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Abstract Target detection algorithms face challenges in smoking detection tasks, 

particularly in the identification of small targets and the occurrence of misidentification in 

various scenes. In this paper, we propose Smoking-YOLO based on YOLOv8-s, which 

adopt ConvNeXtv2 as the backbone that can extract features at four scales, obtaining 

stronger contextual information to enhance small target detection capability. During the 

feature fusion stage, we employ a bidirectional three-channel four-scale fusion strategy in 

the fusion stage to output four-scale prediction maps, strengthening the semantic 

information focus on smoking details and improving the ability to distinguish 

pseudo-smoking behaviors. Finally, we adds a slide weighting function to enhance attention 

to hard negative samples. Experimental results on the self-built Smoking-3k dataset show 

that our model achieves a detection effect of  𝐴𝑃𝑠𝑚𝑎𝑙𝑙(0.5: 0.95) 0.31 for small targets, an 

improvement of 10.6%. The model's precision and recall reach 𝑚𝐴𝑃0.5 0.947 and 𝑚𝐴𝑃0.5:0.95 

0.652, respectively, increasing by 3.1% and 7%, demonstrating the effectiveness of the 

model improvement. The code is available at 

https://github.com/TaroPlay/Smoking-YOLO.git 
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1 Introduction  

With the development of society and the improvement of people's health awareness, 

the control of smoking behavior in public places has become more and more 

important. According to the World Health Organization [1], smoking is one of the 

main causes of various diseases and health problems , such as cardiovascular 

disease, lung cancer and so on. However, traditional methods of monitoring 

smoking behavior often require manual intervention, which is costly and 

https://github.com/TaroPlay/Smoking-YOLO.git


 

 

inefficient. In this context, smoking behavior detection technology based on 

computer vision provides a new way to solve this problem. 

The smoking detection technology based on wearable smart devices [2] mainly 

serves people who have the need to quit smoking, and it is difficult to achieve such 

detection equipment in public places with intensive personnel flow. Zhang [3] 

proposed a smoking detection model for public places based on YOLOv5, but only 

realized the identification of cigarette types. Lakatos [4] proposed a multimodal 

smoking detection method that uses a large language model to fine-tune and train 

video streams, with high accuracy, but the model is too complex and the dataset 

quality requirements are high. 

In order to solve the problems in the above work, we proposed smoking-YOLO, 

a multitype smoking detection method. We use YOLOv8-s as the base network. In 

order to better learn features of small target objects, ConvNeXt-v2, a pure 

convolutional network with multi-scale features output, is used as a new backbone 

network. Feature maps with smaller receptive fields can focus more on small 

targets in images. In the process of feature fusion, it is necessary to ensure that 

shallow features and deep features are mutually balanced in spatial and semantic 

terms, and the number of parameters in the model should not be too large. 

Therefore, we proposed the bidirectional three-channel four-scale fusion method, 

and carried out lightweight implementation in the fusion module. Finally, because 

the smoking detection dataset is a small dataset, in order to make full use of 

difficult samples in model training, we use slide weighting function to increase the 

weight of difficult samples in the loss function, increasing the model's attention to 

difficult samples. The code and pre-trained models are released at 

https://github.com/TaroPlay/Smoking-YOLO.git. 

2 Related Work 

2.1 Smoke detectors using sensors.  
Traditional smoking behavior monitoring methods mainly include video 

surveillance and sensor technology [5]. The method based on video surveillance 

usually relies on manual observation and judgment, which has some problems such 

as limited monitoring range, high cost and low efficiency. Although the sensor 

technology can realize automatic monitoring, its application scope is limited, and 

the environmental requirements are high, and it is not suitable for all scenarios.  
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2.2 Smoking detection using deep learning.  
With the development of deep learning technology, the smoking detection method 

based on neural network has gradually become the mainstream [6]. Deep learning 

can learn the characteristics of smoking behavior from a large number of data, and 

has good generalization ability and robustness. Researchers have proposed many 

deep learning based smoking behavior detection methods, such as convolutional 

neural network based method, recurrent neural network based method and so on. 

These methods have achieved good results in smoking behavior detection and 

provide new ideas and methods for smoking behavior monitoring and control. The 

current smoking behavior detection methods are mainly to identify the smoking 

action of ordinary cigarette, but there are still some challenges and problems, such 

as few detection of rare smoke type, limited adaptability to different smoking 

posture and environmental light, and more misjudgment behaviors of 

pseudo-smoking action. Therefore, further research and improvement of smoking 

behavior detection methods are still of great significance. 

2.3 YOLOv8 
Ultralytics YOLOv8 [24] is a cutting-edge, state-of-the-art (SOTA) model that 

builds upon the success of previous YOLO versions and introduces new features 

and improvements to further boost performance and flexibility. YOLOv8 is 

designed to be fast, accurate, and easy to use, making it an excellent choice for a 

wide range of object detection and tracking, instance segmentation, image 

classification and pose estimation tasks.  

2.4 Contribution of smoking detection work in this paper.  
Smoking detection is the next important sub-task in the field of computer vision, 

but its standardization work is less, and the smoking task is only transformed into 

the human behavior recognition task based on simple cigarette labeling. However, 

it did not take into account the actual factors in the picture, such as the incomplete 

human body, the diversity of cigarettes, the wide range of smoking scenes, and the 

false judgment caused by smoke and white gas. Therefore, according to some 

shortcomings of previous work, this paper has made improvements. The main 

contributions of this paper are as follows: 

i). For the first time, a high-quality detection-based smoking recognition 

classification dataset was produced. The images were collected from network 

pictures and personal photos. Smoking behaviors in various scenes were included 

as positive samples, and fake smoking behaviors were also marked to increase 

anti-interference ability during detection. 

ii). ConvNeXt-v2 [7] was used as the backbone network to strengthen the ability 

to capture small targets, and four-scale feature map was used as the main body of 

the network feature fusion process, emphasizing the exchange of high-level 

semantic information and low-level semantic information. Finally, slide weighted 

function was used to make full use of difficult samples and improve the efficiency 



 

 

of the use of Smoking-3k. 

iii). A pixel-level detection model is proposed, which has the ability to 

recognize various types of smoke with fast reasoning speed and can recognize all 

kinds of smoking actions effectively. 

 
Figure 1. Overview of smoking-YOLO. Four scale features are extracted from 

the backbone network, and a bidirectional three-channel four-scale feature fusion 

strategy is used in the feature fusion stage. And the Slide weighting function is 

additionally referenced during the training of the prediction head.  

3 Methods 

3.1 Model Overview.  

At present, the basic framework of detection tasks is as follows: the backbone 

network extracts multi-scale feature information, the neck network fuses the 

feature information to obtain higher dimensional semantic information, and finally 

uses the header network to reduce the dimension of the feature map and output the 

prediction box information to meet the needs of different downstream tasks. 

Smoking-YOLO also follows the above framework. First, the image is taken as the 

network input with the pixel size of 640×640. The pure convolutional network 

ConvNeXt-v2 is used to extract multi-scale features and output four kinds of scale 

feature maps. Then, the neck network uses the bidirectional feature pyramid path 

to fuse the information of the four scales, and the fusion feature map of the four 

scales is also obtained. Finally, the four types of prediction graphs input the same 

structure but do not share the weight of the head network to predict the presence of 

smoking behavior in the picture. An overview of the model is shown in Fig. 1. 

3.2 Multi-scale Feature Extraction 

Inspired by ConvNeXt-v2, this paper also uses a full convolution-based network as 

the backbone, and because the number of categories for smoking detection is small, 

we use lightweight version named atto. Its internal construction of full 

convolutional mask autoencoder and global response normalization is very suitable 

for smoking detection task. The experimental results show that ConvNeXt-v2 is 



 

 

better than YOLOv8-s in detecting small objects.  

The full convolutional mask autoencoder framework [8] is a self-supervision 

method based on convolutional neural networks. The idea is to block some regions 

on the initial image according to probability, and then let the model restore the 

covered part. For smoking detection tasks with small data sets, generalization is 

easier to learn in terms of training methods. This mask operation can make the 

model learn the relationship between the global and local features [9] of the image, 

so as to improve its generalization ability. In the task of smoking detection, this 

generalization is very necessary. When there is a lighter in the picture, it often 

means that the smoker will light a cigarette, and the local area where the lighter 

appears will have a attention effect on the local area where the human mouth is 

located. For another example, when a person plays the flute, it may be mistaken for 

the smoking behavior of a long-pipe smoker at some angles. When the model has a 

strong local feature learning ability, it can learn that the long-pipe smoke will 

generate a lot of smoke when it is smoked, and when playing the flute, it should 

learn the hands placement action of the player. At the same time, compared with 

ordinary mask autoencoders [10], the advantage of using full convolutional mask 

autoencoder is that multi-scale mask strategy is used instead of fixed-size mask, 

which increases the perception ability of the model to different scale information  

[11], and enough semantic information can be obtained in the smoking detection 

pictures of the long view and the smoking detection pictures of the near view. In  

terms of computation and parameter number, it is also less than that of mask 

generation and image reconstruction using full connection layer.  

Global Response Normalization (GRN) [12] is designed to solve the feature 

collapse problem. Compared with the general batch normalization, GRN has the 

advantage that no additional parameters are required, because it only normalizes 

the feature map, and its normalization mode can handle any batch size, while batch 

normalization requires dynamic adjustment of parameters according to the batch 

size, and the calculation is large. The implementation of the GRN layer is also very 

simple and is divided into 3 steps: global feature aggregation, feature 

normalization and feature calibration. First, the feature graphs on each channel are 

aggregated using L2-norm to get the aggregated vector. Then, in the feature 

normalization step, the standard normalization function is used to normalize the 

aggregated vector again. Finally, in the feature calibration step, the normalized 

vector is used to calibrate the original feature map. The following is a formulaic 

implementation process in three steps: 

 

𝐹(𝑋): = 𝑋 ∈ 𝑅𝐻∗𝑊∗𝐶 → 𝑓𝑥 ∈ 𝑅𝐶                        (1) 

𝐺(‖𝑋𝑖‖): = ‖𝑋𝑖‖ ∈ 𝑅 →
‖𝑋𝑖‖

∑ ‖𝑋𝑗‖𝑗=1,...,𝐶

∈ 𝑅     (2) 

𝑋𝑖 = 𝑋𝑖 ∗ 𝐺(𝐹(𝑋)𝑖) ∈ 𝑅𝐻∗𝑊                                 (3) 



 

 

𝑋𝑖is the feature graph matrix of the i’th channel after global corresponding 

normalization. GRN changes the normalization mode from channel 

normalization to feature graph normalization, which enhances the feature 

competition among channels, helps channels learn information of different 

feature domains, and avoids the problem of feature collapse and feature 

redundancy. This is helpful for the model to learn more diverse feature content 

and enhance the model extraction performance during the smoking detection. 

After the backbone network, the feature maps of 

𝑃2(
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𝑃0), 𝑃3(
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8
𝑃0), 𝑃4(

1

16
𝑃0), 𝑃5(

1

32
𝑃0) are input into the feature fusion module, 

and 𝑃0 is the initial feature map size. 

3.3 Bidirectional three-channel four-scale feature map fusion strategy 

The feature maps of four scales are extracted from the backbone network, and 

the different receptive fields mean that the feature maps have learned different 

levels of semantic information respectively. In this paper, the most concerned 

features are smoke features, cigarette shape features, hand movement features 

and mouth movement features. For low-level semantic information, such as 

smoke, tobacco products and hand movements to be recognized, which involve 

more specific and fine-grained visual information, we choose to use feature 

graphs 𝑃2, 𝑃3 with small receptive fields to learn. For high-level semantic 

information, these features involve more abstract and semantic concepts, which 

usually require a higher level of analysis to understand. High-level semantic 

information includes the overall action of smoking behavior and the context of 

the background environment. In this paper, feature figures 𝑃4, 𝑃5 with larger 

receptive fields are selected for learning. 𝑃2, 𝑃3, 𝑃4, 𝑃5 as the initial feature 

map of the four semantic information. 

Feature Pyramid Networks [11] are essential for object detection as they 

aggregate features of varying resolutions extracted from the backbone. While 

traditional FPNs [13] use a top-down path to fuse multi-scale features, they can 

only pass feature information in one direction. To address this limitation, 

PAFPN [14] adds a bottom-up path aggregation network. However, this comes 

with increased calculation cost and parameter count. BiFPN [15] improves 

upon PAFPN by removing nodes with only one input edge and adding skip 

connections from the original input at the same level, enhancing efficiency. 

Despite these advancements, convolution-based cross-scale feature fusion in 

GFPN [16] remains inefficient, especially when fusing three-scale feature 

maps for real-time detection models. For smoking detection tasks, the 

interaction between high-level semantic information and low-level spatial 

information is crucial, demanding real-time performance in computation and 

parameter quantity. Inspired by DAMO-YOLO [17], this paper proposes a 



 

 

Feature Graph Fusion Semantic Module with several key enhancements : 1). 

4-Scale Feature Fusion: Improved from the original 3-scale feature fusion, this 

strategy employs two-way information transmission to prevent information 

loss. Different channel numbers are used for different scale features, allowing 

flexible control over the expression ability of high-level and low-level features 

within lightweight computation constraints. 2). Optimized Up-sampling 

Operation: The additional up-sampling operation in the 3-channel feature graph 

fusion process is optimized, significantly reducing model inference delay with 

minimal precision reduction. 3). Simply Rep 3×3 Module: A simplified 

version is used in the fusion process, doubling channels during training and 

optimizing to single-channel equivalent during inference, thereby improving 

reasoning speed, shown in Fig. 2. These advancements are particularly 

effective for detecting small and medium smoking targets in challenging and 

diverse smoking scenes, capturing various smoking actions and distances 

effectively. 

 

Figure 2. The Simply Rep 3×3 Module saves the inference time of the 

smoking-YOLO. 

Multi-scale feature fusion aims to aggregate output features from different 

stages of the backbone network, enhancing their expressive power and 

improving overall model performance. In this paper, we utilize four scale 

feature maps for feature fusion, including the newly added feature map 

𝑃2(
1

4
𝑃0), which has a smaller receptive field. This enables better distinction 

between objects in the image at the shallow feature stage, facilitating the 

learning of features distinguishing smoke from white gas. Unlike other FPNs 

that typically use only three high-level semantic feature maps (𝑃3, 𝑃4, 𝑃5) with 

larger receptive fields for feature fusion, our approach considers the 

importance of representational information, such as smoke features and shape 

features. This consideration is particularly relevant for smoking detection tasks.  

In Fig. 3, we visualize the attention distribution map [18] of the model after 



 

 

multi-scale feature fusion, demonstrating its strong ability to capture low-level 

semantic information in the image. After passing through the neck network, 

four kinds of scale prediction maps are still output, and the size remains 

unchanged. 

3.4 Detection Head And Loss Function 

In the head network section, this paper adopts the current mainstream 

decoupling head structure, separating the classification head and the detection 

head to improve convergence speed. Additionally, the Anchor-Free mode is 

employed, which does not rely on prior knowledge in the dataset, reducing a 

large number of invalid calculations. This network exhibits enhanced 

capability in expressing the "shape of the object" and demonstrates greater 

generalization potential. It improves detection of moving objects and objects of 

different sizes, and offers more flexible detection of blocked objects. The 

decoupling of the classification branch and regression branch is the mainstream 

method for detection tasks, which can reduce interference between the two 

tasks, ensuring that detection and classification can reach their optimal states. 

The four types of feature maps are trained with their own predictive head 

weights, ensuring the independence of the four types of key information in the 

prediction. However, the decoupling head structure network often faces the 

problem of misalignment between classification and regression. This means 

that the cells in the feature map and the Ground Truth perform IOU calculation 

to allocate the cells used for prediction, but the optimal cells for the 

classification task and regression task are often inconsistent. Frequent 

misidentification of smoking behavior in smoking detection can lead to loss of 

significance in the task. To solve the problem of misalignment, this paper uses 

the Task-Aligned Assigner positive sample allocation strategy to assign labels 

to the anchor frame of the ground truth feature map constructed by calculating 

the Loss. The classification branch uses the BCE Loss function, while the 

regression branch uses the Distribution Focal Loss function [19] and the 

Complete IoU Loss function [20] of the integral representation. The three Loss 

functions are weighted by a weight ratio to obtain the joint loss function. The 

formula is expressed as follows: 

𝐿𝐵𝐶𝐸 =
1

𝑁
∑ −[𝑦𝑖 − log(𝑝𝑖) (1 − 𝑦𝑖) ⋅ log(1 − 𝑝𝑖)]

𝑖

                                        (4) 

 𝐿𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
+ 𝛼𝜈                                                                         (5) 

𝐿𝐷𝐹𝐿(𝑆𝑖 , 𝑆𝑖+1) = −((𝑦𝑖+1 − 𝑦) log(𝑆𝑖) + (𝑦 − 𝑦𝑖) log(𝑆𝑖+1))                          (6) 

𝑦𝑖 represents the ground truth and 𝑝𝑖 represents the predicted value. 𝑏, 𝑏𝑔𝑡 

represent the center point of the rectangular box, 𝜌 represents the Euclidean 



 

 

distance between the two rectangular boxes, 𝑐 is a constant, α is the weight 

coefficient, and 𝜈 is a measure of the consistency of the relative proportions 

of the two rectangular boxes. DFL is a supplementary loss function to match 

the anchor-free mechanism and enhance the generalization when blocking and 

moving objects. DFL optimizes the probability of the two positions closest to 

the Ground Truth in the form of cross-entropy, so that the network can focus 

on the target position and the distribution of adjacent regions more quickly. 

That is, the final learned distribution is theoretically near the real floating point 

coordinates, and the weights are obtained according to the linear interpolation 

method. 

In the training process, we observed a problem of sample imbalance in the 

smoking detection dataset, where difficult samples were relatively sparse, 

while the number of easy samples was large. To address this issue, this paper 

introduces the slide weighting function [slide]. The method for distinguishing 

easily separable samples from difficult samples is to predict the IoU size of the 

box and the Ground Truth box. To avoid setting a hyperparameter threshold, 

the average value of all IoUs is used as the threshold θ. Samples with an IoU 

less than θ are considered negative, while those with an IoU greater than θ 

are considered positive. Negative samples located near θ, called difficult 

negative samples, are given higher weights to ensure the network is effectively 

trained using these samples. The slide weighting function can be expressed as 

follows: 

f(x) = {
1                               𝑥 ≤ 𝜃 − 0.1

𝑒1−𝜃                       𝜃 − 0.1 ≤ 𝑥 ≤ 𝜃      
𝑒𝑥                                         𝑥 ≥ 𝜃

               (7) 

The final loss function consists of three parts: the binary cross-entropy loss 

function for the classification task, and the Distribution Focal Loss and Complete 

Intersection over Union loss functions for the bounding box regression task.  

 𝐿𝑜𝑠𝑠 = 𝐿𝐵𝐶𝐸 + 𝐿𝐶𝐼𝑜𝑈 + 𝐿𝐷𝐹𝐿                                             (8) 

The training strategy adopted in this paper aligns with the baseline network 

YOLOv8-s. The SGD optimizer is utilized with an initial learning rate of 0.01. The 

training and testing are conducted on the RTX3090 platform, with a batch size of 

32. 

4 Experiments 

4.1 Smoking-3k Dataset.  
In our investigation of relevant smoking detection datasets, we found no openly 

available dataset for training. Both Paddle and Ali’s DAMO utilize self-built 

datasets and provide API interfaces for users, but they do not disclose these 



 

 

datasets for experiments. Considering that smoking detection involves small 

targets and is prone to misidentification, and also has significant relevance to 

monitoring equipment in public places, we proposed the Smoking-3K Dataset. The 

Smoking-3K Dataset was created using the LabelMe annotation tool, resulting in a 

total of 3,059 smoking detection datasets in YOLO format, collected through 

methods such as web scraping and camera shots. This dataset includes 2,728 

training datasets. The label distribution is shown in Fig. 3. 

 
Figure 3. Distribution of smoking-3k detection boxes 

 

The first and second distributions in the distribution map represent the positions of 

the horizontal and vertical axes of the center coordinates of the detection box 

within the entire image dataset. It is evident that the center points of the actual 

boxes are evenly distributed throughout the images. The third and fourth 

distributions in the map represent the proportions of the true frame width and 

height of the dataset within the entire image. It can be observed that the width and 

height of the actual boxes are predominantly less than a quarter of the image size, 

indicating that small target objects are primarily used as detection boxes.  

4.2 Metrics 
AP (Average Precision) is an indicator of the accuracy of the prediction box in 

target detection. In this paper, 𝐴𝑃0.5 and 𝐴𝑃0.5:0.95 are used as the evaluation 

indexes of model accuracy, and 𝐴𝑃𝑆𝑚𝑎𝑙𝑙 is used as the evaluation index of small 

object recognition rate. Frames Per Second (FPS) refers to the number of frames 

per second, which is used to measure the reasoning speed of a model per second. 

4.3 Analysis of Smoking-3k experimental results 

This paper compared multiple target detection networks on self-made datasets, 

including PP-YOLOE [21], rt-detr [22], YOLOv7 [23], YOLOv8 [24], Cascade 

R-CNN [25], Efficientvit [26]. In terms of accuracy index, the model 𝐴𝑃0.5 and 



 

 

𝐴𝑃0.5:0.95 respectively ranked second only to efficient-Vit and rt-detr, respectively, 

and belonged to the first echelon of smoking detection accuracy index. Especial ly 

in the comparison of 𝐴𝑃0.5:0.95 index, it is significantly ahead of rt-detr with the 

third effect, indicating that under the condition of higher confidence as the 

threshold, our method can still effectively identify the behavior of smoking 

detection, and the model detection has high stability. In terms of network size, the 

parameter number of this model is the lowest among all models, only 7.09M. At 

the same time, the calculation amount of the model is 28.6Gflops, which belongs 

to the low complexity of the model, far lower than the best precision rt-detr. In 

terms of reasoning speed, our model's FPS can reach 155.2, which is the highest 

result among all models. 

 

Table1. The detection algorithm is based on 

Smoking-3k comparison. 

Model 𝐴𝑃0.5:0.95 𝐴𝑃0.5 𝐹𝑃𝑆 Params Gflops 

PP-YOLOE 0.442 0.894 26.6 7.61 16.3 

rt-detr 0.456 0.953 25.9 42.78 135.1 

YOLOv7 0.452 0.876 29.8 37.20 105.1 

YOLOv8-s 0.496 0.916 76.4 11.13 28.6 

Cascade 

R-CNN 

0.390 0.939 8.0 69.17 159.2 

Efficientvit 0.567 0.928 27.8 8.38 20.4 

Our model 0.566 0.947 155.2 7.03 28.7 

 

4.4 Ablation experiment. 
In this paper, the improvement of YOLOv8-s mainly includes the replacement of 

backbone network, the number of feature map fusion, and the addition of slide 

weighting function. 

For the backbone network, we conclude that using 4-scale feature map to extract 

features greatly enhances the ability of the model to detect small target objects. 

This shows that ConvNeXt-v2 has better feature extraction ability and information 

retention ability for small target objects. However, the original backbone network 

of YOLOv8-s cannot generate effective attention to small targets, and the detection 

accuracy of small targets can reach 0.319 after replacing the backbone, which is 

10.6% higher than that of YOLOv8-s. The results of ablation experiment are as 

follows: 

 

Table2. Comparison of small target detection in 



 

 

backbone network. 

Backbone 𝐴𝑃𝑠𝑚𝑎𝑙𝑙(0.5: 0.95) 

YOLOv8-s 0.213 

ConvNeXt-v2（our model） 0.319 

 

In the neck network, the feature information of four different scales is used in this 

paper to improve the accuracy of detection, compared with the general feature 

maps of three scales entering the neck network for the purpose of capturing target 

information at different scales. The advantage of this approach is that the feature 

information of different scales in the task of smoking detection can be captured 

more comprehensively, thus improving the accuracy of detection. This additional 

scale change can better deal with the ratio change of small and large targets, and 

more effectively deal with the feature extraction of medium-scale targets. And 

because the fusion module is optimized, the number of parameters and calculation 

amount of the model remain lightweight, but the accuracy is not improved much 

mainly because: There are few training pictures containing white gas, which can be 

easily confused with smoke. The improvement of this section is mainly to solve the 

problem of correctly identifying the presence of smoking in pictures where smoke 

and white gas coexist. 

 

Table3. Comparison of quantitative fusion effect of feature maps.  

Feature map Number 𝐴𝑃0.5 

3 0.932 

4（our model） 0.947 

 

Use of the slide weighting function. The newly added slide function makes the 

model pay more attention to difficult to identify samples in the training process, 

and improves the utilization rate of the model to difficult samples when the number 

of data sets is too small. The improvement of accuracy results demonstrates the 

effectiveness of the use of the loss function, which is 0.3% higher than before.  The 

following experiments show the changes in the accuracy of the model after using 

the loss function: 

Table4. Usage of Slide Function. 

Setup 𝐴𝑃0.5:0.95 

W/O slide function 0.487 

W slide function 0.490 

 

We also show through the heatmap in Fig. 4 that the focus on smoking behavior 

in the learning process of the model in this paper has generated a corresponding 

strong correlation. When holding a cigarette, the two fingers holding the cigarette 



 

 

will have higher attention. When smoking, the attention scores of the cigarette 

object and its surroundings were significantly higher than those of the 

surroundings. When lighting a cigarette, the flame generated by the lighter will 

attract the model's attention more easily. When the smoking action is not around 

the mouth, the model will still notice the mouth area of the smoker.  

 
Figure 4. Heatmap of model attention scores.  

5 Detection results and visualization 

We use the model after training convergence to predict the smoking behavior with 

severe occlusion. It is found that the smoking behavior of the tested person can still 

be recognized when only a small amount of cigarette butts are exposed, which 

indicates that the model not only learns the cigarette object, but also reacts to the 

action behavior of smoking and the smoke generated by smoking in the process of 

learning smoking behavior. At the same time, in addition to ordinary RGB images, 

monochrome black and white photos are also included in the detected images, 

which can be detected by the model, indicating that the model is robust to the 

range of color changes. Furthermore, the act of smoking is a continuous action, 

which means that smoking may occur in the mouth, it may occur in the hand, and it 

may occur in the light of the fire, because this type of action already indicates that 

the tested person has a dynamic action of smoking. The model can recognize the 

smoking action in a variety of situations, not only the cigarette butt located in the 

mouth will be recognized as smoking. Finally, due to the limitat ion of existing data 

sets, smoking detection is generally only performed on ordinary cigarettes. In this 

paper, other types of cigarettes are added to the smoke-3K dataset, so that the 

model can maintain stability for uncommon types of cigarettes when learning 

smoking actions. All the above advantages are given in Fig. 5. 



 

 

 

Figure 5. Results of smoking detection in 

multiple scenes. 

6 Conclusion 

This method is improved on YOLOv8-s, and the ConvNeXt-v2 with powerful 

feature extraction ability is used as the backbone network to improve the detection 

ability of small objects. In the feature fusion stage, feature maps of four scales are 

used for fusion. The relationship between high-level semantic information and 

low-level semantic information is strengthened, and the stability of detection is 

improved. In the loss optimization strategy, a higher weight is used to focus on the 

difficult negative samples, and this part of samples is emphasized. Experimental 

results show that the network has an 𝑚𝐴𝑃0.5 of 0.947 and𝑚𝐴𝑃0.5:0.95 of 0.652 on 

the Smoking-3K dataset, which are increased by 3.1%and 7% respectively. In 

addition, the inference speed is much faster than other models, which indicates that 

it can have good robustness in occlusion scenes and complex environments.  

At present, this method mainly focuses on the detection of smoking, and it is 

unable to do anything about other behaviors that need attention in public places. 

The focus of subsequent work will be to improve the detection of multi-category 

abnormal behaviors. 
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