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Abstract. Lane detection is a crucial and challenging task in autonomous driving. 

Most existing detection methods only have good results in common scenes, but 

they have detected poorly in extreme scenarios such as occlusion and strong illu-

mination. To address this problem, this paper introduces a robust lane detection 

network based on spatial-temporal fusion (LSTnet) for extreme scenarios like 

occlusion. LSTnet incorporates a detachable local and global memory component 

as an external storage unit. Through the fusion, read, and update operations on 

memory features, the component captures temporal information to compensate 

for the lack of information in extreme detection scenarios. Additionally, LSTnet 

uses a memory alignment loss function to guide the memory component to update 

the memory effectively, so as to obtain temporal consistency between the feature 

maps outputted by the memory component and the ground truth feature maps. 

Extensive experiments on two commonly used datasets demonstrate that the net-

work achieves an F1 score of 79.49% on CULane and 97.31% on the TuSimple 

dataset. 
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1 Introduction 

In the past decade, autonomous driving technology has gradually become a research 

hotspot in the field of computer vision, attracting widespread attention from both aca-

demia and industry. To ensure the safe operation of autonomous vehicles, it is crucial 

for autonomous driving systems to accurately understand the spatial information of lane 

markings. Therefore, it is very important for autonomous driving systems to quickly 

obtain the shape and position information of the lane markings from the image captured 

by the front-facing camera. 

In recent years, most research has approached lane detection as a segmentation or 

detection problem. SCNN[1] uses multi-class classification to segment pixels into lane 

markings or background, but it may also predict pixels unrelated to lane markings. 

PointLaneNet[2] predicts lane markings based on anchor points. LaneATT[3] uses an-

chor lines to extend the feature range of anchors and predicts lane instances through 

rays. Although these methods have achieved satisfactory detection results, their 
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performance tends to degrade in extreme scenarios, such as occlusion. In such cases, 

extracting more hidden lane information becomes crucial. 

In addressing the limitations of the aforementioned work, we propose a robust lane 

detection network based on spatial-temporal fusion (LSTnet). The network internally 

incorporates a detachable local and global memory component to capture temporal in-

formation to compensate the lack of temporal information in extreme detection scenar-

ios. Firstly, the component processes temporal feature maps in two ways, sequential 

and shuffled, to obtain local and global memory features, respectively. Then, through 

fusing the storage memory feature and the current frame's feature, it reads effective 

memory features. These effective features are used to supplement the temporal infor-

mation in the network and simultaneously replace the memory features in the compo-

nent to achieve the iterative update of the memory feature. Besides, since the model's 

temporal information is read from the component, a memory alignment loss function is 

designed to align the original annotated feature map and the fused memory feature map. 

The proposed method effectively handles some extreme detection scenarios while 

maintaining high accuracy and good real-time performance. 

The main contributions of this paper can be summarized as follows: 

1. We introduce a robust lane detection network(LSTnet) by fusing spatial-temporal 

information, aiming to enhance detection performance in extreme scenarios. 

2. We design a memory alignment loss function, which enhances the effectiveness of 

memory storage in the memory component. 

3. Experiment results conducted on TuSimple and CULane datasets demonstrate that 

LSTnet is superior to most existing models and achieves better performance. 

2 Related Works 

Since lane detection constitutes a sub-task of autonomous driving, the temporal infor-

mation from video streams can be effectively integrated into the network. Numerous 

temporal lane detection methods leverage common temporal models to capture the tem-

poral lane information in video sequences, such as LSTM[4], GRU[5], etc. 

LaneLSTM[6] uses the LSTM structure to process the encoder's output of images and 

then places the processed image features into the decoder to obtain the final output 

prediction feature map. LaneGRU[7] uses two GRUs to handle lane detection tasks—

one for extracting temporal information and another as the encoder for the input image 

sequence. Despite the satisfactory performance of the aforementioned methods on the 

TuSimple dataset, their detection capabilities are less effective on the CULane[1] da-

taset. This inadequacy is attributed to the inability of these temporal models to accu-

rately capture all the information conveyed in the images, thereby hindering their ability 

to handle challenging detection scenarios. 

To address these aforementioned issues, methods such as MT-Net[8] and VIL-

100[9] adopt a memory network instead of common temporal models. They iteratively 

read and update the externally stored memory to obtain feature information from tem-

poral inputs. In addition, they use an encoder-decoder structure to process the input 

image, convert it into a feature map with lane spatial information, and then fuse the 
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spatial information with the temporal information read from the memory network. Ul-

timately, the decoded and fused memory features serve as the final output. 

3 Network 

3.1 Overview 

The LSTnet follows the structure of LaneMP[10]. On this basis, as illustrated in Fig. 1, 

we introduce a detachable memory component to capture lane features of images along 

the temporal dimension. Specifically, within the memory component, the Local-Global 

Memory Fusion Module (LGMF) is employed to merge local and global memory fea-

tures and the Memory Read and Update Module (MRU) combines the current frame 

features with the fused memory features to read out relevant features. The relevant fea-

ture is then incorporated into the encoder to serve as a complement of temporal infor-

mation for the memory component. Finally, the local and global memory features are 

updated by fusing the memory features read by MRU with the current frame features. 

In addition, a memory alignment loss function is designed to guide the storage and read 

of memories better. The KL loss between the original annotated feature map and the 

effectively fused memory feature map is used to align the final memory feature with 

the original image feature map. 

 

Fig. 1. The structure of LSTnet 

3.2 LGMF module 

The memory component obtains local memory features and global memory features 

through sequential and random shuffle. In contrast to traditional methods, this memory 

component directly utilizes the five saved features from the highest of FPN layers as 

coarse-grained input sequence features, rather than the original image sequence. The 

retained local features 𝐿 are denoted as [𝐿𝑡−5, ⋯ , 𝐿𝑡−1] and global features 𝐺 are de-

noted as [𝐺𝑡−5, ⋯ , 𝐺𝑡−1], where Li ∈ RC×H×W, Gi ∈ RC×H×W, C is the number of chan-

nels, H and W are the feature map size, and Gi is shuffled randomly by the order of Li. 
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Fig. 2. LGMF module 

LSTnet employs the following fusion operations for local memory features and 

global memory features, as illustrated in Fig. 2. Firstly, a 3 × 3 convolution operation 

with channel numbers Ck and Cv is simultaneously applied to extract key and value 

maps for local and global memory features. This operation enhances the expressive 

capability of local and global memory features. The key map Lk , Gk  are 

[Lt−5
k , ⋯ , Lt−1

k ] , [Gt−5
k , ⋯ , Gt−1

k ] with Li
k ∈ RCk×H×W  and Gi

k ∈ RCk×H×W . The value 

map Lv , Gv  are [Lt−5
v , ⋯ , Lt−1

v ] , [Gt−5
v , ⋯ , Gt−1

v ] , with Li
v ∈ RCv×H×W  and Gi

v ∈
RCv×H×W. Then, after the corresponding key and value maps are obtained, the LGMF 

module inputs the local memory key map Lk into one Storage Block and the global 

memory key map Gk into another Storage Block. The output key map of the LGMF 

module (Zs
k) is then obtained by summing the outputs of these two Storage Blocks. 

Simultaneously, Lv and Gv are input into two other distinct Storage Blocks, and sum-

ming the output of the two Storage Blocks is the output value map of the LGMF module 

(Zs
v). The specific representations of the LGMF module's output key and value maps 

are provided in Equation (1)  and Equation (2), where fs represents the Storage Block: 

 ( ) ( )5 1 5 1, , , ,k k k k k

s s t t s t tZ f L L f G G− − − −= +  (1) 

 ( ) ( )5 1 5 1, , , ,v v v v v

s s t t s t tZ f L L f G G− − − −= +  (2) 

 Fig. 3 illustrates the process of Storage Block aggregating information from the in-

put feature map sequence (Pt−5, ⋯ , Pt−1), where input feature map sequence can be 

either key or value maps from Fig. 2 (i.e., Lk, Gk, Lv, Gv). Firstly, the Storage Block(SB) 

concatenates the input feature map sequence, getting P ∈ RT×C×H×W , where C is Ck 

when the input is the key map and C is Cv when the input is the value map. T represents 

the length of the input sequence and is set to 5 in this paper. Subsequently, the Storage 
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Block implements an attention map W with T channels, which includes a 1 × 1 convo-

lutional operation, two consecutive 3 × 3 convolutional operations, and a 1 × 1 con-

volutional operation. This attention map is used to store the temporal information in the 

input sequence. Finally, the Block multiplies each channel of W by the input feature 

map sequence to generate the final output feature map of the Storage Block (Zs). There-

fore, Zs can be expressed as: Zs = ∑ (Wi ⊗ Pi)
T
i=1 . Here, Pi is the i-th input feature map 

to the Storage Block, Wi is the i-th channel on the temporal dimension of W and ⊗ 

represents the channel-wise multiplication operation between Wi and Pi. 

 

Fig. 3. Storage Block 

3.3 MRU module 

In Section 3.2, due to sequentially and randomly shuffling the feature maps of FPN 

layers, LGMF can store local and global features of the input sequence. As shown in 

Fig. 4, to optimize the reading and updating process of memory feature, the MRU mod-

ule utilizes the current frame's features and the stored memory feature from the LGMF 

module to obtain the corresponding effective lane memory features. Then, the obtained 

lane memory feature is used to update the stored memory in the LGMF module. The 

specific process is outlined as follows: 

• Firstly, the MRU module applies two 3 × 3 convolutional layers to the current frame 

feature map of FPN layer to obtain key map fk and value map fv. The corresponding 

feature map sizes are fk ∈ RCk×HW and fv ∈ RCv×HW. 

• Secondly, a matrix Mn is obtained by fusing Zk with fk, which preserves the non-

local relations between the stored memory information in the LGMF module and the 

current feature map. The size of Mn is RHW×HW. 
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• Thirdly, by merging Mn  with Zv , the LGMF module obtains the stored effective 

memory feature Mm. Subsequently, Mm is concatenated with fv along the channel 

dimension to obtain Mo, which serves as a joint representation of the memory feature 

for the memory component and input feature maps. 

• Finally, the joint memory feature Mo is aligned with the original annotated feature 

map to obtain Mt through a 1 × 1 convolutional operation to accelerate the learning 

speed of the memory component, as detailed in Section 3.4. Mt is then obtained 

through another 1 × 1 convolutional operation to obtain Mu, which is used to sup-

plement temporal information and simultaneously update the input sequence of the 

LGMF module. 

 

Fig. 4. MRU module 

3.4 Time Consistency Constraint 

Inspired by TGC-NET[11], to ensure the stability of the memorized feature within 

the memory component and learn coarse-grained features, we introduce a memory 

alignment loss function. The loss function is designed to enhance the memory compo-

nent's ability to represent temporal information, ensuring that the MRU module reads 

the correct memory feature to achieve the decoder's coarse-grained predictions. The 

effect of time consistency constraint is measured by Kullback-Leibler(KL) divergence 

as following function: 

 ( ), ( )t t gtL KL M resize M=  (3) 

As illustrated in Fig. 4, Mt represents the feature map used for temporal alignment 

in the MRU module, and Mgt represents the ground truth feature map. Due to the size 

discrepancy between Mt and Mgt, it is necessary to adjust the size of Mgt to match that 

of Mt. As TuSimple and CULane datasets annotate lanes in the form of points, we use 

the following scale-up operation to process the annotated point, as shown in Equation 

(4) : 
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/ /

X Y
x y

W w H h
= =  (4) 

where H and W are the size of input, h and w are the size of Mt, X and Y are the co-

ordinates of the annotated points in the dataset, and x and y are the coordinates of the 

points after modifying the feature map's size. 

The overall loss function for the entire model, as shown in Equation (5). Ls is the 

loss function of LaneMP[10], representing spatial information. α and β represent the 

weights assigned to spatial and temporal information, respectively. Adjusting these co-

efficients allows the network to achieve a balanced consideration between the spatial 

information and the temporal information. 

 
 s.t. 1

s tL L L 

 

= +

+ =
 (5) 

4 Experiments Settings 

4.1  Datasets and Evaluation Metrics 

Experiments are conducted on two datasets as follows: 

CULane: the F1 score is typically used to represent model performance. Initially, a 

continuous line area with a uniform width is rendered based on the predicted discrete 

points. Subsequently, the Intersection over Union (IoU) between the predicted and ac-

tual areas is calculated. Lanes with an IoU ≥ 0.5 are identified as true positives (TP), 

while other lanes are classified as false positives (FP) or false negatives (FN). 

TuSimple: a predicted point is considered correct only if it is within a distance of 20 

pixels from the corresponding ground truth point. To align with the CULane standard, 

a lane is considered a true positive (TP) only if the accuracy of the predicted points 

exceeds 85%. 

4.2  Implementation Details 

The model adopts the ResNet architecture as the backbone, resulting in two distinct 

versions of LSTnet denoted as LSTnet-S and LSTnet-M. Based on the image sizes in 

the CULane and TuSimple datasets, the input image is initially cropped to a size of 

800 × 320 to get as much relevant data as possible. For model optimization, the Adam 

optimizer and poly learning rate decay are employed, with an initial learning rate set to 

0.001. The model is trained for 300 and 80 epochs on the TuSimple and CULane da-

tasets, respectively, with a batch size of 32 per GPU. Data augmentation techniques, 

including random scaling, cropping, horizontal flipping, random rotation, and color 

transformations, are applied during the training phase. Both training and testing pro-

cesses are conducted on Tesla-A100 GPUs. 
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5 Experiment Results 

5.1 Results in TuSimple 

Table 1 validates the effectiveness of LSTnet on the TuSimple dataset, with an F1 value 

of 97.31 and FPS(Frames Per Second) of 57. This addition enables the model to handle 

challenging detection scenarios effectively, consequently reducing the number of false 

negatives. 

Additionally, although LaneLSTM and LaneGRU exhibit high accuracy, their F1 

scores show significant gaps compared to other methods. This is attributed to the po-

tential for false negatives when relying solely on temporal models. This further demon-

strates that LSTnet fusion of spatial and temporal information is very effective for lane 

detection. 

Table 1. The results on TuSimple 

Method F1 Acc FP FN FPS 

SCNN[1] 95.97 96.53 6.17 1.80 7.5 

UFLDv2[12] 96.16 95.65 3.06 4.61 312 

LaneATT[3] 96.71 95.57 3.56 3.01 250 

Fast-HBNet[13] - 97.42 2.26 2.61 39 

Bézier curve[14] - 95.65 5.10 3.90 150 

FOLOLane[15] - 96.92 4.47 2.28 40 

LaneMP-M[10] 96.71 95.82 3.82 2.75 89 

ADNet-R34[16] 97.31 96.60 2.83 2.53 - 

LaneLSTM[6] 90.40 98.00 - - 150 

LaneGRU[7] 91.24 98.04 - - - 

LSTnet-S(Ours) 97.19 95.53 2.55 3.06 72 

LSTnet-M(Ours) 97.31 95.63 2.40 2.96 57 

5.2 Results in CULane 

Table 2 compares the experimental results of the LSTnet model and other models on 

the CULane dataset and demonstrates the superiority of LSTnet over alternative meth-

ods. From Table 2, it is evident that the overall performance of the LSTnet model is 

significantly superior to the other methods. The model exhibits excellent performance 

in the “Crowded” scene and similarly excels in the “Curve” scene. This is attributed to 

the introduced memory component, which integrates temporal information into the net-

work. Although the memory component is designed to handle extreme scenarios, the 

detection of “Normal” scenes is also improved due to the integration of temporal infor-

mation. 

Table 2. The results on CULane 

Method Total Normal Crowded Shadow Arrow Curve Cross FPS 

SCNN[1] 71.60 90.60 69.70 66.90 84.10 64.40 1990 7.5 

Fast-HBNet[13] 73.10 91.90 71.60 66.70 85.30 65.10 2306 39 

ESAnet[17] 74.20 92.00 73.10 75.10 88.10 68.80 2001 123 

PINet[18] 74.40 90.30 72.30 68.40 83.70 65.60 1427 25 
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LaneATT[3] 75.11 91.17 73.32 69.58 86.62 63.07 1059 250 

Bézier curve[14] 75.57 91.59 73.20 76.74 87.16 62.45 888 150 

UFLDv2[12] 75.90 92.50 74.90 75.30 88.50 70.20 1864 312 

LaneMP-M[10] 77.11 91.92 76.40 78.24 88.10 72.88 2678 89 

CondLane-M[19] 78.74 93.38 77.14 79.93 89.89 73.88 1387 152 

FOLOLane[15] 78.80 92.70 77.80 79.30 89.00 69.40 1569 40 

ADNet-M[16] 78.94 92.90 77.45 79.11 89.90 70.64 1499 77 

CANet-M[20] 79.16 93.58 77.88 75.06 90.09 75.54 1176 - 

GANet-M[21] 79.39 93.73 77.92 79.49 90.37 76.32 1368 127 

LSTnet-S(Ours) 78.95 93.28 78.06 78.90 89.99 76.51 1291 72 

LSTnet-M(Ours) 79.49 93.79 78.50 78.67 89.37 76.10 1338 57 

5.3 Qualitative Results 

Fig. 5 visualizes the results for LSTnet and other methods. The first row of images is 

from the TuSimple dataset, while the following four rows are from the CULane dataset. 

It is noteworthy that in the second and third rows, the LaneMP model exhibits instances 

of false positives, detecting oncoming lanes and the bottom regions of barriers as lanes. 

In contrast, LSTnet avoids such occurrences. The detection results show that the per-

formance of the LSTnet surpasses that of other methods. Moreover, the images in the 

fourth row also indicate that in extreme scenarios such as heavy occlusion, the perfor-

mance of LSTnet is significantly superior to alternative methods. Additionally, the last 

row of images demonstrates that in the “Cross” scene, LaneMP tends to predict cross-

walks as lanes. In contrast, LSTnet demonstrates effective handling of such situations. 

This could be attributed to the incorporation of the memory component, which enables 

the model to effectively distinguish between lanes and crosswalks. 

    

    

    

    

    
(a) GT lanes (b) LaneATT[14] (c) LaneMP [10] (d) LSTnet-S 

Fig. 5. LSTnet and others’ qualitative results 

5.4 Ablation Study 

We conduct ablation experiments using the CULane dataset, employing the LSTnet-S 

version of the model. As shown in Table 3, the weight values of α and β represent the 
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proportions of spatial and temporal information in the entire detection network, respec-

tively. When α = 0.4 and β = 0.6, the model achieves the optimal detection results. 

The entire table indicates that as the weight value of β increases, the model's perfor-

mance initially improves but then declines. This trend could be attributed to the possi-

bility that an excessive emphasis on temporal information might lead the model to in-

crease potentially meaningless memory contents, thereby adversely affecting the final 

detection results. 

Table 3. Hyperparameters of total loss 

𝛼 𝛽 F1 

1 0 77.92 

0.5 0.5 78.63 

0.4 0.6 78.95 

0.3 0.7 78.74 

0.2 0.8 78.48 

6 Conclusion 

We introduce a lane detection network named LSTnet, as an enhancement to LaneMP, 

to integrate spatial and temporal information. LSTnet improves the robustness of lane 

detection through a detachable memory component comprising the LGMF module and 

MRU module. Additionally, a memory alignment loss function is proposed to align the 

feature maps of the original annotations with the fused effective memory features, en-

hancing the model's ability to represent temporal information. Experimental results on 

the TuSimple and CULane datasets demonstrate that LSTnet outperforms most existing 

models in terms of accuracy, particularly excelling in challenging scenarios such as 

occlusion. 
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