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Abstract. Aspect-Based Sentiment Analysis (ABSA) is a vital fine-grained 

sentiment analysis task that aims to determine the sentiment polarity towards 

an aspect in a sentence. Due to the expensive and limited amounts of labeled 

data, data augmentation (DA) methods have become the de-facto standard for 

ABSA. However, current DA methods usually suffer from 1) poor fluency 

and coherence; 2) lack of the diversity of generated data. To this end, we pro-

pose a novel simple-yet-effective DA method for ABSA, namely LLM-as-

an-Augmentor, which leverages the powerful capability of third-party large 

language models (LLMs) to improve the quality of generated data. Specifi-

cally, we introduce several text reconstruction strategies and use them to guide 

the LLMs for automatic data generation via a carefully-designed prompting 

method. Extensive experiments on 5 baseline methods and 3 widely-used 

benchmarks show that our LLM-as-an-Augmentor can bring consistent and 

significant performance gains among all settings. More encouragingly, given 

only 15% labeled data, our method can achieve comparable performance to 

that of full labeled data. To the best of our knowledge, our work is one of the 

rare works to leverage LLMs to generate fine-grained training data for the 

ABSA task. We hope our work could promote more research in related fields. 

 

Keywords: Aspect-based Sentiment Analysis · Large Language Model· Data 

Augmentation · Prompt Engineering. 

1 Introduction 

Aspect-based sentiment analysis (ABSA) is an important fine-grained sentiment anal-

ysis task, which focuses on identifying and analyzing the sentiments expressed toward 

specific aspects in a sentence [1]. Although currently popular large language models 

(LLMs) (e.g., GPT-4 [2], LLaMA2 [3]) have achieved widespread success in a wide of 

downstream tasks, they might fall short in dealing with the fine-grained classification 

tasks against the discriminative language models (e.g., BERT [4]), which has been 

proven by prior works [5]. Hence, employing BERT-style models is still a viable option 

in the field of ABSA. However, due to the limited amounts of labeled training data, 

fine-tuning the models usually results in sub-optimal performance. 

Data augmentation (DA) is a common technology to enrich the quantity of training 

data by changing the original data [6] or generating more data [7,8,9]. Specifically, DA 

methods can be generally divided into two categories: word-level and sentence-level 
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DA [10]. Word-level DA methods involve replacing or inserting words into sentences, 

leveraging techniques such as word synonym dictionaries or contextual word embed-

dings [6]. These methods aim to introduce linguistic variations that maintain the senti-

ment orientation and aspect context of the original sentence. While sentence-level DA 

methods focus on generating new sentences that preserve the sentiment and aspect as-

sociations of the original text but rephrasing them using paraphrasing methods [9], gen-

erative models [8,9], or machine translation [7] techniques. This allows the ABSA mod-

els to learn from different sentence structures and lexical variations. 

Although these DA methods have achieved remarkable performance, they usually 

suffer from some issues: 1) Poor fluency and coherence, as the word-level DA meth-

ods distort the sentence meaning or structures, and existing sentence-level DA methods 

struggle to generate fluent and coherent sentences. 2) Lack of the diversity of gener-

ated data, as most of the prior DA methods do not reconstruct the structure of original 

sentence, limiting the diversity of generated sentences. Intuitively, while LLMs fall 

short in determining the fine-grained information for ABSA, they have the great poten-

tial to deal with the above issues of DA methods, as they can generate fluent and high-

quality text [11]. As stated by Wei et al. [12], instruction tuning enables the LLMs to 

well follow human instructions. By carefully designing some prompting methods, 

LLMs can be used for various applications, such as text completion, text rewriting, etc.  

Motivated by this, we propose a simple-yet-effective DA method for ABSA, namely 

LLM-as-an-Augmentor, which leverages the powerful in-context learning ability of 

LLMs to generate more high-quality and diverse training data. In particular, the pro-

posed method contains three-stage processes. First, we introduce three text reconstruc-

tion strategies to reconstruct the sampled training data, and obtain the “original-recon-

structed” text pairs. Then, by using the “original-reconstructed” text pairs as demon-

strations, we design a prompting method to guide the LLMs for automatic data gener-

ation in a few-shot manner. Lastly, we filter incorrect data and form a new dataset. In 

general, instead of directly prompting LLMs to predict the fine-grained sentiment po-

larity, we convert it to an auxiliary text generation task and carefully design some novel 

prompting methods to guide the generation of LLMs. By doing so, we can take full 

advantage of LLMs to generate more fluent and diverse training data for the ABSA 

task. 

Extensive experiments on three widely-used ABSA benchmarks, Restaurant14, Lap-

top14 [13] and Resuaurant15 [14], show that: 1) our proposed DA method can bring 

consistent and significant performance gains among 5 baseline ABSA models; 2) given 

only 15% labeled data, our method can achieve comparable performance to that of full 

labeled data; 3) our method outperforms the other DA counterparts by a clear margin. 

To summarize, our contributions are two-fold: (1) We propose a simple-yet-effective 

DA method for ABSA by leveraging the powerful in-context learning ability of LLMs. 

(2) Extensive results on 3 widely-used ABSA benchmarks show the effectiveness and 

superiority of our proposed method. 

The remainder of this paper is designed as follows. We review the related work in 

Section 2. In Section 3, we introduce our proposed method in detail. In Section 4, we 

present the experimental results. Conclusions are described in Section 5. 
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2 Related Work 

2.1 Aspect-based Sentiment Analysis 

Aspect-based Sentiment Analysis (ABSA) can be roughly regarded as a fine-grained 

sentiment analysis task that makes a judgment of the sentiment polarity towards an 

aspect [15]. To solve this task, several neural network-based models were proposed, 

which we categorize into two groups: context- and syntax-based methods. Context-

based models first utilize CNN to obtain aspect features from context [16]. Leveraging 

LSTM’s significant advantages in processing sequence data tasks, Tang et al. [17] pro-

pose target-dependent LSTM (TD-LSTM) to capture aspect information.  On the other 

hand, syntax-based methods generally utilize dependency information with graph-

based networks. Zhang et al. [18] use graph convolutional networks (GCN) to learn 

node representations from dependency trees. On this basis, Wang et al. [19] propose a 

novel aspect-oriented dependency tree structure. 

With the advent of Transformer architecture [20], pre-trained language models 

(PLMs) based on BERT [4] massively influence the situation of ABSA. After Li et al. 

[21] first introduce BERT into end-to-end ABSA assignment, lots of BERT-based mod-

els are further proposed. Rietzler et al. [22] fine-tune the BERT language model and 

conduct cross-domain research. The LCF model proposed by Zeng et al. [23] captures 

both local context features and global context features via self-attention mechanisms. 

2.2 Data Augmentation 

Data augmentation (DA) generates new data by changing the original data through var-

ious methods, which enlarges the training dataset to alleviate the issue of data scarcity. 

EDA [6] is a simple text data enhancement technique containing four operations: syn-

onym substitution, random insertion, random exchange, and random deletion. Back-

Translation [7] translates data to a chosen pivot language and then back to the original 

language, which generates more diverse sentences without changing their meanings 

[24]. CBERT [8] integrates label information into the masked language modeling task 

through segmentation embedding to realize the prediction of replacement words, con-

sidering not only context but also label information. Mixup [9] is a DA method that 

modifies both inputs and labels by mixing up inputs of samples and their labels, where 

labels are commonly represented with one-hot encoding. 

2.3 Large Language Model 

Recently, large language models (LLMs) like LLaMA2 [3] and GPT-4 [2] have 

achieved great success in the NLP community. However, Zhong et al. [5] show that for 

the fine-grained tasks, LLMs might perform worse than the BERT-style models, as they 

might fall short in extracting the fine-grained information. Hence, for the ABSA task, 

the currently popular methods are almost based on the BERT-based models. Despite 

this, LLMs excel in generating fluent and high-quality contexts and show powerful in-

struction-following and in-context learning capabilities. Inspired by it, we attempt to 

take advantage of LLMs and enforce them to generate more high-quality data for boost-

ing the performance of ABSA models. 
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3 Method 

This section explains details about our proposed LLM-as-an-Augmentor method for 

ABSA tasks, which contains three parts: demonstration generation, data augmentation, 

and data filtering. The framework is shown in Fig. 1. 

Fig. 1.  Illustration of our proposed LLM-as-an-Augmentor method. In the demonstration gen-

erate stage, we introduce 3 text reconstruction strategies. Then, we design several prompting 

methods to guide the LLMs for automatic data augmentation. Finally, we conduct data filtering 

to remove incorrect generated data.  

 

3.1 Demonstration Generation 

The core of our method is to introduce three text reconstruction strategies, which are 

then used to guide the data augmentation of LLMs. Specifically, we first randomly 

sample some instances from the original training datasets. For each sampled instance, 
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we perform the text reconstruction processes, respectively, and obtain the “original-

reconstructed” pairs. These pairs will be used as the demonstrations in the latter DA 

process, thus we denote this stage as “Demonstration Generation”. In particular, the 

introduced text reconstruction strategies are as follows: 

1) Rewriting: To improve the diversity of training datasets, we are inspired by Fan et 

al. [25] and attempt to rewrite the sentence without changing its meaning. Specifi-

cally, to ensure fluency and coherence, we enforce third-party LLMs (e.g., ChatGPT 

[26]) to rewrite the sentence with the following prompts: “please rewrite the given 

sentence with no more than 30 words. Note that the word [aspect given by dataset 

label] must appear in the new sentence without any change and the new sentence 

should have a similar tone as the given sentence.” 

2) Sentence Complication: Training on the samples with multi-aspects in a sentence 

can boost the robustness of ABSA models [27]. Motivated by this, we also try to 

construct the multi-aspect training data by prompting the ChatGPT to complicate the 

original sentence with a new sub-sentence, which is similar in structure but has a 

different aspect and polarity. 

3) Polarity Reversal: Generally, the diversity of sentiment polarity has a great impact 

on the performance of the model [28]. However, the number of samples with differ-

ent emotional polarities varied slightly. Thus, we let LLMs generate sentences with 

opposite sentiments, using the following prompts: “please generate a sentence using 

the same sentence pattern and tone by imitating the example above. Note that [aspect 

given by dataset label] must appear in the new sentence with no change. the senti-

ment of [aspect given by dataset label] should be [sentiment set].” 

3.2 Data Augmentation 

Here, we perform the data augmentation by prompting the LLMs in a few-shot setting. 

Considering the powerful LLMs’ capability of in-context learning, we randomly select 

several “original-reconstructed” text pairs as the demonstrations and then force the 

LLMs to generate new training data following the style of demonstrations. Specifically, 

we first set the instruction of this task as “we need you to complete a sentence gener-

ation task with following requirements”. Then, we set some restrictions to improve the 

successful rate of generating needed sentences. For instance, “the new sentence should 

have the similar sentence structure and tone as original sentence”. Subsequently, we 

provide some examples for each strategy to guide the generation of LLMs. Ultimately, 

the original sentence is presented to the LLMs for augmentation.  

3.3 Data filtering 

Although the LLMs excel in following the instructions, they might generate incorrect 

sentences that do not satisfy the given requirements. Hence, to improve the quality of 

generated data, we filter the noisy data by designing some rules, e.g., deduplication, 

removing the modified aspects and etc. More specifically, we find that there are three 

main error types, i.e., aspect missing (the given aspect is missing in the generated sen-

tence), aspect changing (the given aspect is not appear in the generated sentence) and 

ambiguity (there are two identical aspects in the sentence). Thus, we manually design 

the rules to filter these errors.  
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4 Experiments 

4.1 Dataset and Settings 

We conduct our experiments on three public and widely-used datasets, i.e., Laptop14, 

Restaurant14 [13], and Restaurant15 [14]. For our data augmentation pipeline, we use 

the widely-used GPT-3.5-Turbo-1106 as the LLM. In practice, we set the temperature 

as 0.7 to balance the diversity and coherence of generated sentences, and set the max 

length of generated sentences as 256. The statistics of original and generated datasets 

are listed in Table 1. We train the models on the augmented training datasets and report 

the test performance on the original test sets. For evaluation, we use the Accuracy 

(“Acc”) and Macro-F1 (“F1”) metrics to measure the performance. 

To investigate the effectiveness of our methods, we employ our augmented data to 

various ABSA baseline models, which are based on three backbones, i.e., GloVe [29] 

with 300 dimensions, BERT [4] and RoBERTa [30]. These models are listed below: 

• ATAE-LSTM [31]: A LSTM-based model for aspect-level sentiment classification 

using aspect embedding and attention mechanism. 

• ASGCN [32]: The first ABSA model to represent sentences with dependency trees 

and use GCN to explore the syntactical information. 

• Vanilla-BERT [33]: A variant of BERT that can truncate long text sequences into 

fixed-length segments without dependency. 

• RGAT [19]: A model uses an aspect-oriented dependency tree structure to reshape 

and prune ordinary dependency parse trees to better model syntax information. 

• KGAN [34]: A knowledge graph augmented network, where different information 

is encoded as multi-view representations to augment the semantic features. 

 

We run most of the models in their default settings given by corresponding papers. 

For the others, we set learning rates as 1e-3 for Glove-based models, 3e-5 for BERT-

based and RoBERTa-based models. The batch size is set as 32 for all models and we 

apply dropout on the word embeddings with a drop rate of 0.1 for Glove and 0.3 for 

BERT and RoBERTa. We use Adam [35] as the optimizer to achieve optimization and 

training. Every experiment is conducted three times with random seed, and we choose 

the best performance as our result. 

Table 1. Statistics of original and generated datasets. 

Datasets Division Positive Neutral Negative 

 Train (Original) 994 870 464 

Laptop14 Train (Generated) 368 392 288 

 Test 134 128 169 

 Train (Original) 2164 807 637 

Restaurant14 Train (Generated) 745 363 516 

 Test 728 196 196 

 Train (Original) 912 36 256 

Restaurant15 Train (Generated) 312 16 214 

 Test 326 34 128 
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4.2 Main Result 

We randomly extract 15%1 labeled samples to apply data augmentation and provide 

one text pair as demonstration in LLM prompt. Table 2 lists the results of different 

models using augmented data. 

Table 2. Results of the proposed DA method on various baseline methods. Notably, the original 

results are collected from [18], [19], [34], while those with “*” are our re-produced results. 

“+only-gen” denotes that we only train the models on the generated data, while “+merged” de-

notes that we train the models on the mix of original and generated training data. The best results 

are in bold. 

Embedding Models 
  Laptop14  Restaurant14  Restaurant15  

Acc F1 Acc F1 Acc F1 

 ATAE-LSTM 68.88 63.94 78.06 67.02 78.48 62.84 

 +only-gen 65.54 60.96 74.18 63.15 76.12 59.30 

 +merged 70.03 64.52 78.29 67.95 79.05 64.01 

 ASGCN 75.55 71.05 80.86 78.19 79.34 60.78 

 +only-gen 72.72 67.08 77.41 75.64 76.95 57.45 

GloVe +merged 76.50 71.76 81.40 78.77 80.23 61.78 

RGAT 77.42 73.76 83.30 76.08 75.09∗ 61.76∗ 

 +only-gen 74.32 70.00 79.03 72.59 77.68 59.45 

 +merged 78.57 74.68 84.01 76.84 79.73 63.25 

 KGAN 78.91 75.21 84.46 77.47 83.09 67.90 

 +only-gen 75.35 72.87 81.80 73.56 80.96 63.84 

 +merged 80.13 76.68 85.23 78.32 84.10 68.55 

 Vanilla-BERT 77.58 72.38 85.62 78.28 83.40 65.28 

 +only-gen 74.04 68.35 82.11 73.96 80.20 60.97 

 +merged 79.38 73.56 86.87 81.09 77.81 75.22 

 RGAT-BERT 78.21 74.40 86.60 81.35 83.22 69.73 
BERT +only-gen 75.29 70.41 84.29 76.99 81.75 65.54 

 +merged 79.22 75.41 87.54 82.42 85.18 72.02 

 KGAN-BERT 82.66 78.98 87.15 82.05 86.21 74.20 

 +only-gen 78.95 74.18 83.48 78.17 81.11 70.03 

 +merged 84.19 80.43 89.01 83.54 88.00 75.42 

 Vanilla-RoBERTa 83.78 80.73 87.37 80.96 84.56 70.16 

 +only-gen 80.45 76.76 83.81 76.08 81.98 66.43 

 +merged 85.01 82.32 88.31 82.10 87.20 71.94 

 RGAT-RoBERTa 83.33 79.95 87.52 81.29 84.65∗ 70.30∗ 

RoBERTa +only-gen 79.43 75.21 84.92 76.85 81.01 66.56 

 +merged 85.02 81.69 87.65 82.03 85.98 71.99 

 KGAN-RoBERTa 83.28 80.14 87.78 83.05 88.60 74.36 

 +only-gen 78.02 75.31 83.49 79.22 84.90 70.49 

 +merged 83.92 81.08 88.84 84.29 89.98 75.95 

 
1  The analysis on the ratio of sampled labeled data can be found in Section 4.3. 
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Firstly, when using merged data (contains original data and generated data), most of 

the models outperform the baseline, indicating that our method brings consistent per-

formance gains in all settings. Moreover, when it comes to using generated data only, 

we can also find that it could achieve (nearly) comparable performance to that of orig-

inal training data. These results can prove the effectiveness of our proposed method. 

Secondly, our methods perform better when using BERT and RoBERTa models than 

those of Glove-based models. We attribute it to the powerful capability of pretrained 

language models, as they can learn more informative context embeddings than static 

GloVe embeddings. 

Lastly, we compare our performance with other typical data augmentation methods, 

i.e., EDA [6], Back-translation [7], CBERT [8] and C3DA [27]. Specifically, taking the 

RGAT and RGAT-BERT as examples, we report the contrastive results in Table 3. As 

seen, our method outperforms the other counterparts by a clear margin, indicating its 

superiority. 

Table 3. Comparison of different DA methods. 

Method 
Laptop14 Restaurant14 

Acc F1 Acc F1 

RGAT 77.48 73.76 83.30 76.08 

+EDA 78.09 74.03 83.61 76.34 

+Back-translation 78.02 74.12 83.72 76.70 

+CBERT 78.30 74.57 83.70 76.74 

+C3DA 78.33 74.66 83.82 76.99 

+OURS 78.57 74.68 84.01 76.84 

RGAT-BERT 78.21 74.40 86.60 81.35 

+EDA 78.59 74.82 86.52 81.47 

+Back-translation 79.70 75.01 86.85 81.02 

+CBERT 78.62 74.96 87.01 82.19 

+C3DA 79.16 75.40 87.22 82.69 

+OURS 79.22 75.41 87.54 82.72 

4.3 Analysis and Discussion 

Effect of Different Numbers of Demonstrations.  Fig. 2 (a) shows the result of dif-

ferent numbers of demonstrations (used in in-context learning), which range from 

[0,1,2,3,4]. As seen, zero-shot generation performs worst as there is not enough infor-

mation to guide the generation of LLMs. However, if there are too many demonstra-

tions in the context, the LLMs might misunderstand the instructions, thus leading to 

sub-optimal performance. When using 1 demonstration, our method performs best, thus 

leaving as the default setting. 

Effect of Different Ratios of Sampled Training Data. As mentioned in Section 3, we 

randomly sample some instances from the original training data for DA Here, we in-

vestigate the effect of difference sampling data ratio and illustrate the results in Fig. 2 
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(b). As seen, when the sampling ratio is increased, the model performance first in-

creases and then decreases. One possible reason is that the sampling data are relatively 

similar, i.e., the randomly-sampled data might lack representativeness, thus hindering 

the effectiveness of our method. This also indicates that a more sophisticated sampling 

method is required, which is in our future work. When the ratio of sampled data is 15%, 

our method performs best, and we thus use it as the default setting. 

Fig. 2. Ablation study on different numbers of demonstrations(a) and different ratios of sampled 

data(b). We report the results of RGAT and RGAT BERT on the Laptop14 benchmark. 

 

Effect of Different In-Context Learning Strategies. To investigate the effectiveness 

of our text reconstruction strategies, we remove them and analyze the performance deg-

radation, respectively. The results are listed in Table 4. As seen, compared to the full 

three strategies, removing any strategy will cause performance degradation, which 

proves the effectiveness of these strategies. More specifically, when removing the po-

larity reversal, the performance degradation is the most significant, indicating that the 

polarity-aware DA takes a more important role in our method. 

Table 4. Ablation study on different In-Context Learning strategies. Here, we report the results 

of RGAT and RGAT-BERT on the Laptop14 benchmark. 

Method(onLaptop14) 
only-gen merged 

Acc F1 Acc F1 

RGAT+Ours 74.32 70.00 78.57 74.68 

-w/o rewriting 73.84 69.12 78.12 74.26 

-w/o sentence complication 73.69 68.98 78.01 74.32 

-w/o polarity reversal 70.47 65.57 78.09 74.15 

RGAT-BERT+Ours 75.29 70.41 79.22 75.41 

-w/o rewriting 74.72 69.85 79.02 75.05 

-w/o sentence complication 74.56 69.73 78.65 74.37 

-w/o polarity reversal 71.68 66.66 78.84 74.83 
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Whether Our Method Works Well in other Scenarios. To verify whether our DA 

method can be used in other tasks, we apply it to the other NLP task, i.e., SST-2 [36], 

which is a widely-used sentence-level sentiment analysis task. In practice, we use the 

GPT-3.5-Turbo to obtain the generated training data, and merge them with the original 

training data. The mixed training data is used to train various baseline models, i.e. 

BERT-base [4], XLNet-base [37], MT-DNN- base [38] and RoBERTa-base [30]. The 

contrastive results are listed in Table 5. As seen, our DA method brings consistent and 

significant performance gains among all baseline models. These results prove that our 

method can also work well in other sentiment analysis tasks. 

Table 5. Results of various Base-size baseline models in the SST-2 [36] task. Notably, “Original 

training data” denotes that we train the baseline models using the original training data of SST-

2, and “+Our generated data” means training on the mix of original and generated training data. 

Method BERT XLNet MT-DNN RoBERTa 

Original training data 92.78 93.35 94.30 94.40 

+Our generated data 93.24 94.08 95.02 95.15 

5 Conclusion 

We propose a simple-yet-effective DA method for ABSA, namely LLM-as-an-

Augmentor, which leverages the powerful capability of LLMs to generate fluent and 

diverse training data. Three text reconstruction strategies are introduced to guide the 

data generation of LLMs. Extensive experiments show that our method brings con-

sistent and significant performance gains among 5 baseline models and 3 benchmarks. 

More analyses also prove that our method outperforms the other DA counterparts by a 

clear margin. However, we still notice several limitations in our work. For example, 

our sampled training data for augmentation may not be representative enough, thus in-

fluencing the diversity of generated data. Future work could attach more attention to 

data clustering to obtain more informative demonstrations for LLMs. 
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