
Entity Resolution with Deep Interactions and Fine-

Grained Difference Extraction based on BERT 

Huiting Yuan, Liang Zhu (), Yu Wang () and Zhouyan Liu 

Hebei University, Baoding, Hebei 071002, China 
zhu@hbu.edu.cn; wy@hbu.edu.cn 

Abstract. Entity Resolution (ER) is crucial for data integration, identify if record 

pairs from one or multiple datasets refer to the same real-world entity. Traditional 

ER struggles with complex and diversity record structures, using coarse features 

that overlook subtle semantics, hindering performance. Furthermore, processing 

each record pair individually also increases computational costs. To overcome 

these issues, we propose DIBER, a novel ER model based on Siamese networks 

structure and a pre-trained language model (PLM) that generates contextually 

rich representations of records. It uses co-attention for inter-record link analysis 

and combines fusion with weighted attention to highlight subtle differences. A 

feature extractor further refines matching details, enhancing discrimination. It is 

adaptable for blocking and outperforms state-of-the-art (SOTA) methods on 

small datasets without injecting specific domain knowledge, as shown by exten-

sive experiments.  

Keywords: entity resolution, deep interaction, fine-grained, blocking. 

1 Introduction 

Entity Resolution (ER), also known as entity matching, record linkage, duplicate record 

detection, or reference reconciliation, aims to determine whether records refer to the 

same real-world entity. It plays a crucial role in data-centric processing, such as data 

cleaning, data integration, and data mining. After decades of development, ER has been 

widely used in various fields such as e-commerce [1], healthcare [2], and population 

censuses [3]. Due to its profound impact on these areas, it has garnered significant at-

tention. In the current research, ER is treated as a binary classification problem [4]: if 

two records refer to the same entity, the pair of records is predicted to be a match; 

conversely, if the records refer to different entities, they are predicted to be unmatched. 

For instance, in Fig. 1, which consists of two tables that separately describe products 

from Amazon and Google, the record pairs <431, 1687> and <113, 3109> are consid-

ered to refer to the same entity because they represent the same real-world product. 

Conversely, the record pairs <431, 3109> and <113, 1687> are indicative of distinct 

entities as they correspond to different real-world products. 
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The ER process typically consists of two steps: blocking and matching. Our work 

mainly focuses on the matching task. In the core task of matching, accurately determin-

ing whether two records refer to the same real-world entity relies heavily on an exhaus-

tive comparison of their key informational elements, such as brand names, product 

types, and specifications. If these elements align perfectly, it can be confidently con-

cluded that the two records are indeed a match.  

The concept of ER is formally proposed in [5] and much research has been conducted 

on matching, resulting in diverse solutions being proposed that encompass rule-based 

[6,7,8], crowd-sourcing [9,10] and machine learning [11,12,13] methods. In recent 

years, the development of deep learning (DL) technology has facilitated significant 

breakthroughs in ER. Compared with traditional ER methods, DL with its strong fea-

ture learning capability, can deeply explore the semantic similarity between records 

while significantly reducing the need for human involvement. In particular, the perfor-

mance of ER is greatly enhanced by employing pre-trained language models (PLM) to 

obtain vector representations for records. Numerous studies have confirmed it [14,15]. 

 

Fig. 1. Entity resolution on two datasets coming from Google and Amazon 

The Ditto model [14], as a solution based on BERT [16], concatenates a pair of records 

into a single sequence and separates two records by the [SEP] token. It harnesses the 

special token [CLS] generated by BERT to represent the contextual embedding of the 

entire sequence pair, and feeds the vector into a simple fully connected layer for binary 

classification. However, this approach, while considering the semantic associations, 

brings certain limitations. Firstly, under the self-attention mechanism, although BERT 

can capture contextual information, it tends to focus on all words, and the semantics of 

a record may be influenced by irrelevant words from another record, failing to accu-

rately capture the crucial and subtle differences between record pairs [17]. It implies 

that even if two records exhibit high consistency in key features, their importance may 

be relatively diminished when computing in conjunction with other non-critical de-

scriptive words. As a result, the model may not be able to accurately focus on the core 

information that most determines whether two records are match, thus affecting the 

model’s precision. Furthermore, the global information generated by BERT for record 

pairs does not directly represent the semantics of each individual record within the pair. 
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Additionally, concatenating record pairs into a single sequence inevitably leads to in-

creased computational complexity. This limitation hinders the practical application of 

blocking techniques to effectively shrink the search space, consequently leading to an 

increase in computational time complexity up to the order of O(n²) [18]. 

In this paper, we propose a new model named DIBER (i.e., Deep Interaction based 

on BERT Entity Resolution). Inspired by the architectures of existing models such as 

SBERT [19] and ColBERT [20], our model adopts a Siamese network structure to fa-

cilitate flexible application of blocking techniques. Due to the inherent limitations of 

such a structure in capturing deep interactions between pairs of records, we design a 

series of modules that enhance the model's interactive capabilities, thereby enabling it 

to discern correlations within record pairs, extract granular disparities, and identify piv-

otal matching features, ultimately enhancing overall matching accuracy. Additionally, 

by inputting each record individually into BERT, we can truncate the maximum se-

quence length, which effectively reduces the parameter requirements of the model. To 

cater to heterogeneous datasets, which consist of varying structures, we concatenate 

individual records into strings, thus breaking down the strict boundaries between attrib-

utes and fostering extensive applicability across various scenarios. In summary, the 

contributions are as follows: 

• We propose a novel model named DIBER, which can be simultaneously applied to 

both blocking and matching. 

• Our proposed model is highly sensitive to nuanced discrepancies within record pairs, 

dynamically modulating its attention to assign increased weight to critical dispari-

ties. Moreover, the model effectively extracts features that play a critical role in de-

termining the matching outcome, thereby achieving a significant enhancement in 

performance. 

• We have conducted extensive experiments to evaluate on 10 datasets without inject-

ing domain knowledge, and the results show that DIBER outperforms some state-

of-the-art (SOTA) methods significantly. 

The subsequent sections of the paper are outlined as follows. Related work is intro-

duced in section 2. The problem definition and the overall framework of the model are 

delineated in section 3. The detailed implementations of matching and blocking are 

elaborated in section 4 and section 5, respectively. The detailed analysis of extensive 

experimental results from 10 datasets is presented in section 6. The conclusions are 

summarized in section 7. 

2 Related Work 

ER stands as a cornerstone in the fields of data mining and artificial intelligence. To 

effectively handle large-scale datasets without succumbing to the high computational 

complexity inherent in direct pairwise matching, ER is typically divided into two cru-

cial steps: blocking and matching. Initially, the original datasets are carefully parti-
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tioned using blocking technology, breaking them down into smaller-sized blocks, sig-

nificantly reducing unnecessary comparison counts and conserving computational re-

sources. Then, the matching process is conducted within these blocks.  

The concept of ER is formally introduced in [5], and the problem of ER is first de-

fined as a classification problem in [4]. The blocking techniques are applied to the ER 

task in [21]. With the advancement of technology, research in this field has become 

more systematic and scientific, and various methods have been proposed.  

For blocking, traditional methods include nearest neighbor sequence indexing [22], 

clustering [23], and hash-based methods [24], which typically assume that two tables 

share the same schema. To our knowledge, the earliest work is DeepER [25], which 

first converts tuples into distributed representations and then employs locality sensitive 

hashing to ensure that similar tuples obtain the same hash code. AutoBlock [26] is a 

novel hands-off blocking framework for ER, based on similarity-preserving represen-

tation learning and nearest neighbor search. DeepBlocker [27] defines a large space of 

DL solutions for blocking and develops eight representative solutions in this space. 

For matching, the three typical categories of methods are rule-based, crowd-sourc-

ing, and machine learning. The continuous evolution of DL technology has led to its 

widespread application in ER. DeepER transforms each record into a vector and meas-

ure the similarity between pairs of records. However, relying solely on a single repre-

sentation may not adequately capture the intricate nuances and distinctive features 

within records. DeepMatcher [28] provides a design space for solving ER problem and 

has demonstrated excellent performance on various benchmark datasets. This method 

performs pairwise comparisons at the attribute level and derives matching results based 

on similarity calculations. The Seq2SeqMatcher [29] adheres to the align-compare-ag-

gregate pattern, capturing token-level representations and fostering semantic connec-

tions between tokens. It enables to flexibly compare token between different attributes, 

thereby resolving the issue of heterogeneous datasets. 

With the rise of PLM such as BERT, the field of ER has entered a new stage. These 

models are pre-trained on large-scale unlabeled text data, thereby acquiring rich lin-

guistic structure and semantic representation capabilities. [30] analyzes the perfor-

mance of four SOTA attention-based Transformer architectures (BERT, XLNet [31], 

RoBERTa [32] and DistilBERT [33] ) in the context of ER problems. Ditto fine-tuning 

PLMs, integrates domain knowledge and applies data augmentation, but its reliance on 

the [CLS] token output might overlook detailed semantic information. JointBERT [15] 

innovatively combines binary and multi-class tasks, improving ER via dual-objective 

training; however, its performance is contingent upon ample labeled data, which poses 

a challenge in low-resource scenarios. 

To reduce the dependence on large amounts of labeled data, several new models 

have been proposed. DADER [36] greatly reduces the reliance on expensive manually 

labeled data by incorporating domain adaptation techniques and smart data utilization 

strategies. CLER [37] proposes an end-to-end iterative Co-learning framework, jointly 

training the blocker and the matcher by leveraging their cooperative relationship. It 

iteratively generates and updates pseudo labels as a bridge to facilitate knowledge shar-

ing between them, thereby enhancing the supervisory information and effectively ad-

dressing entity parsing tasks under low-resource scenarios. 
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Despite significant progress in ER due to DL and PLM, strategies remain crucial for 

effectively leveraging these technologies in scenarios of data scarcity, along with the 

ability to flexibly integrate blocking and matching components. Our proposed frame-

work tackles this challenge by thoroughly exploring subtle semantic associations and 

discrepancies between records, effectively addressing these issues. 

3 DIBER Model for Blocking and Matching Records in Two 

Datasets 

This section describes the design of our DIBER model for blocking and matching rec-

ords in two datasets. We firstly introduce the definition of the ER problem, and then 

present the overall framework of the model. 

3.1 Problem Definition 

In this work, a record of a dataset represents a description of a real-world entity such as 

a person, product and company, by storing the values of attributes of the entity in a 

table/relation. Let table A and table B be two sets of records with A = {a1, a2, …, a|A|} 

and B = {b1, b2, …, b|B|}, where |A| and |B| are the number of the records in tables A 

and B, respectively. For a record a in A, we will discuss the set of all words of a, which 

is also denoted by a  = {a1, a2, …, au}, where u is the number of words in a, in Fig. 1, 

for example, a431 = {microsoft, licenses, win, svr, 2003, ext, conn lic, r3900292, mi-

crosoft, licenses, 3371.85}. Similarly, for a record b in B, in Fig. 1, for example, b1678 

= {microsoft, r39-00292, open, win, svr, 2003, ext, conn, 1863.78}. 

Matching. For a  A and b  B, the purpose of matching is to determine whether the 

record pair (a, b) refer to a same real-world entity. If a and b point to the same entity, 

we call it a match, then y = 1; otherwise, if a and b point to two different entities, we 

call it a non-match, then y = 0. The probability P(y | a, b) will be the output of our 

model. Generally, the number of non-matching record pairs is much greater than the 

number of matching record pairs. 

Blocking. The purpose of blocking is to find potential matching pairs between tables A 

and B, so that the matching process only needs to judge these pairs of candidate sets 

rather than all entity pairs, thereby reducing the computational cost of matching. We 

assume that there are unlabeled records in tables A and B. The input of blocking is all 

pairs from AB, the output is a set of similar candidate pairs. 

3.2 Framework of DIBER Model 

As illustrated in Fig. 2, our model consists of three components: Encoder, Blocker, and 

Matcher. For the Encoder, its purpose is to map each word in the record to a high-

dimensional vector, obtaining rich semantic information within the record. Common 

processing methods include GloVe [34], Word2Vec [35], fastText [38], BERT [16]. 
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Since the same token may correspond to different semantics in various contexts, and 

BERT can effectively capture abundant context information to address the issue of pol-

ysemy, we use BERT as our encoder. We input all the records from tables A and B into 

BERT, respectively, obtaining their corresponding vector representation sets ℝA and ℝB. 

For BERT-base, its output includes an embedding layer and 12 hidden layers. We use 

the embedding layer as the vector representation for Blocker, and select one hidden 

layer as the vector representation for Matcher.  
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Fig. 2. Architecture of DIBER for blocking and matching records in two tables A and B 

In the matcher component of our model DIBER (see Fig. 2), the matcher consists of a 

co-attention mechanism, fusion layer, weighted attention mechanism, feature extraction 

layer, gated fusion, and prediction layer. Firstly, the outputs ℝA and ℝB of Encoder 

component are used as the inputs of the Matcher component, the matrix or vector rep-

resentations of matching are denoted as EA = (eA1, eA2, …, eAm)  ℛdm and EB = (eB1, 

eB2, …, eBn)  ℛdn, where ℛdn is the set of dn matrices, eAi  ℛd1 is the vector 

representation of the token tki (1  i  m) in a, eBj  ℛd1 is the vector representation of 

the token tkj (1  j  n) in b, m and n are the number of tokens in records a and b, 

respectively, and d is dimension of the BERT output vector. By concatenating a and b 

into a single sequence with the special token [SEP], we input the sequence into BERT 

to acquire an overall semantic representation Ccls for the record pair. Secondly, by in-

putting EA and EB into the co-attention layer, we capture the deep interactive infor-

mation. Thirdly, we integrate the semantic information and interaction information of 

the two records to derive their associations and subtle differences. Then, by employing 

a weighted attention mechanism, we assign higher weights to critical differences, and 
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utilize a feature extractor to derive fine-grained, pivotal matching features which are 

local. Finally, via a gating mechanism, we fuse the extracted local vectors with the 

global vector Ccls, and pass the fused output through a simple fully connected layer to 

yield the final result P(y | a, b). 

  In the blocker component, we deal with all records in tables A and B, with their 

token-level vector representation sets denoted as TA
 = {tA1, tA2, …, tA|A|}, TB

 = {tB1, tB2, …, 

tB|B|}, respectively, where tAi = (tAi1, tAi2, …, tAim)  ℛd×m is a matrix for ai in A, tBj = (tBj1, 

tBj2, …, tBjn)  ℛd×n is a matrix for bj in B. Firstly, we employ pooling operations to 

aggregate the token-level representations into record-level representations. Then, we 

use a function to calculate similarity scores between any ai in A and every record within 

B, thus obtaining a set of potential matching records for ai. This process is iterated for 

each record in A, ultimately yielding the candidate match set D. 
The other letters in the figure represent the outputs of each module. 

4 Matching Records in Two Tables 

For the matcher, we primarily enhance the model’s performance by focusing on the 

following aspects: (1) Harnessing rich semantic features in records; (2) Facilitating 

deep interaction between records to obtain their associations; (3) Delving into fine-

grained discrepancies and pivotal matching features; (4) Fusing the local and global 

features to obtain multi-grained and comprehensive information. Next, we will intro-

duce the implementation process in detail. Since a and b are processed in a symmetrical 

manner, we will only show the process for a. 

4.1 Co-Attention Layer  

After obtaining the vector representation of record pairs, it is necessary to perform soft 

alignment between the record pairs to obtain their interaction information. For each 

token tki in a, its vector is eAi  {eA1, eA2, …, eAm}, firstly, we calculate its similarity 

with all tokens in b to obtain a similarity vector 𝜶𝑖. Then, 𝜶𝑖 is normalized using soft-

max function, thereby obtaining the interaction information between a and b at the to-

ken level. The similarity value indirectly represents the importance of tki with respect 

to each token in b: 

𝜶𝑖 = (𝑾𝑘 ∙ 𝑬𝐵)⊤ ∙ (𝑾𝑞 ∙ 𝒆𝐴𝑖  ) (1) 

𝜶𝑖
′ =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜶𝑖) (2) 

𝒉𝐴𝑖 = (𝑾𝑣 ∙ 𝑬𝐵) ∙ 𝜶𝑖
′ (3) 

where the matrices 𝑾𝑞 , 𝑾𝑘  and 𝑾𝑣  ℛd×d are randomly initialized and jointly learned 

during the training process; 𝜶𝑖 and 𝜶𝑖
′  ℛn1 are column vectors of n dimen-

sions; 𝒉𝐴𝑖  ℛd1 is the interaction vector of tki with respect to b; “ ⊤ ” represents the 

transpose of a matrix. Moreover, we can obtain the interaction matrix HA
 = (hA1, hA2, …, 

hAm)  ℛd×m regarding a with b at the token level. 
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4.2 Fusion Layer 

The fusion layer combines the semantic representation eAi from the encoding layer with 

interactive representation hAi from the co-attention layer, generating a token-level com-

parison vector. It can emphasize the distinctions among record pairs and extract more 

discriminative features, thereby allowing the model to sensitively discern subtle nu-

ances between record pairs and better comprehend complex semantics. The specific 

implementation is as follows: 

𝜷𝑖  =  𝒆𝐴𝑖 − 𝒉𝐴𝑖  (4) 

𝜷𝑖
′ = 𝜷𝑖 ⊙ 𝜷𝑖 (5) 

𝒇𝐴𝑖  =  𝒆𝐴𝑖 ⊕ 𝜷𝑖 ⊕ 𝜷𝑖
′ (6) 

where 𝜷𝑖 and 𝜷𝑖
′  ℛd×1 are column vectors; “ − ” represents the subtraction operation 

between vectors, aiming to capture relational and differential features; “ ⊙ ” represents 

the element-wise multiplication operation on vectors, aiming to further accentuate dif-

ferences, extract more subtle discrepancies, and thereby obtain fine-grained compara-

tive information; “ ⊕ ” represents the (vertical) concatenation operation of column vec-

tors. Therefore, we can obtain a vector 𝒇𝐴𝑖  ℛ3d×1 and a fusion matrix FA = (𝒇𝐴1, 

𝒇𝐴2, …, 𝒇𝐴𝑚)  ℛ3d×m. 

4.3 Weighted Attention Layer 

The inspiration for the weighted attention mechanism stems from the observation that 

in different fields, words with significant discriminative power should be given special 

attention [39]. In the ER task, the varying degrees of differences between records con-

tribute differently towards determining whether they refer to the same entity. To better 

utilize the salient disparities in the matching process, we assign high weights to these 

differences, which can further improve the performance of matching. Therefore, we 

propose a weighted attention mechanism. Firstly, we calculate the weights using dot 

product combined with the softmax function for normalization, obtaining the weight 

vector 𝜸𝑖
′. By applying 𝜸𝑖

′ to the fusion matrix FA, we obtain a global vector 𝒈𝐴𝑖  with 

differential weights: 

𝜸𝑖 = (𝑾𝛽 ∙  𝑭𝐴)⊤ ∙ (𝑾𝛼 ∙ 𝒇𝐴𝑖) (7) 

𝜸𝑖
′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜸𝑖) (8) 

𝒈𝐴𝑖 = (𝑾𝛾 ∙ 𝑭𝐴) ∙ 𝜸𝑖
′ (9) 

where 𝑾𝛼 ,  𝑾𝛽 ,  𝑾𝛾  ℛ3d×3d are trainable matrices, while  𝜸𝑖 , 𝜸𝑖
′  ℛm×1 and 𝒈𝐴𝑖   

ℛ3d×1 are column vectors. Therefore, we can get a weighted matrix GA = (𝒈𝐴1, 𝒈𝐴2, …, 

𝒈𝐴𝑚)  ℛ3d×m. 
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4.4 Feature Extraction Layer 

After obtaining the weight information of the records, we hope to achieve a more fine-

grained feature representation. We employ sentence-level CNN to extract multi-gram 

features, capturing the local information of tokens, and the feature extraction layer 

(which is called Fel() in this paper) comprises a set of convolutions, a batch normali-

zation, a non-linear function and max pooling operations [40]. 

𝒄𝐴 = 𝐹𝑒𝑙(𝑮𝐴) (10) 

where 𝒄𝐴  ℛcg1 is a column vector, c is the number of kernels, and g is the kernel size, 

GA  = (𝒈𝐴1, 𝒈𝐴2, …, 𝒈𝐴𝑚)  ℛ3d×m is obtained above,. Thus, for EA, we can obtain a 

local vector 𝒄𝐴 that represents fine-grained interaction and key information. For EB, 

similarly, we can obtain a local vector 𝒄𝐵. 

4.5 Gate and Prediction Layer 

The gating mechanism (GM) is used to control information flow. We use GM to assign 

different weights to v and Ccls, where v is obtained by concatenating cA and cB, and Ccls 

is a vector representing the contextual information of the entire record pair, generated 

by BERT.  Through the combination of local and global information, we can obtain a 

more comprehensive and enriched feature representation 𝒛: 

𝒗 = 𝒄𝐴  𝒄𝐵 (11) 

𝜆 = 𝜎(𝑾1 ∙ 𝒗 + 𝑾2 ∙ 𝑪𝑐𝑙𝑠 + 𝑏𝑔) (12) 

𝒛 = (1 − 𝜆) ∙ 𝑪𝑐𝑙𝑠 + 𝜆 ∙ 𝒗 (13) 

where 𝑾1  ℛ12cg and 𝑾2  ℛ1d are trainable matrices, 𝒗  ℛ2cg1 and Ccls  ℛd1 are 

column vectors, and 𝑏𝑔 is the corresponding bias term, and 𝜎 is a non-linear activation 

function (say, the function Sigmoid() is used in our experiments), 𝜆 (0  𝜆  1) is a 

variable used to control the flow of information. When 𝜆 = 0, 𝒗 does not take effect. As 

𝜆 increases, more emphasis is placed on using information from 𝒗 with fine-grained 

interaction during the generation of 𝒛, while the weight of the representation 𝑪𝑐𝑙𝑠 de-

rived directly from BERT is reduced. 

Then, the gated-generated vector 𝒛 is fed into a fully connected layer followed by a 

softmax layer to obtain the final prediction results: 

𝑝 =  𝑃(𝑦 | 𝒂, 𝒃) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾 ∙ 𝒛 + 𝑏) (14) 

4.6 Model Learning 

Given a training set 𝑻 = {(𝒂𝑖 , 𝒃𝑖 ,  𝑦𝑖)} 𝑖=1
 |𝑻|

 containing a series of training examples, 

yi   {0, 1} is the ground truth label, we train our model by minimizing the cross-en-

tropy loss function:  
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𝑙𝑜𝑠𝑠 = −
1

|𝑻|
∑[ 𝑦𝑖𝑙𝑜𝑔(𝑝) + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑝) ]

|𝑻|

𝑖=1

(15) 

where |T| is the number of training set, and 𝑝 is the predicted output of our model as 

shown in Equation (14). 

5 Blocking Records in Two Tables 

We propose a feasible blocking method based on the blocking framework template pro-

vided in [27]: firstly, we obtain the token-level representation of each record in tables 

A and B, and convert them into a single vector that represents the entire record. Then, 

we use a similarity measure to efficiently find tuple pairs (a, b) with highly similar 

score, where a  A, b  B.  

5.1 Record Embedding 

We use pooling operations to aggregate 𝒕𝐴𝑖 and generate the vector 𝒔𝐴𝑖 for the entire 

record. The pooling methods we employ include max pooling, min pooling, and aver-

age pooling. 

𝒔𝐴𝑖 = 𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝒕𝐴𝑖) (16) 

where 𝒔𝐴𝑖 = (sAi1, sAi2, …, sAid)⊤  ℛd×1 is a column vector. Thus, we can obtain the 

record representations SA for all records in table A and SA = {sA1, sA2, …, sA|A|}. Simi-

larly, we can obtain sBi  ℛd×1, and SB = {sB1, sB2, …, sB|B|}. 

5.2 Candidate Pair Generation 

We leverage a function (·) for efficiently identifying the corresponding similarity vec-

tor in table B for each record in table A. In our experiment, we utilize the cosine simi-

larity function as our (·) function. There are typically two methods for selecting sim-

ilar record pairs: select records with similarity scores exceeding a certain threshold 

(e.g., threshold = 0.8), or select the top-k records with the highest similarity scores. 

Compared with the threshold method, employing the top-k approach effectively miti-

gates the loss of potentially similar records due to inappropriate threshold settings. 

Moreover, for datasets with diverse scales and distributions, the top-k method consist-

ently identifies record pairs of a certain quality level by selecting an appropriate k value, 

thereby exhibiting robustness against variations in the data. Thus, we employ the top-k 

method to select record pairs. Specifically, for each record ai in table A, we initially 

compute the cosine scores between its vector sAi  SA and every sBj  SB. Subsequently, 

based on these cosine scores, we sort all records in table B in descending order of sim-

ilarity and select the top-k records to form a subset Ki  B. For ai, we can obtain k 
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possible match pairs (ai, bj), where bj  Ki. The matching records collectively constitute 

the candidate set Di for ai. It can further yield the candidate set D for all records in A. 

𝑠𝑖𝑚(𝑖, 𝑗) = (𝒔𝐴𝑖 ,  𝒔𝐵𝑗),     ∀ 𝑖, 𝑗  (1  𝑖  |𝑨|, 1  𝑗  |𝑩|) (17) 

𝑲𝑖 = 𝑡𝑜𝑝𝑘{𝑠𝑖𝑚(𝑖, 𝑗1), 𝑠𝑖𝑚(𝑖, 𝑗2), … , 𝑠𝑖𝑚(𝑖, 𝑗|𝑩|)} (18) 

𝑫𝑖 = {(𝒂𝑖 , 𝒃𝑗) | 𝒃𝑗   𝑲𝑖  } (19) 

𝑫 = {𝑫1, 𝑫2, … , 𝑫|𝑨|} (20) 

where the function 𝑡𝑜𝑝𝑘(·) is used to find the top-k most similar pairs between record 

ai and all records in table B. 

6 Experiments 

In this section, we evaluate our model DIBER and report the experimental results. In 

section 6.1, we provide the experimental settings, in section 6.2, we preprocess the data, 

in section 6.3, we evaluate the overall performance of the model, and in section 6.4, we 

conduct an ablation study. 

6.1 Experimental Settings 

Benchmark Datasets. To evaluate our model, we use two kinds of datasets to conduct 

experiment: standard structured datasets and dirty datasets, from various domains. 

There are six structured datasets, and four dirty datasets as illustrated in Table 1. For 

structured datasets, we use Amazon-Google (abbr. A-G), Beer, DBLP-ACM1 (abbr. D-

A1), Walmart-Amazon1 (abbr. W-A1), iTunes-Amazon1 (abbr. I-A1), DBLP-Scholar1 

(abbr. D-S1). These datasets are publicly available and have been extensively used for 

the ER task. For the dirty datasets, we use DBLP-ACM2 (abbr. D-A2), Walmart-Ama-

zon2 (abbr. W-A2), iTunes-Amazon2 (abbr. I-A2), DBLP-Scholar2 (abbr. D-S2) datasets, 

which are generated from their respective original ones (e.g., I-A2 is generated from I-

A1). These datasets are generated by randomly moving the value of each attribute to the 

attribute title in the same record with 50% probability. By the dirty datasets, we can 

measure the robustness of the model. Each dataset is split into training, validation, and 

test sets using the ratio of 3:1:1, provided by [28]. 

Baselines. We compare our model with the following baselines: (1) Magellan: A clas-

sical non-DL ER baseline that has demonstrated strong performance across various da-

tasets. In this approach, a set of classifiers is trained using a rich feature set. (2) Deep-

Matcher: A SOTA matching model which provides a categorization of DL solutions 

and defines a design space for these solutions. It requires that the record pairs to be 

matched have the same pattern. (3) Ditto: A pre-trained Transformer-based language 

model. The model casts ER as a sequence-pair classification problem, and applies three 

optimization techniques, including leveraging domain knowledge, summarizing long 



12  H. Yuan et al. 

entries, and augmenting training data. (4) DeepBlocker: A SOTA blocking model based 

on DL which defines a large space of DL solutions for blocking, which contains solu-

tions of varying complexity. 

For Magellan, DeepMatcher and DeepBlocker, we directly use the results reported 

in their papers. For fair comparison, the Ditto result in our paper is obtained by re-run 

the open-source using the BERT pre-trained model with the epoch and batch size of 40 

and 32 respectively. The data augmentation technique employed is deleting a span of 

tokens. And all other hyper-parameters are set as described in original paper. 

Table 1. Statistics of two kinds of datasets used in our experiments 

Type Datasets Domain Size #Pos. #Att. 

 

 

Structured 

A-G Software 11,460 1,167 3 

Beer Beer 450 68 4 

D-A1 Citation 12,363 2,220 4 

W-A1 Electronics 10,242 962 5 

I-A1 Music 539 132 8 

D-S1 Citation 28,707 5,347 4 

 

Dirty 

W-A2 Electronics 10,242 962 5 

D-A2 Citation 12,363 2,220 4 

D-S2 Citation 28,707 5,347 4 

I-A2 Music 539 132 8 

Metric for Matching. We use F1 score to measure the matching accuracy, which is 

defined as F1 = 2PR/(P + R), where P is precision and R is recall. Precision is defined 

as P = |TP|/(|TP|+|FP|) and recall is defined as R = |TP|/(|TP|+|FN|). The F1 score on 

the test datasets as our metric. Ideally, we want a high F1 score. 

Metric for Blocking. We utilize recall and the Candidate Set Size Ratio (CSSR) to 

evaluate our blocking, where recall is defined as recall = |R∩D|/|D|, CSSR is defined 

as CSSR = |D|/|A×B|, with D being the candidate set generated by the blocker, and R 

representing the actual matches between tables A and B. Ideally, we aim for high recall, 

low CSSR, and low runtime. 

Parameters. The convolutional layers have kernel sizes set to [1, 2, 3], with g = 128 

kernels for each size. The Adam optimizer is employed for parameter tuning, initializ-

ing with a learning rate of 3e-5. The batch size is set to 32 for the D-S1 and D-S2 da-

tasets, while for all other datasets, the batch size is reduced to 16. We fix the max se-

quence length to be 128. The training process runs for a fixed number of epochs, which 

is set to 15, 30 or 50 based on the size of the datasets. We present the average F1 score 

for results of three independent experiments. In the context of blocking, k represents 

the number of records from table B that each record in table A is paired with based on 

the cosine similarity. The size of k has a significant impact on both the recall and CSSR. 
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We conduct experiments using the same value of k as in DeepBlocker [27]. We imple-

ment DIBER in PyTorch and the Transformers library and conduct all experiments on 

a single RTX 3090 GPU. 

6.2 Data Preprocessing 

We preprocess the input data to enhance the performance of DIBER. In many NLP 

tasks, PLMs are sensitive to the order of input record pairs, especially when dealing 

with entity relationships. Therefore, we adopt the method of swapping records while 

retaining their original labels to increase both the quantity and diversity of training data. 

For instance, (a, b) is converted to (b, a) and their labels are the same. It enables the 

model to capture information more comprehensively and effectively enhance its gener-

alization capability. Moreover, some datasets contain punctuation marks that do not 

carry semantic information and are irrelevant to the matching decision, such as “ ( ”, 

“ ) ”, “ / ”, and “ - ”. Therefore, we filter out these punctuation marks, retaining only 

the most critical information. It enables the model to focus on the elements directly 

related to the ER task, thereby enhancing its performance. 

6.3 Effectiveness Evaluation  

Matching. In the matching, we compare the DIBER with Magellan, DeepMatcher, and 

Ditto. Table 2 summarizes the F1 scores of all models on all datasets. We use bold text 

to emphasize the highest scores in each row. As shown in Table 2, the average F1 scores 

for Magellan, DeepMatcher, Ditto and DIBER model across all datasets are 74.03, 

82.24, 89.99 and 91.83, respectively. We can infer that DIBER exhibits outstanding 

overall performance.  

To be specific, DIBER outperforms Magellan and DeepMatcher in terms of F1 score 

on all datasets. Especially on some special datasets with limited training data or for 

product description, such as Beer, W-A1, W-A2, I-A1, and I-A2, our model demonstrates 

significant improvement in performance. In these datasets, the shared common vocab-

ulary among record pairs is relatively scarce, demanding that the model effectively ex-

cavates and extracts abundant semantic information between record pairs. It indicates 

that our model possesses a strong capability for semantic understanding. Although Ditto 

has a strong semantic understanding ability, our model achieve F1 score increases of 

8.9, 1.8, and 3.5 on the Beer, I-A1, and I-A2 datasets, respectively. It is mainly due to 

the high sensitivity of our model to subtle differences, which allows it to accurately 

unearth and profoundly grasp the intrinsic connections between records. Therefore, 

when the amount of training data is limited, DIBER demonstrates significant perfor-

mance improvements. This attribute enables DIBER to be more widely applicable in 

scenarios with insufficient data. 

Compared with Ditto, the F1 score of DIBER has been improved by 3.2, 1.2, and 0.5 

respectively on datasets A-G, W-A1 and W-A2. For these datasets, record pairs referring 

to different entities often share some common terms, yet exhibit subtle disparities in a 

few pivotal words, such as product models, which plays a critical role in the matching 

process. This indicates that DIBER is capable of accurately identifying and extracting 
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subtle differences between record pairs, particularly those nuanced variations that are 

critically important for ER. It assigns significant weight values to such differences, en-

abling the model to discern subtle yet crucial matching information within record pairs 

that determines the matching results. 

Table 2. F1 score of DIBER on all datasets 

Type Datasets Magellan DeepMatcher Ditto  DIBER 

 

 

Structured 

A-G  49.1   69.3   74.5 77.7   

Beer  78.8    78.8   87.5 96.4   

D-A1  98.4    98.4   99.1 98.8   

W-A1   71.9   67.6   81.5 82.7  

I-A1   91.2   88.5   96.4 98.2  

D-S1  92.3   94.7   94.7 94.8   

 

Dirty 

W-A2 37.4   53.8 79.9 80.4  

D-A2 91.9 98.1 98.4 98.4  

D-S2 82.5 93.8 95.0 94.5  

I-A2 46.8 79.4 92.9 96.4  

average  74.03 82.24 89.99 91.83 

 

On other datasets, our model presents room for improvement. On the D-S1 dataset, 

we manage to lift the F1 score by a mere increment of 0.1, while maintaining compa-

rable performance on the D-A2 dataset.  However, on the D-A1 and D-S2 datasets, the 

F1 scores are marginally decreased by 0.3 and 0.5, respectively. It can be attributed to 

the abundance of repeated vocabulary among record pairs within these datasets, which 

results in weaker distinguishing features, consequently posing a lower threshold of 

challenge for all models, including ours, in discerning semantic similarities. 

Blocking. Table 3 presents the experimental results of our model under different k val-

ues and pooling operations across various datasets, comparing its performance with that 

of the DeepBlocker. The boldface entries in each row indicate the highest recall 

achieved for each dataset.  

It shows that the blocking solution proposed by us achieves a high recall on small 

candidate sets. And even with larger candidate sets generated, our runtime is not par-

ticularly long. In terms of recall, our proposed blocker outperforms DeepBlocker on all 

datasets except for D-S1 and D-S2. This is mainly because there exist a large number of 

common terms in the record pairs within datasets D-S1 and D-S2, which aid the model 

in better capturing the semantic information of the records. For the datasets W-A1 and 

W-A2, which have fewer shared terms and distinct expressions of key attributes, our 

blocker has improved recall by 6.1 and 9.8, respectively. For ER tasks, using the CLS 

token output directly from BERT or averaging the token-level embedding to represent 

the entire record as a vector yields unsatisfactory results compared with using max 

pooling or min pooling. 



 Entity Resolution with Deep Interactions 15 

Table 3. Experimental results of different methods on various datasets 

datasets k |D| CSSR 

(*10-3) 

runtime Recall 

mean max min CLS Deep-

Blocker 

A-G 50 68.2k 15.4 14.1s 98.6 96.6 96.2 76.1 97.1 

Beer 50 217.3k 16.6 19.1s 86.8 86.8 85.3 33.8 - 

D-A1 5 13.1k 2.1 12.6s 99.3 99.5 99.7 87.8 99.6 

W-A1 20 51.1k 0.9 73.9s 96.5 98.2 98.3 53.5 92.2 

I-A1 50 1036.1k 2.7 477.6s 69.7 93.2 90.9 30.3 - 

D-S1 150 392.4 2.3 209.1s 94.3 96.6 97.4 51.8 98.1 

W-A2 20 51.1k 0.9 73.2s 96.5 98.2 98.1 51.8 88.0 

D-A2 5 13.1k 2.1 12.5s 99.3 99.4 99.7 63.3 99.6 

D-S2 150 392.4k 2.3 208.6s 93.9  96.5 97.2 45.9 98.1 

I-A2 50 1036.1k 2.7 439.7s 65.9 89.4 87.1 34.8 - 

6.4 Ablation Study 

Our model consists of several components: data preprocessing (DP), co-attention mech-

anism (CAM), fusion, weighted attention mechanism (WAM), and feature extraction 

layers (FEL). To verify the effectiveness of each module in DIBER, we will perform 

an ablation study by gradually eliminating one component at a time.  

We compare DIBER with these variants, presenting the comparative results in Table 

4: (1) D-DP, which the data preprocessing is omitted. As observed, the average F1 de-

creased by 3.54 compared with DIBER. This decline highlights the importance of DP, 

which enables the model to learn more comprehensive and diverse features while fo-

cusing on the core content of records. (2) D-CAM, which removes the co-attention 

mechanism module and directly passes the semantic information of record pairs to the 

fusion module. It is observed that the F1 decreases by nearly 24 on average without 

CAM. It indicates that CAM is able to align disparate record representations, enabling 

the model to delve more profoundly into the interactions between records and associ-

ated information, which is a crucial factor in enhancing model performance. (3) D-

Fusion, which uses ei  (ei − hi)  (ei ⊙ hi) instead of the fusion mechanism in DIBER. 

The result shows that the F1 score under D-Fusion has decreased by an average of 3.11, 

indicating that the fusion in DIBER excels at capturing and highlighting the subtle but 

critical distinguishing features between record pairs. (4) D-WAM, which assigns equal 

weights to all token-level differences. For datasets I-A1 and I-A2, which describe music, 

they have a higher number of positive samples, and for negative samples, their seman-

tics vary significantly. Therefore, removing WAM does not affect their F1. For other 

datasets, the removal of WAM lead to an average decrement of 0.65 in F1, demonstrat-

ing that giving greater emphasis to key discrepancies indeed enhances the F1 effec-

tively. (5) D-FEL, which substitutes FEL with an average pooling and a simple fully 

connected layer. We find a drop by at most 6.7 in F1 when removing FEL. It is due to 
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FEL can extract finer-grained key matching information, thereby enhancing the accu-

racy and efficiency of the model. According to the results, all of the components con-

tribute effectively to the performance improvement. 

Table 4. F1 score of the DIBER and its variants 

Datasets D-DP D-CAM  D-Fusion  D-WAM  D-FEL  DIBER 

A-G  73.1 47.2 73.8 77.0 71.3 77.7  

Beer  92.9 47.6 87.5  96.3 89.7 96.4 

D-A1  96.8 95.9 97.8  98.4 98.3  98.8 

W-A1 72.9  30.4  77.7 81.1 78.8   82.7 

I-A1   94.5 79.2 96.4   98.2 94.6 98.2 

D-S1 93.5 90.3 94.2 94.6 93.4 94.8   

W-A2  74.6 28.8 74.1 79.1 78.2 80.4 

D-A2  97.7 95.5 97.2  98.1 97.3 98.4 

D-S2 93.8 89.9 94.0 93.9 93.5 94.5 

I-A2  92.9 80.0 94.5   96.4 91.5 96.4 

7 Conclusion 

In this paper, we propose a novel entity resolution Siamese network model DIBER. 

This model can be applied to both matching and blocking steps. For the matching step, 

we use a co-attention mechanism to interact between record pairs, fuse semantic infor-

mation with interaction information, and compare the differences between two records. 

We use weighted attention to assign high weight values to key differences and use a 

feature extractor to extract fine-grained differences and key matching features. In addi-

tion, we conduct experiments on a blocking method to validate that our model can be 

flexibly applied to blocking tasks. We conducted extensive experiments on ten datasets, 

and the results show that our model outperforms some SOTA models. 

For future work, we will integrate the blocking and the matching task to develop 

an end-to-end ER system, further enhancing the performance of ER tasks. In addition, 

extensive experiments have shown that semantic understanding capability is crucial for 

performance. We will propose a semantic data augmentation method to optimize it. 
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