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Abstract. Missing data has always been a challenging issue in machine learning. 

The Generative Adversarial Imputation Network (GAIN) has been proven to be 

superior to many existing solutions. However, GAIN suffers from two limita-

tions: first, it does not consider the correlations among input samples; second, it 

only imputes based on adversarial loss and reconstruction loss of non-missing 

values without considering the reconstruction loss of missing values. To address 

these issues, this paper proposes a clustering-based self-supervised multi-scale 

Generative Adversarial Network for data imputation method, CCGAIN. Firstly, 

the dataset to be imputed is clustered, and subsequent imputation is performed 

on samples within each cluster. Then, based on features with low missing rates, 

local scale data is constructed for each cluster. Next, we use the imputation results 

of local scale missing values as supervised information for global scale missing 

value imputation, constructing the reconstruction loss for global scale missing 

values. Finally, based on the reconstruction loss of missing values, the recon-

struction loss of non-missing values, and the adversarial loss, imputation is per-

formed at the global scale. Experimental results demonstrate the effectiveness of 

this method. 
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1 Introduction 

With the rapid advancement and popularization of information technology, the global 

volume of data is experiencing a sharp increase. Within these data lie numerous valua-

ble pieces of information [1]. However, during the process of data collection and stor-

age, data missing often occurs due to various reasons such as temporary inability to 

collect or record loss [2]. Such situations can limit a comprehensive understanding of 

the real scenario, reduce the accuracy and reliability of data analysis and modeling, and 

even lead to erroneous decision-making [3]. Fig. 1 shows incomplete data with dimen-

sion 6. A simple method to handle missing data is to directly delete samples or variables 

containing missing values. However, when the amount of missing data is substantial, 

this approach may result in information loss in the dataset, hence nowadays, most re-

search tends towards data imputation. Traditional imputation methods are mainly based 

on statistical analysis [4], but they make strict assumptions about the data distribution. 
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If the data does not meet these assumptions, it may affect the accuracy of the imputation 

results. Furthermore, statistical methods often assume that the relationships between 

data are linear or simple functional relationships, making it difficult to capture complex 

patterns and nonlinear relationships in the data, which limits the improvement of im-

puted data quality. The emergence and rapid development of deep learning now provide 

new ideas and methods for solving real-world problems [5]. Generative Adversarial 

Imputation Network (GAIN) [6], as a mainstream missing data imputation model, has 

been proven to outperform many existing methods. 

 

Fig. 1. Examples of incomplete data with dimension 6. 

However, GAIN has two drawbacks: firstly, GAIN does not consider the correlations 

among input samples. Secondly, during the process of imputing missing values using 

the generator in GAIN, as there are no ground truth values for missing values to serve 

as supervised information, it is not possible to construct a reconstruction loss for miss-

ing values. Therefore, the rationality of imputed values can only be judged through the 

reconstruction loss of non-missing values and the adversarial loss. These two limita-

tions restrict the improvement of data imputation quality. 

This paper proposes a clustering-based self-supervised multi-scale Generative Ad-

versarial Network data imputation algorithm (CCGAIN) by clustering samples with 

high correlations together and constructing different scales of data hierarchy. The im-

putation results of missing values at the local scale are used as supervised information 

for imputing missing values at the global scale. Firstly, the dataset to be imputed is 

clustered, grouping samples with high relevance into clusters to effectively utilize the 

intrinsic relationships among samples. Then, based on features with low missing rates, 

local scale data is constructed for each cluster. Next, the imputation results of local 

scale missing values are used as supervised information to construct the reconstruction 

loss for global scale missing values. Finally, based on the reconstruction loss of missing 

values, the reconstruction loss of non-missing values, and the adversarial loss, imputa-

tion is performed at the global scale. Experimental results demonstrate that the 

CCGAIN model outperforms mainstream algorithms, especially when the missing rate 

is high, this superiority is more pronounced. The main contributions of this work are as 

follows: 

• A clustering module is introduced to effectively address the insufficient considera-

tion of inter-sample correlations in GAIN when handling data. 

• A multi-scale data construction method is proposed based on features with low miss-

ing rates for the GAIN network. 
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• By utilizing the imputation results of missing values at partial scales as supervised 

information for imputing missing values at the global scale, the reconstruction loss 

of missing values is constructed, thereby enhancing the quality of data imputation. 

• We demonstrate that our approach surpasses existing methods in both imputation 

and prediction accuracy, particularly under conditions of high missing data rates. 

2 Related Work 

2.1 Imputation Methods 

Methods for handling missing data can mainly be divided into two categories: deletion 

and imputation [7, 8]. Deletion [9] involves directly removing samples or features with 

missing values from the dataset to ensure data integrity and accuracy. This method is 

suitable for situations where the amount of missing data is small or the missing data has 

little impact on the analysis results. However, excessive deletion may lead to a reduc-

tion in the amount of data, affecting the reliability and effectiveness of the analysis [10]. 

Therefore, imputation methods are commonly used to handle missing data. Currently, 

imputation methods can be divided into two main categories: traditional machine learn-

ing-based imputation and deep learning-based imputation. 

Traditional machine learning-based imputation methods: The K-Nearest Neighbor 

(KNN) imputation algorithm [11] uses the values of K nearest neighbors to impute 

missing data. However, since this algorithm needs to traverse the entire dataset for each 

missing value imputation, the efficiency of the KNN algorithm significantly decreases 

when dealing with large-scale datasets [12]. The Multiple Imputation by Chained Equa-

tions (MICE) algorithm [13] first assigns a random value to each missing value, and 

then updates the value of the specified variable with the values of other variables in a 

series of iterations until the algorithm converges to complete the imputation. However, 

for a large number of missing data, the MICE algorithm is less efficient, time-consum-

ing, and based on simple models such as linear regression or logistic regression for 

prediction, which may not capture complex relationships in the data. The MissForest 

algorithm [14] treats variables with missing data as labels and other variables as fea-

tures. It trains a random forest model using the training set consisting of labels without 

missing data and their corresponding feature data, and then uses this model to predict 

missing values. However, the MissForest algorithm is based on random forest for pre-

diction, and such complex models may lead to overfitting, resulting in inaccurate im-

putation results. The Expectation Maximization (EM) algorithm [15] first estimates the 

parameter values of the model based on existing data and then predicts missing data 

based on these parameter values. These two steps are iteratively repeated until conver-

gence to impute data. However, since the EM algorithm is an iterative process, it may 

get stuck in local optima and fail to reach the global optimum.  

Deep learning-based imputation methods: In recent years, due to the powerful non-

linear fitting capability of neural networks, deep generative models have been used to 

impute missing data. Gondara and Wang [16] proposed a multiple imputation model 

DAE based on deep denoising autoencoders to impute data. Nazabal A.Olmos, Ghah-

ramani, and others [17] proposed a general framework for variational autoencoders that 
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can effectively fill incomplete heterogeneous data. Spinelli et al. [18] designed missing 

data imputation based on graph denoising autoencoders, where each edge of the graph 

encodes the similarity between two patterns. Lai et al. [19] proposed an architecture 

called Tracking Removal Autoencoder (TRAE), which dynamically redesigns the input 

structure of hidden neurons based on traditional autoencoders. Nazabal et al. [20] pro-

posed a comprehensive framework called HI-VAE for constructing variational autoen-

coders tailored to fitting incomplete heterogeneous data. Richardson et al. [21] pro-

posed MCFlow, which leverages normalizing flow generative models and Monte Carlo 

sampling for imputation. With the continuous development of deep learning technol-

ogy, Generative Adversarial Networks (GANs) have become the latest research 

hotspot. Recently, GANs have also been applied in the field of data imputation [22, 23]. 

Awan et al. [24] proposed a model CGAIN, which performs missing data imputation 

by utilizing class-specific distributions to generate optimal estimates for the missing 

values. Yoon and Sull [25] proposed GAMIN which divides into unconditional and 

conditional generators. It aims to improve upon GAIN's performance with high-dimen-

sional missing data. Qiu et al. [26] proposed a feature-specific deep adversarial impu-

tation pipeline capable of accurately imputing various types of input data. Li and Jiang 

[27] proposed MisGAN to learn and impute images from complex high-dimensional 

incomplete data, introducing an auxiliary GAN to learn the mask distribution to simu-

late missing situations. Zhang et al. [28] proposed CPM-GAN, which aims to learn a 

unified latent representation by considering both completeness and structure, to impute 

missing data by utilizing the correlation between different modalities. Wang et al. [29] 

proposed PCGAIN, which learns latent class information from a low missing rate data 

subset and trains an auxiliary classifier based on synthetic pseudo-labels, integrating 

this classifier into the GAN to help the generator generate higher quality imputation 

results. Yoon et al. [6] proposed the Generative Adversarial Imputation Network 

(GAIN), which optimizes the generator using the adversarial loss of the GAN and the 

reconstruction loss of non-missing values to improve the imputation quality of the gen-

erator. 

Although these methods have achieved certain effects in imputing missing data, due 

to the lack of sufficient supervised information and inadequate consideration of the 

correlation between input samples, these imputation methods still have various defi-

ciencies in learning the distribution of original data, resulting in low imputation accu-

racy. 

2.2 GAIN 

In this subsection, we introduce the traditional GAIN network. The architecture of the 

traditional network is shown in Fig. 2. In the imputation process of the model, it can be 

divided into two parts: the generator and the discriminator. 

Assuming the original dataset 𝑿 = {𝒙1, 𝒙2, ⋯ , 𝒙𝑁} ∈ ℝ𝑁×𝑑 , among them, the 𝑖-th 

data vector 𝒙𝑖 = {𝑥𝑖1 , 𝑥𝑖2, ⋯ , 𝑥𝑖𝑑} ∈ ℝ1×𝑑, 𝑥𝑖𝑗  represents the 𝑗-th feature component of 

the 𝑖 -th data vector in 𝑿 . Given dataset 𝑿 = {𝒙1, 𝒙2, ⋯ , 𝒙𝑁} ∈ ℝ𝑁×𝑑 , 𝒙𝑖 =
{𝑥𝑖1, 𝑥𝑖2 , ⋯ , 𝑥𝑖𝑑} ∈ ℝ1×𝑑, 
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(1) For each 𝒙𝑖 ∈ 𝑿, define the corresponding mask vector 𝒎𝑖 = {𝑚𝑖1, 𝑚𝑖2, ⋯ , 𝑚𝑖𝑑} ∈
{0,1}𝑑 , when 𝑥𝑖𝑗  is not missing, 𝑚𝑖𝑗 = 1, and when 𝑥𝑖𝑗  is missing, 𝑚𝑖𝑗 = 0. All 

mask vectors constitute the mask matrix 𝑴 = {𝒎1, 𝒎2, ⋯ , 𝒎𝑁}. 

(2) For each 𝒙𝑖 ∈ 𝑿, define a new random vector 𝒛𝑖 = {𝑧𝑖1, 𝑧𝑖2, ⋯ , 𝑧𝑖𝑑} ∈ ℝ1×𝑑, all ran-

dom vectors 𝒛𝑖 form a random matrix 𝒁={𝒛1,𝒛2,⋯,𝒛𝑁}. 

(3) For each 𝒙𝑖 ∈ 𝑿, define a new data vector 𝒙𝑖 = {�̃�𝑖1, �̃�𝑖2, ⋯ , �̃�𝑖𝑑} ∈ ℝ𝑁×𝑑, the ele-

ments within it, �̃�𝑖𝑗 = {
𝑥𝑖𝑗 ,      if 𝑚𝑖𝑗 = 1 

0,        if 𝑚𝑖𝑗 = 0 
. Here, the missing value * is replaced with 

0. All data vectors form the data matrix �̃� = {𝒙1, 𝒙2 ⋯ , 𝒙𝑁}. 
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Fig. 2. The architecture of GAIN 

The generator of GAIN takes three parts as input: the data matrix �̃�, the random matrix 

𝒁, and the mask matrix 𝑴. The generator 𝐺 of GAIN generates data at all positions in 

the matrix, regardless of whether it is in the location of missing value or non-missing 

value. It learns the data distribution of the input data and then outputs an imputed matrix 

𝑿 , the same size as the data matrix �̃�, with a distribution that approximates the real 

data, the process is: 

 𝑿 = 𝐺(�̃�, 𝑴, (1 − 𝑴) ⊙ 𝒁)  (1) 
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where ⊙ represents the Hadamard product. The imputed matrix 𝑿 is a new matrix gen-

erated by the generator 𝐺 to mimic the data distribution of the data matrix. Obviously, 

𝑿 is not the desired imputation result, because there are some values in the data matrix 

�̃� that are not missing, and not all positions require imputation. By concatenating the 

data matrix �̃� with the imputed matrix 𝑿, replacing the non-missing data in �̃� with the 

corresponding data at the same position in 𝑿, a newly completed matrix �̂� is formed, 

which is the final imputation result. The specific process is as follows: 

 �̂� = 𝑴 ⊙ 𝑿 + (1 − 𝑴) ⊙ 𝑿  (2) 

The loss function of generator 𝐺 is defined as: 

 min
𝐺

1

𝑁
∑ (𝐿𝐺(𝒎𝑘 , �̂�𝑘) + 𝛼𝐿𝑅(𝒙𝑘 , 𝒙𝑘))𝑁

𝑘=1  (3) 

 𝐿𝐺(𝒎𝑖 , �̂�𝑖) = ∑ (−(1 − 𝑚𝑖𝑗) log �̂�𝑖𝑗)𝑑
𝑗=1  (4) 

 𝐿𝑅(𝒙𝑖, 𝒙𝑖) = ∑ 𝑚𝑖𝑗(�̃�𝑖𝑗 − �̅�𝑖𝑗)2𝑑
𝑗=1  (5) 

where α is a weight parameter, �̂�𝑘 is the estimated mask vector output by the discrim-

inator 𝐷. 𝐿𝐺 is part of the adversarial loss of GAIN, which plays a role in competing 

with the discriminator 𝐷. By backpropagation, the generator 𝐺 is optimized to make 

the discriminator 𝐷 unable to distinguish between imputed data and non-missing data. 

𝐿𝑅 is the reconstruction loss of non-missing value. The purpose of 𝐿𝑅 is to minimize 

the distance between the values generated by generator 𝐺 at the positions of non-miss-

ing data and the non-missing data, i.e., to require generator 𝐺 to learn the distribution 

of non-missing data, which is the distribution of real data. 

The discriminator of GAIN takes as input the hint matrix 𝑯 and the completed ma-

trix �̂�. The hint matrix 𝑯 is generated by feeding the mask matrix 𝑴 into the hint gen-

erator, which provides some information about 𝑴 to the discriminator 𝐷. When dis-

criminating between real and fake data, GAIN evaluates all components of the com-

pleted matrix �̂�. In GAIN, the discriminator 𝐷 outputs a probability for each position 

in the matrix, forming an estimated mask matrix �̂�. The component �̂�𝑖𝑗 of �̂� repre-

sents the probability that 𝐷 judges the component �̂�𝑖𝑗  of the completed matrix �̂� as 

non-missing data. The entire input-output process can be represented as follows: 

 �̂� = 𝐷(�̂�, 𝑯)  (6) 

the mask matrix 𝑴 is the ground truth of the estimated mask matrix �̂�, meaning that 

the closer the output values of discriminator 𝐷 are to the values of the mask matrix 𝑴, 

the better the discriminative ability of discriminator 𝐷. 

The definition of the loss function of discriminator 𝐷 is as follows: 

 min
𝐷

1

𝑁
∑ 𝐿𝐷(𝒎𝑘 , �̂�𝑘)𝑁

𝑘=1   (7) 

 𝐿𝐷(𝒎𝑖 , �̂�𝑖) = ∑ (−𝑚𝑖𝑗 log �̂�𝑖𝑗 − (1 − 𝑚𝑖𝑗) log(1 − �̂�𝑖𝑗))𝑑
𝑗=1   (8) 
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𝐿𝐷 is also part of the adversarial loss, which plays a role in competing with the generator 

𝐺. It aims to maximize the ability of discriminator 𝐷 to distinguish between non-miss-

ing data and imputed data in the input data. 

Although GAIN performs well in data imputation, it still has two limitations: 

(1) GAIN fails to consider the correlation between input samples, leading to low 

imputation accuracy. In data imputation, the model's input samples should be closely 

related to the data to be imputed to effectively predict missing values. Taking the KNN 

(K-Nearest Neighbors) imputation algorithm [30] as an example, this algorithm first 

calculates the K nearest neighbors in the dataset with the highest correlation to the data 

to be imputed. After determining the neighbors, their feature values can be used for 

weighted averaging or voting prediction to fill in missing values. The advantage of this 

method lies in its consideration of the similarity between data, resulting in more accu-

rate and reliable imputed data. However, GAIN lacks this consideration. 

(2) GAIN relies solely on adversarial loss and reconstruction loss of non-missing 

values for imputation, without considering the reconstruction loss of missing values. In 

the imputation process of GAIN, the positions of components in the data matrix can be 

divided into two parts based on whether the data is missing at that position. The posi-

tions with missing data are referred to as missing value positions, while the positions 

where data is retained are referred to as non-missing value positions. Although GAIN's 

generator generates data at both types of positions, it mainly focuses on the generation 

of data at non-missing value positions when learning the distribution. This is because 

when generating data at non-missing value positions, the generator has observed data 

as a reference, which is real data and retains the distribution of real data, implying that 

these data can be used as supervision information. However, for data at missing value 

positions, besides using adversarial theory and letting the discriminator judge whether 

it is reasonable, GAIN has no other means to ensure the accuracy of imputation. Be-

cause the data at missing value positions are already lost and do not have the condition 

to use their true values as supervision information, it is impossible to construct recon-

struction loss for missing values. In this case, only adversarial loss is relied upon to 

evaluate the rationality of the imputed values, which leads to a decrease in the quality 

of generated data. 

3 CCGAIN 

We propose CCGAIN, a clustering-based self-supervised multi-scale generative adver-

sarial network method for data imputation, addressing the two limitations of GAIN. 

Firstly, to tackle the limitation of GAIN in neglecting the correlation between input 

samples, CCGAIN conducts clustering on the input data before imputation. Subsequent 

imputation is performed within each cluster. Secondly, addressing the inability of 

GAIN to construct reconstruction loss for missing values, CCGAIN initially constructs 

multi-scale data, then, it uses the imputation results of missing values at the local scale 

as supervision for missing values at the global scale, constructing the reconstruction 

loss for missing values. Based on this loss, along with the reconstruction loss for non-

missing values and adversarial loss, imputation is performed at the global scale. Based 
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on the above treatments for the two limitations, CCGAIN consists of two main steps: 

clustering process and imputation, where imputation involves multi-scale construction 

and imputation processes. These steps will be discussed separately below. 

3.1 Clustering Process 

GAIN fails to consider the limitation of inter-sample correlation in its input data. In this 

regard, CCGAIN addresses this by clustering the input data before imputation. The 

process of clustering, which divides the dataset into multiple clusters, can provide im-

portant guidance for the imputation model, enabling it to conduct data imputation more 

targeted based on the characteristics of each cluster. Initially, CCGAIN employs GAIN 

to impute missing data within the dataset, resulting in a complete dataset conducive to 

subsequent clustering operations. Subsequently, the dataset is partitioned into multiple 

clusters, with each cluster representing a collection of samples with similar features. 

Upon imputation of the partitioning, the imputed data within each cluster is reverted to 

its missing state, preserving the original missing data structure. Finally, each cluster's 

data is individually taken as the input dataset for subsequent imputation operations, and 

then all clusters are merged to form the final imputation result. This targeted approach 

leverages the high correlation within clusters, thereby enhancing the quality of imputa-

tion results in CCGAIN. Fig. 3 shows the flowchart of clustering processing for 

CCGAIN. 

 

Fig. 3. Flowchart of clustering processing for CCGAIN 

3.2 Multi-scale Construction Method 

In this subsection, we introduce the multi-scale construction method of CCGAIN, 

which forms the basis for the subsequent imputation process. The goal is to construct 

local scale data for each cluster. All data within the cluster serve as the global scale 

data, this means that the imputation results at the global scale represent the imputation 

results for the entire set of samples. 

For a given dataset 𝑿 = {𝒙1, 𝒙2, ⋯ , 𝒙𝑁} ∈ ℝ𝑁×𝑑, Assuming 𝐹 represents the set of 

all features in the dataset, 𝐹 = {𝑓1, 𝑓2, ⋯ , 𝑓𝑑}, Where 𝑓𝑖 represents the 𝑖-th feature in the 

dataset, 1 ≤ 𝑖 ≤ 𝑑. Firstly, provide the definition formula for the missing rate of fea-

tures: 
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For a given dataset 𝑿 = {𝒙1, 𝒙2, ⋯ , 𝒙𝑁} ∈ ℝ𝑁×𝑑 , 𝒙𝑖 = {𝑥𝑖1 , 𝑥𝑖2, ⋯ , 𝑥𝑖𝑑} ∈
ℝ1×𝑑,𝒎𝑖 = {𝑚𝑖1, 𝑚𝑖2, ⋯ , 𝑚𝑖𝑑} is the mask vector of 𝒙𝑖, 𝐹 = {𝑓1, 𝑓2, ⋯ , 𝑓𝑑} represents 

the set of all features in the dataset. For feature 𝑓𝑗，1 ≤ 𝑗 ≤ 𝑑, the missing rate r(𝑓𝑗) is 

defined as follows: 

 𝑟(𝑓𝑗) =
1

𝑁
∑ 𝑚𝑖𝑗

𝑁
𝑖=1   (9) 

The features are arranged in ascending order of their missing rates, and the top 𝑑/2 

features are selected. The data of these selected features are used as local scale data. 

This approach is based on the assumption that data with lower missing rates retain more 

real data information. Additionally, this way helps to preserve the distribution of the 

original data as much as possible. Moreover, this procedure supports the subsequent 

imputation of missing values at the local scale by providing supervision for imputing 

missing values at the global scale. 

The first 𝑑/2  features of the sorted feature set can be denoted as 𝐹′ =
{𝑓1

′, 𝑓2
′, ⋯ , 𝑓𝑑

2

′}. The data described by the local feature 𝐹′  is represented as �̃�′ =

{𝒙1
′ , 𝒙2

′ , ⋯，𝒙𝑁
′ } ∈ ℝ𝑁×

𝑑

2，𝒙𝑖
′ = {�̃�𝑖1

′ , �̃�𝑖2
′ , ⋯ , �̃�

𝑖
𝑑

2

′ } ∈ ℝ1×
𝑑

2，�̃�𝑖𝑗
′  represents the 𝑗-th fea-

ture component of the 𝑖-th data vector in �̃�′. All data within the cluster will be treated 

as data on a global scale, just rearranged according to the ascending order of feature 

missing rates for convenience in calculating the reconstruction loss of missing values 

on the global scale. 

3.3 Imputation Process 

This subsection provides a detailed explanation of the imputation process in CCGAIN. 

The imputation in CCGAIN is performed on a per-cluster basis, after imputing each 

cluster using the same method, the clusters are merged to obtain the final imputation 

result for the entire dataset. For each cluster, imputation begins at the local scale. Miss-

ing values are imputed in using GAIN. Then, the imputed values at the local scale serve 

as supervised information for missing values at the global scale, this process constructs 

a reconstruction loss for missing values based on the imputation results at the local 

scale. Utilizing this reconstruction loss, along with the reconstruction loss for non-miss-

ing values and an adversarial loss, imputation is performed at the global scale. The 

imputed results at the global scale for each cluster are then merged to obtain the final 

imputation result. Fig. 4 shows the input process of CCGAIN. 
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Fig. 4. The imputation process of CCGAIN 

(1) Given data �̃�′ = {𝒙1
′ , 𝒙2

′ , ⋯，𝒙𝑁
′ } ∈ ℝ𝑁×

𝑑

2  at the local scale, for each 𝒙𝑖
′ ∈ �̃�′, 

there are corresponding binary mask vectors 𝒎𝑖
′ and random vectors 𝒛𝑖

′. All mask vec-

tors constitute the mask matrix 𝑴′ = {𝒎1
′ , 𝒎2

′ , ⋯，𝒎𝑁
′ }. All random vectors form a 

random matrix 𝒁′ = {𝒛1
′ , 𝒛2

′ , ⋯ , 𝒛𝑁
′ }. Similarly, imputed vector 𝒙𝑖

′ and completed vec-

tor 𝒙𝑖
′ respectively constitute the imputed matrix �̅�′ and the completed matrix �̂�′. 

At the local scale, the traditional GAIN model is used for imputation. Its significance 

lies in providing supervision for imputation at a global scale. Given the local scale data 

matrix �̃�′ and its corresponding mask matrix 𝑴′, along with a random matrix 𝒁′ in-

putted into GAIN, employing the traditional GAIN model for imputation yields the 

imputed matrix �̅�′ and the completed matrix �̂�′ for the local scale, this can be repre-

sented as: 

 𝑿
′

= 𝐺(�̃�′, 𝑴′, (1 − 𝑴′) ⊙ 𝒁′) (10) 

 �̂�′ = 𝑴′ ⊙ 𝑿′ + (1 − 𝑴′) ⊙ 𝑿
′
 (11) 

The input and output of discriminator 𝐷 are 

  �̂�′ = 𝐷(�̂�′, 𝑯′) (12) 
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At this point, the loss function of generator 𝐺 is 

 min
𝐺

1

𝑁
∑ (𝐿𝐺(𝒎𝑘

′ , �̂�𝑘
′ ) + 𝛼𝐿𝑅(𝒙𝑘

′ , 𝒙𝑘
′ ))𝑁

𝑘=1  (13) 

 𝐿𝐺(𝒎𝑖
′ , �̂�𝑖

′) = ∑ (−(1 − 𝑚𝑖𝑗
′ ) log �̂�𝑖𝑗

′ )
𝑑/2
𝑗=1  (14) 

 𝐿𝑅(𝒙𝑖
′, 𝒙𝑖

′) = ∑ 𝑚𝑖𝑗(�̃�𝑖𝑗
′ − �̅�𝑖𝑗

′ )2𝑑/2
𝑗=1  (15) 

The loss function of discriminator 𝐷 is 

  min
𝐷

1

𝑁
∑ 𝐿𝐷(𝒎𝑘

′ , �̂�𝑘
′ )𝑁

𝑘=1  (16) 

 𝐿𝐷(𝒎𝑖
′ , �̂�𝑖

′) = ∑ (−𝑚𝑖𝑗
′ log �̂�𝑖𝑗

′ − (1 − 𝑚𝑖𝑗
′ ) log(1 − �̂�𝑖𝑗

′ ))
𝑑/2
𝑗=1  (17) 

Next, based on their respective loss functions, calculate the losses and utilize stochastic 

gradient descent to iteratively update the network structures of the generator and dis-

criminator until they reach equilibrium. Finally, obtain the completed matrix �̂�′ gener-

ated by the generator at the local scale. 

(2) At the global scale, assuming the completed matrix obtained at the local scale is 

�̂�′, the calculation method for the imputed matrix �̅� and the completed matrix �̂� re-

mains unchanged. The data matrix �̃� and its corresponding binary mask matrix 𝑴, 

along with a random matrix 𝒁, are inputted into the generator 𝐺 to obtain the imputed 

matrix �̅� and the completed matrix �̂� at the global scale. 

 �̅� = 𝐺(�̃�, 𝑴, (1 − 𝑴) ⊙ 𝒁) (18) 

 �̂� = 𝑴 ⊙ �̃� + (1 − 𝑴) ⊙ �̅� (19) 

The discriminator 𝐷 takes the completed matrix �̂� and a hint matrix 𝑯 as inputs and 

outputs estimated mask matrix �̂�, which predicts which data in �̂� are imputed and 

which are non-missing. 

 �̂� = 𝐷(�̂�, 𝑯) (20) 

The loss function of discriminator 𝐷 is 

 min
𝐷

1

𝑁
∑ 𝐿𝐷(𝒎𝑘 , �̂�𝑘)𝑁

𝑘=1  (21) 

At this stage, the loss function of the generator 𝐺 has changed. Apart from incorporat-

ing the reconstruction loss of non-missing data and the adversarial loss against the dis-

criminator, the loss function of 𝐺 now utilizes the completed matrix �̂�′ at the local scale 

as the supervision information for generating the completed matrix �̂� at the global 

scale. This construction leads to the reconstruction loss 𝐿𝑀 for missing values at the 

global scale. 

 𝐿𝑀(𝒙𝑖
′ , 𝒙𝑖) = ∑ (�̂�𝑖𝑗

′ − �̂�𝑖𝑗)2𝑑/2
𝑗=1  (22) 
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The significance of 𝐿𝑀 is to use imputed values of missing data at a local scale to su-

pervise the imputation of missing values at a global scale on the first 𝑑/2 features. For 

the missing values on the other 𝑑/2 features, due to the higher missing rate of features, 

local-scale supervision is not feasible, but the generator uniformly performs imputation 

on missing values, ensuring that under 𝐿𝑀, the imputed values on the first d/2 features 

fit closer to the original data, while also guaranteeing better accuracy on the imputed 

values of the remaining 𝑑/2 features. 

The loss function of generator 𝐺 is 

 min
𝐺

1

𝑁
∑ (𝐿𝐺(𝒎𝑘 , �̂�𝑘) + 𝛼𝐿𝑅(𝒙𝑘 , 𝒙𝑘) + 𝛽𝐿𝑀(𝒙𝑘

′ , 𝒙𝑘))𝑁
𝑘=1  (23) 

where α and β are weight parameters. 

Next, according to their respective loss functions, calculate the losses and use sto-

chastic gradient descent to iteratively update the network structures of the generator 

and discriminator until they reach equilibrium. Finally, obtain the completed matrix �̂� 

at the global scale. The completed matrix at the global scale for each cluster is then 

merged to obtain the final imputation result. 

4 Experiment 

4.1 Dataset and experimental details 

(1) Dataset. To validate the effectiveness of the proposed CCGAIN model, we con-

ducted experiments using six datasets obtained from the UCI Machine Learning Re-

pository. The specific information about the datasets is presented in Table 1 below. 

Table 1. The basic properties of the UCI datasets. 

Dataset Samples Numerical varia-

bles 
Categorial varia-

bles 
Number of 

classes 

Breast Cancer 569 30 0 2 

Divorce 170 0 54 2 

Letter 20000 16 0 26 

News 39797 35 25 2 

Sales 811 106 0 0 

Valley 606 100 0 2 

(2) Experimental methods. baseline methods compared with CCGAIN include EM 

[15], MissForest [14], KNN [11], MICE [13], MCFlow [21], GAIN [6], DAE [16], and 

PCGAIN [29]. MissForest [14], MICE [13], and EM [15] belong to machine learning-

based imputation models, while DAE [1616], MCFlow [21], GAIN [6], and PCGAIN 

[29] are deep generative methods. Three sets of experiments were conducted. In the 

first set of experiments, under the condition where missing data accounts for 50% of 

the total data, CCGAIN was compared with the aforementioned baseline methods on 
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six datasets for imputation results, with the evaluation metric being Root Mean Square 

Error (RMSE). Then CCGAIN was compared with GAIN on the six datasets under 

different percentages of missing data, and RMSE was again used as the evaluation met-

ric for imputation performance. In the second set of experiments, the prediction perfor-

mance under various missing rates of imputed results by CCGAIN and GAIN was com-

pared. The data was imputed first, and then the class labels of samples were predicted, 

with the post-imputation prediction accuracy being compared between the two meth-

ods. In the third set of experiments, ablation experiments were conducted. 

(3) Experimental Parameter Settings. The performance of CCGAIN is relatively sta-

ble concerning the number of clusters. In most cases, regardless of the true number of 

classes, CCGAIN can achieve good results when the value of K is between 2 and 4. 

Therefore, in practice, only a small number of clusters are needed to save computational 

costs. Here, we set the value of K uniformly to 4. The clustering method chosen is K-

Means. 

Table 2.   Imputation performance of CCGAIN and comparison methods in terms of 

RMSE(Average ± Std of RMSE). 

Algorithm 
Breast 

Cancer 
Divorce Letter News Sales Valley 

KNN 
0.1476 

±0.0158 

0.3753 

±0.035 

0.172 

±0.014

6 

0.2623 

±0.023

6 

0.255 

±0.0257 

0.1305 

±0.0167 

EM 
0.2020 

±0.0074 

0.3612 

±0.026 

0.215 

±0.010

2 

0.2736 

±0.034

1 

0.2926 

±0.0151 

0.1204 

±0.0342 

MICE 
0.1129 

±0.0246 

0.3453 

±0.015 

0.1714 

±0.022

5 

0.2523 

±0.035

7 

0.2197 

±0.0157 

0.1267 

±0.0342 

MissForest 
0.1185 

±0.0154 

0.356 

±0.036 

0.1541 

±0.017

3 

0.2626 

±0.038

5 

0.2467 

±0.0110 

0.1321 

±0.0324 

DAE 
0.1203 

±0.0053 

0.3862 

±0.028 

0.1628 

±0.006

8 

0.2478 

±0.026

4 

0.2634 

±0.0125 

0.1445 

±0.0103 

GAIN 
0.085 

±0.0045 

0.3309 

±0.02 

0.1554 

±0.007

2 

0.2361 

±0.022

6 

0.2406 

±0.0190 

0.1022 

±0.0095 

PCGAIN 
0.1098 

±0.0059 

0.3688 

±0.022 

0.1559 

±0.004

5 

0.2353 

±0.023

7 

0.2227 

±0.0102 

0.0811 

±0.0102 

MCFlow 
0.0812 

±0.042 

0.306 

±0.024 

0.1505 

±0.005

5 

0.1931 

±0.016

5 

0.1825 

±0.0143 

0.0734 

±0.0093 

CCGAIN 
0.0673 

±0.011 

0.2330 

±0.018 

0.1402 

±0.001

6 

0.1091 

±0.014

9 

0.1024 

±0.0175 

0.0425 

±0.0096 
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(a) Breast Cancer                                             (b) Divorce 

 

(c) Letter                                                         (d) News 

 

(e) Sales                                                            (f) Valley 

Fig. 5.   RMSE of CCGAIN versus other methods with various missing rates. 

4.2 Imputation Accuracy in UCI Datasets 

(1) We compare the RMSE values of data imputation results between CCGAIN and the 

methods EM, KNN, MissForest, MICE, DAE, GAIN, PCGAIN and MCFlow. A smaller 

RMSE value indicates higher imputation accuracy. In the experiments, we set the 
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percentage of missing data to 50% of the total data, and each experiment was repeated 

10 times. The average of these ten experiments was taken as the final result. The com-

parison results of the experiments are shown in Table 2. 

From Table 2, it is evident that the method proposed in this study exhibits the lowest 

RMSE (Root Mean Square Error) values across all datasets. Upon examining the ex-

perimental data, CCGAIN demonstrates a significant reduction in errors on datasets 

such as Divorce, Sales, and News. Although the improvement is relatively modest on 

datasets like Breast Cancer, Valley, and Letter, it still surpasses other methods. This 

indicates that compared to other baseline methods, the method proposed in this study 

yields smaller errors, allowing for more accurate imputation of missing data. 

(2) RMSE values of imputation results by CCGAIN, GAIN, PCGAIN, DAE, and 

MCFlow are compared with varying levels of data missing rates, ranging from 20% to 

80% with intervals of 10%. As shown in Fig. 5, where the blue line represents 

CCGAIN, it can be observed that CCGAIN consistently outperforms other methods 

across different levels of data missing rates. Particularly, the superiority of CCGAIN 

becomes more pronounced as the missing rate increases. This suggests that the method 

proposed in this study achieves more accurate imputation results compared to DAE, 

MCFlow, GAIN, and PCGAIN, especially when dealing with higher missing rates. 

4.3 Prediction Performance under Various Missing Rates 

The post-imputation prediction accuracy of imputed data will be compared. The study 

conducted classification predictions using the XGBoost classifier on imputed data from 

the Divorce and Breast Cancer datasets at missing rates of 20%, 40%, 60%, and 80%. 

As the proposed CCGAIN is an improvement over GAIN, we will compare CCGAIN 

with GAIN in this context. 

 

(a) Breast Cancer                                               (b) Divorce 

Fig. 6. Post-imputation prediction accuracy of CCGAIN versus GAIN with various missing 

rates. 

 

The comparison results are depicted in Fig. 6, where the red line represents the clas-

sification prediction accuracy of data imputed by CCGAIN. It can be observed that the 
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classification accuracy of CCGAIN-imputed data is consistently equal to or greater than 

that of GAIN-imputed data across all missing rates. Moreover, the superiority of 

CCGAIN becomes more evident as the missing rate increases. This further validates 

that CCGAIN effectively preserves class information during imputation. 

4.4 Ablation Experiment 

We will conduct ablation experiments on CCGAIN. We will break down the operations 

targeting the two limitations of CCGAIN into two parts: the first is the clustering pro-

cess, and the second is the construction of multi-scale data and the imputation process. 

Consequently, we will remove these two parts separately. One is to remove the cluster-

ing part from CCGAIN, directly construct multi-scale data and impute (CCGAIN w/o 

C). The other is to cluster the dataset but use GAIN for imputation within each cluster 

(CCGAIN w/o M). At a 50% data missing rate, CCGAIN will be compared with the 

aforementioned two models in terms of RMSE. The experimental results are presented 

in Table 3. As shown in the table, the RMSE of CCGAIN is the smallest. 

Table 3.   Ablation experiment 

Algorithm 
Breast Can-

cer 
Divorce Letter News Sales Valley 

GAIN 
0.085 

±0.0045 

0.3309 

±0.02 

0.1554 

±0.0072 

0.2361 

±0.0226 

0.2406 

±0.0190 

0.1022 

±0.0095 

CCGAIN 

w/o C 

0.0859 

±0.028 

0.2407 

±0.0032 

0.1459 

±0.0016 

0.2394 

±0.0039 

0.1839 

±0.0071 

0.1859 

±0.0063 

CCGAIN 

w/o M 

0.1336 

±0.031 

0.2942 

±0.0099 

0.1378 

±0.0027 

0.2362 

±0.0134 

0.2238 

±0.0027 

0.0865 

±0.0009 

CCGAIN 
0.0673 

±0.011 

0.2330 

±0.018 

0.1402 

±0.0016 

0.1091 

±0.0149 

0.1024 

±0.0175 

0.0425 

±0.0096 

5 Conclusion 

The paper primarily investigates the issue of imputing missing data, proposing a new 

imputation algorithm called CCGAIN based on the work of Yoon et al.'s GAIN. Firstly, 

a clustering module is introduced to partition the dataset into multiple clusters, and then 

imputation is performed separately within these clusters. Since samples within each 

cluster exhibit higher correlation, CCGAIN's imputation process is more targeted. Sub-

sequently, multiple scales are constructed for the data within each cluster, allowing the 

imputation results at local scales to supervise the imputation results at the global scale, 

thereby constructing the reconstruction loss of missing values. Based on the reconstruc-

tion loss of missing values, the reconstruction loss of non-missing values, and the ad-

versarial loss, imputation is performed at the global level. Finally, the data from these 
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clusters are merged to form the final imputation result. Experimental results demon-

strate the effectiveness of the proposed method. 
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