Baselines 

ARIMA [12]: An autoregressive sliding average model based on Kalman filtering. 

HistoricalAverage [28]: Single-step prediction model based on inflow and outflow of 

grid traffic data. 

STGCN [29]: Based on a combined graph convolution and dimensional convolution 

model. 

LSTNet [30]: The model based on long and short-term memory neural networks for 

the construction of long-term and short-term temporal patterns. 

GMAN [26]: An encoder-decoder structure is used. Both the encoder and decoder are 

composed of multiple spatio-temporal attention modules combined with a gating mech-

anism to create a combination of spatio-temporal factors. 

Graph WaveNet[31]: A novel adaptive dependency matrix is introduced that allows 

learning inference by using graph convolution on spatial node embeddings. 

ASTGCN [32]: Combines a spatio-temporal attention mechanism while capturing the 

dynamic spatio-temporal characteristics of traffic data using convolution. 

DCRNN [33]: Combining graph convolutional networks with recurrent neural net-

works in an encoder-decoder fashion. 
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MTGNN [35]: A novel graph neural network framework for multivariate time series 

forecasting introduces an adaptive dependency matrix enabling the automated extrac-

tion of variable relations and the incorporation of external knowledge. 

AGCRN [34]: an encoder-decoder model, integrates node-adaptive and data-adaptive 

modules with a recurrent network to extract fine-grained spatio-temporal factors for 

enhanced traffic prediction Our model performance is compared with other benchmark 

models in the PEMS-BAY dataset. The MAPE metric of STASG in 6 time steps is 

slightly worse than Graph WaveNet, and the other time steps are the best among other 

models. 

4.4 Results And Discussion 

Table 2. Comparison of the performance of individual models on the PEMS-Bay dataset. 

Model 
Timestep: 15MIN Timestep: 30MIN Timestep: 60MIN 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

ARIMA 1.62 3.30 3.50% 2.33 4.76 5.40% 3.38 6.50 8.30% 

HistorialAverage 3.31 6.68 8.09% 3.33 6.69 8.09% 3.33 6.68 8.10% 

LSTNet 1.66 3.29 3.52% 2.22 4.37 5.12% 2.76 5.17 6.10% 

STGCN 1.36 2.87 2.86% 1.72 3.90 3.93% 2.04 4.69 4.87% 

GMAN 1.28 2.71 2.71% 1.47 3.21 3.23% 1.87 4.31 4.38% 

Graph WaveNet 1.09 2.20 2.18% 1.32 3.01 2.80% 1.60 3.71 3.60% 

ASTGCN 1.15 2.38 2.41% 1.42 3.23 3,28% 1.71 3.86 4.09% 

DCRNN 1.13 2.30 2.31% 1.38 3.07 3.02% 1.70 3.94 3.94% 

MTGNN 1.33 2.84 2.84% 1.65 3.63 3.55% 1.89 4.42 4.43% 

AGCRN 1.35 2.85 2.94% 1.67 3.81 3.84% 1.96 4.57 4.69% 

STASG(ours) 1.09 2.21 2.21% 1.32 2.94 2.83% 1.57 3.56 3.56% 

STASG(2 layer) 1.08 2.18 2.18% 1.34 2.96 2.83% 1.57 3.60 3.52% 

Table 3. Comparison of the performance of individual models on the METR-LA dataset. 

Model 
Timestep:15MIN Timestep:30MIN Timestep:60MIN 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

ARIMA 3.99 8.21 9.60% 5.15 10.45 12.70% 6.90 13.23 17.40% 

HistorialAverage 11.00 14.73 23.32% 11.00 14.73 23.32% 11.00 14.73 23.34% 

LSTNet 3.80 8.06 9.16% 5.16 10.32 12.11% 6.12 12.01 15.00% 

STGCN 3.43 7.89 8.50% 4.23 9.85 10.72% 5.18 11.96 12.90% 

GMAN 3.24 6.93 8.79% 3.67 8.27 10.31% 4.34 9.67 12.82% 

Graph WaveNet 2.83 6.50 6.73% 3.35 7.80 7.86% 4.57 10.14 12.21% 

ASTGCN 3.10 7.04 7.53% 3.66 8.33 9.20% 4.34 9.46 11.34% 

DCRNN 2.91 6.58 6.92% 3.31 7.79 8.02% 4.14 9.57 11.17% 

MTGNN 3.30 6.85 7.17% 3.85 7.54 8.76% 4.00 9.15 10.28% 

AGCRN 3.39 6.71 7.22% 3.92 7.45 8.78% 4.02 9.22 10.53% 

STGAG(ours) 2.81 6.38 6.61% 3.30 7.70 7.79% 3.89 9.11 10.07% 

STGAG(2 layer) 2.87 6.49 6.87% 3.30 7.73 7.90% 4.01 9.33 10.15% 
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We compared the performance of STASG with the benchmark models in Table 1 for 

15 min (3 steps), 30 min (6 steps), and 60 min (12 steps) on the METR-LA and PEMS-

BAY datasets. 

We find that (1) our mod and other deep learning-based mods that take into account 

the graph structure are able to outperform the machine learning methods HistorialAv-

erage, ARIMA. (2) GMAN and our mod also outperform traditional graph deep learn-

ing mods, which indicates the importance of capturing dynamic spatial-temporal cor-

relations. (3) Compared with the benchmark, our mod achieves state-of-the-art predic-

tion performance, and the advantage is more pronounced in long-term range prediction. 

The relatively low performance in short-term prediction may be due to the fact that the 

capture of temporal and spatial features is less effective in short-time prediction, while 

gated self-attention can play a more important role in long-time temporal feature cap-

ture, as longer sequences may contain more dependencies by which more local infor-

mation of the data can be obtained. 

4.5 Ablation Experiment 

To evaluate the effect of key components that contribute to the improved results of our 

proposed mod, we designed six variants of STASG for ablation experiments on the 

METR-LA dataset. We named the variants of STASG as: 

w/o no_GCN: On the basis of STASG, this method removes the simple graph convo-

lution module. 

w/o SGCN: On the basis of STASG, this method replaces the simple graph convolution 

module with the normal graph convolution module. 

w/o STE: On the basis of STASG, the input of T-GAU removes the temporal embed-

ding matrix. 

w/o learn: On the basis of STASG, the adaptive matrix is removed from the self-learn-

ing matrix. 

w/o GAU: On the basis of STASG, the gated attention unit is replaced with a normal 

self-attentive unit. 

w/o MEAN_MAE: On the basis of STASG, this method replaces the training function 

MEAN_MAE with MAE. 

5 Conclusion 

In this paper, we propose a novel spatio-temporal traffic prediction model called 

STASG based on gated self-attentiveness. 

STASG is constructed using an encoder-decoder structure. Each encoder and de-

coder is constructed by stacking ST blocks, which not only capture the spatiotemporal 

structure of the input data and the adjacency matrix, but also fuse the two with a gating 

mechanism. 

In addition to avoid the mean shift phenomenon in model prediction, we construct a 

new prediction loss function using mean deviation loss to limit the data range for infer-

ence of future data. 
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Several experiments and studies on two traffic flow datasets, PEMS-BAY and 

METR-LA, show that our model STASG performs better in traffic flow prediction. The 

comparison of the ablation experiments demonstrates the impact of the components of 

our model on the model prediction. 

For future work, we plan to try to introduce other factors affecting traffic such as 

weather, holidays, and other time-varying variables into our feature fusion to improve 

the accuracy of the model. 

 

 

(a) MAE in METR-LA dataset 

 

(b) MAPE in METR-LA dataset 
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(c) RMSE in METR-LA dataset 

Fig. 4. Performance metrics in METR-LA dataset 
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