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Abstract. This paper presents a novel method for detecting defects in high-qual-

ity printed circuit boards (PCBs) used in electronic products. The effective oper-

ation of electronic devices heavily relies on the utilization of high-quality PCBs, 

making defect detection crucial to minimize wastage and financial losses. How-

ever, existing methods struggle to strike a balance between accuracy and speed, 

limiting their practicality in real-world scenarios. To address this challenge, we 

propose augmenting publicly available PCB image datasets with a broader range 

of defect types, enabling better simulation of real-world scenarios. This augmen-

tation enhances the model's ability to learn features associated with PCB defects. 

Additionally, we introduce the Adaptive Activate Conv module to further im-

prove the model's capacity for accurate defect detection. Experimental results us-

ing an expanded PCB dataset showcase outstanding performance with a notewor-

thy 2.1% increase in detection accuracy. Importantly, the proposed method main-

tains real-time applicability, underscoring its practical significance in industrial 

settings. By offering an efficient and accurate solution, our approach contributes 

to minimizing waste and ensuring product reliability in PCB manufacturing. 

Keywords: Printed Circuit Boards (PCBs), Defect Detection, Adaptive Acti-

vate Conv, PCBSAdd, Deep Learning. 

1 Introduction 

With the rapid development and widespread use of modern electronic devices, Printed 

Circuit Boards (PCBs) have become crucial components. PCBs are responsible for im-

plementing circuit functions and facilitating efficient signal transmission by connecting 

electronic components. However, the PCB manufacturing process is prone to various 

defects that can hinder the proper functioning of the circuit board or even lead to equip-

ment failure, causing irreversible losses in industrial production. Therefore, the 
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detection of defects in printed circuit boards is of utmost importance to ensure optimal 

performance and reliability. 

In the initial stages of PCB surface defect detection, two primary approaches were 

utilized: manual visual inspection and mechanical inspection[15].Manual visual inspec-

tion relies on human operators to visually examine PCB panels for defects; however, it 

is constrained by subjective factors and frequently yields low detection accuracy. On 

the other hand, mechanical inspection encompasses contact-based methods, yet it 

proves to be time-consuming, labor-intensive, and inefficient. 

During the third industrial revolution, the integration of electronics and information

 technology led to significant automation in the industrial sector. This integration gave

 rise to automatic optical inspection (AOI) [1]technology for PCB inspection[2]. AOI 

utilizes machine vision and optical equipment to capture image information, replacing

 manual visual inspection and improving speed and accuracy. However, the high costs

 associated with AOI technology pose challenges for its adoption in small and medium

-sized manufacturing industries, limiting its use to large-scale and highly automated se

ctors. 

Deep learning and computer vision techniques have significantly advanced PCB de

fect detection. Convolutional neural networks (CNNs) are widely used in this field[1

6], with two main categories of detection algorithms: single-stage and two-stage.Two-

stage algorithms, such as R-CNN[13], Fast R-CNN[14], and Faster R-CNN[12], gener

ate candidate regions of interest and perform classification for accurate detection. In c

ontrast, single-stage algorithms like SSD[4] and YOLO[3] directly predict category pr

obabilities and position coordinates, prioritizing detection speed.While two-stage algo

rithms achieve higher accuracy, they are slower compared to single-stage algorithms. 

Balancing speed and accuracy remains a challenge in deep learning object detection.O

verall, the application of CNNs and deep learning techniques has propelled PCB defec

t detection. Researchers continue to refine algorithms to improve both accuracy and sp

eed, meeting the requirements of industrial applications. The contributions of this artic

le are summarized as follows: 

1. A novel approach called "Adaptive Activation Conv" is proposed, which enables the 

network to dynamically learn when to activate neurons, thereby enhancing its learn-

ing capability. 

2. This study introduces PCBSAdd, a novel addition function that incorporates a learn-

ing parameter. PCBSAdd enables the conversion of non-trainable tensors into train-

able parameters and seamlessly integrates them into the optimization process of the 

host model. By combining PCBSAdd with the Bifpn structure, the network's ability 

to classify PCB defect features is significantly improved. 

3. To cater to the requirements of defect detection in real-life scenarios, the current 

publicly available printed circuit board dataset has been expanded in terms of both 

quantity and diversity of defect types. This augmentation enhances the dataset's ca-

pability to address a wider range of defect detection challenges encountered in prac-

tical applications. 
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2 Related Work 

Deep learning neural networks have shown promise in PCB defect detection. Researc

hers have proposed enhanced algorithms such as an improved Faster R-CNN with a m

ulti-scale feature pyramid network [5], a lightweight deep neural network designed for

 efficient component detection [6], and a denoising convolutional autoencoder [7]. Th

ese advancements highlight the potential of deep learning in improving accuracy in P

CB defect detection. Additionally, the YOLO series, known for its fast and accurate p

erformance in object detection, has been extended for PCB defect detection with mode

ls like GSC YOLOv5, which incorporates attention mechanisms for precise defect det

ection [8]. Ongoing research is focused on further enhancing defect detection systems 

using sophisticated neural network architectures. 

Niu et al. [9] and Tang et al. [10] proposed improved YOLOv5-based algorithms fo

r PCB defect detection, refining anchor box matching, introducing novel loss function

s, and incorporating attention mechanisms. However, current methods have limitation

s in capturing a comprehensive range of defects. To address this, we propose ADPA-P

CB(Figure 1), a novel small object detection algorithm that integrates Adaptive Activa

te Conv, a new Add function, and utilizes new PCB datasets. ADPA-PCB aims to enh

ance the accuracy of PCB defect detection by overcoming existing limitations. 

 

Fig. 1. ADPA-PCB. The proposed architecture comprises three main compo- nents: a feature m

ap extraction layer serving as the backbone, a feature fusion layer acting as the neck, and a dete

ction layer functioning as the head. 

3 Proposed Method 

The subsequent sections of this chapter are organized as follows: Section 3.1 offers an 

overview of the implementation principles behind AdaptiveThe remaining sections of 

this chapter are structured as follows: Section 3.1 provides an overview of the imple-

mentation principles of Adaptive Activate Conv. Section 3.2 describes the working 
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principles of PCBSAdd. Lastly, Section 3.3 presents our supplementary contributions 

to existing datasets on defect types. 

 

Fig. 2. Comparison of YOLOv5 and ADPA-PCB. During the feature extraction process, the CBS 

(Convolutional Block Attention Module) module was substituted with the Adaptive Activate 

Conv module, while introducing a novel feature weighting approach. 

 

Fig. 3. The PCBSAdd and comparison of CBS and Adaptive activate conv. In the given context, 

the symbol "s" corresponds to the SiLU activation function. The notation "Mean(𝐹ℎ,𝑤)" indicates 

the operation of averaging feature maps across the channels h and w. The symbol "б" denotes the 

sigmoid activation function. The variables "p1" and "p2" refer to two learnable parameters. The 

symbol "" represents element-wise multiplication, while "⊕" signifies element-wise addition. 

Lastly, the parameter "β" is utilized to regulate the activation of neurons. 

3.1 Adaptive Activate Conv 

In this study, we propose a novel approach that enhances the CBS module by introduc-

ing additional operations and learnable parameters. Our approach incorporates feature 

map addition and multiplication, allowing for the extraction of more valuable infor-

mation. We introduce learnable parameters initialized with random tensors, which are 
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continuously adjusted and learned during training. Inspired by the ACON[11] activa-

tion function, we integrate its concept into our research and present a new convolution 

module called the Adaptive Activation Convolution module. This module combines 

convolution, batch normalization, and carefully designed activation functions to com-

prehensively enhance the performance of convolutional neural networks. The architec-

tural design of the proposed module is illustrated in Figure 4. 

 

Fig. 4. Adaptive activate conv 

 

Fig. 5. PCBSAdd. where "wt[i]" refers to the i-th element of the computed weight vector, while 

"𝑥𝑖" represents a feature map. The module incorporates the SiLU activation function denoted by 

"s" and signifies the weighted operation conducted on two feature maps. 

Within the Adaptive Activate Conv structure, the input feature map (referred to as 

"input") undergoes a convolution operation to extract relevant features. Following this, 

the convolved feature map undergoes batch normalization, ensuring that the feature 

values conform to a normal distribution. This process can be formulated as follows: 

                                             𝐹ℎ,𝑤 = 𝐵𝑁(𝐶1(𝑖𝑛𝑝𝑢𝑡))                                           (1) 

C1 and C2 denote the convolution operations, while BN represents batch normali-

zation operations. The parameter β regulates the activation of neurons. 𝐹ℎ,𝑤
̅̅ ̅̅ ̅ signifies 

the average of the feature map across the dimensions h and w. Additionally, p1 and p2 

are two learnable parameters. The visual representation of this module can be seen in 

Fig. 4. Consequently, we can summarize the reformulated formulation of the Adaptive 

Activate Conv module as follows: 
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 β = 
𝐶1𝐶2(𝐹ℎ,𝑤̅̅ ̅̅ ̅̅ ̅)

1+𝑒−𝑥  

 𝑓𝐴𝑑𝑎𝑝𝑡_𝑎𝑐𝑡_𝑐𝑜𝑛𝑣(𝑥) =(p1-p2)  x  
(𝛽 (𝑝1−𝑝2) 𝑥)

1+𝑒−𝑥  + p2  x (2) 

3.2 PCBSAdd 

We propose a novel fusion method called PCBSAdd as an improvement over existing 

techniques. The PCBSAdd method introduces learnable parameters called tensors, 

which actively participate in the backpropagation process and are trained through gra-

dient updates. It combines convolution, batch normalization, and activation function 

operations to extract feature information, normalize feature distributions, and enhance 

non-linear transformation capability. Inspired by the Weighted Bi-directional Feature 

Pyramid Network, it achieves efficient multi-scale feature fusion, improving the net-

work's ability to detect and recognize PCB defects. The proposed module structure is 

depicted in Figure 3. 

We approach utilizes two weighting schemes for feature map fusion. We introduce 

a learnable parameter "w" to represent the weights used in the fusion process. During f

orward propagation, "w" undergoes normalization to ensure its suitability for weightin

g. The feature maps are then weighted based on the normalized "w," enhancing the inf

ormative content without increasing the dimensionality of the descriptors. Overall, our

 method involves the introduction of "w," its normalization, and the subsequent weigh

ting of feature maps for effective fusion. 

 𝑤 = (𝑤[0], 𝑤[1], 𝑤[2], … 𝑤[𝑖 − 1]) (3) 

Where, "w[i]" denotes the i-th element of the vector "w," while "wt[i]" represents t

he i-th element of the calculated weight vector. The term "sum" refers to the summatio

n of elements, and "a" represents a non-zero small positive value. The detailed implem

entation of PCBSAdd can be observed in Figure 5. The two weighting methods are as 

follows: 

 𝑊[2] = 𝑤𝑡[0] 𝑥[0] + 𝑤𝑡[1] 𝑥[1] 

 𝑊[3] = 𝑤𝑡[0] 𝑥[0] + 𝑤𝑡[1] 𝑥[1] + 𝑤𝑡[2] 𝑥[2] (4) 

3.3 Expansion of public dataset defect types 

The PCB Basic Defect Data Set, provided by Peking University, focuses on PCB de-

fects and includes six defect types: missing_hole, mouse_bite, open_circuit, short, spur, 

and spurious_copper. However, existing circuit board defect classifications have limi-

tations in precise detection and identification. To address this, the study collected real-

world PCB defect types and enhanced the dataset using PS and Python technologies. 

Data annotation was performed with the Labelimg tool. New defect types, such as 

clean_not, big_hole, scratch, and red_hole(Figure 7), were introduced to improve the 
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dataset's comprehensiveness. These additions enable more accurate detection and iden-

tification of PCB defects in real-world production scenarios. 

 

Fig. 6. New PCB defect types. 

4 Experiments and Analysis 

4.1 Dataset and Environment 

This article the PCB defects in the dataset are classified into 10 distinct categories, 

which include missing_hole, mouse_bite, open_circuit, short, spur, spurious_copper, 

clean_not, big_hole, scratch, and red_hole. The detailed statistics regarding the datasets  

and the corresponding defect types are presented in Figure. 8. 

 

Fig. 7. Datasets and Defect Types. The figures present blue bars representing the relative propor-

tions of PCB images associated with each specific defect type, while the orange bars indicate the 

distribution of defect labels across the various defect types.  

To address variations in resolution and limited original image datasets, this study 

introduces four new defect types and employs rotation, noise, and scaling as image 

processing techniques for dataset augmentation. The dataset is expanded from 693 to 

2,444 images and divided into training, validation, and testing sets in a 9:1:1 ratio. The 

learning rate is initialized to 0.01 and reduced using cosine annealing. A batch size of 

16 is used, and the training process consists of 300 epochs. The experiments were con-

ducted on a Linux system with an Intel quad-core i7-7700HQ CPU, 16GB of memory, 

and an NVIDIA GeForce GTX2080Ti graphics card with 11GB of memory. 
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4.2 Evaluation Method 

The model's performance is evaluated through five metrics: Precision (P), Recall (R), 

Mean Average Precision (mAP), Detection Speed (FPS), and mAP. Precision (P) and 

Recall (R) are determined by considering the counts of False Positives (FP), True Pos-

itives (TP), False Negatives (FN), and True Negatives (TN) according to the following 

formulas: 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   𝑅 =

𝑇𝑃

𝑇𝑃+𝑇𝑁
 (5) 

Following that, precision-recall (P-R) curves were generated utilizing the obtained 

recall and precision values. The area under the curve was subsequently computed to 

quantify the average precision. 

 𝐴𝑃 = ∫ 𝑃(𝑟)𝑑𝑟
1

0
   𝑚𝐴𝑃 =

∑ 𝐴𝑃𝑖
𝑛
𝑖=1

𝑛
 (6) 

4.3 Experimental Results 

This study validated the model using two datasets: the augmented PCB dataset and 

BigPCB-Datasets,. The augmented PCB dataset consists of real circuit boards, while 

BigPCB-Datasets contains cropped images from complete circuit boards (10,668 im-

ages). While BigPCB-Datasets are more suited for academic research, the augmented 

PCB dataset proposed in this study better meets the defect detection requirements in 

real production scenarios. 

In our experiments, we used the augmented PCB dataset and the BigPCB-Datasets 

dataset to train the YOLOv5 and ADPA-PCB models. The performance results on the 

augmented PCB test set are presented in Table 2. ADPA-PCB showed significant im-

provements over the original YOLOv5 model, achieving an average enhancement of 

1.7% in precision (P), 2.8% in recall (R), and 2.6% in mean average precision (mAP). 

On the BigPCB-Datasets test set, as shown in Table 3, ADPA-PCB demonstrated a 

0.4% improvement in precision (P), comparable recall rate (R) to YOLOv5, and an 

average increase of 0.3% in average precision (mAP). This highlights the superiority 

of ADPA-PCB in terms of precision (P) and average precision (mAP) over YOLOv5. 

Visualized detection results in Figure 10 demonstrate that ADPA-PCB outperforms 

YOLOv5 in identifying various defects, showing higher detection efficiency. 

Table 1. The results of the ablation experiment, which involve the integration of two modules, 

namely Adaptive Activate Conv (AD) and PCBSAdd, into the YOLOv5 model, are presented. 

Model AD(head and backbone) PCBSAdd mAP@.5% Parameters GFLOPS 

Baseline   92.0 28.46 17.4 

AD-PCB ✓  90.1(-1.9) 31.01(+2.55) 17.4 

PA-PCB  ✓ 93(+1.0) 28.30(-0.16) 17.5(+0.1) 

ADPA-PCB ✓ ✓ 90.3(-1.7) 30.01(+1.55) 17.4 

Model AD(backbone) PCBSAdd mAP@0.5% Parameters(M) GFLOPS 

Baseline   92.0 28.46 17.4 
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AD-YOLO ✓  91.7(-0.3) 28.61(+0.15) 17.4 

PA-YOLO  ✓ 93(+1.0) 28.30(-0.16) 17.5(+0.1) 

ADPA-PCB ✓ ✓ 90.7(-1.3) 28.50(+0.04) 17.5(+0.1) 

Model AD(head) PCBSAdd mAP@.5% Parameters GFLOPS 

Baseline   92.0 28.46 17.4 

AD-PCB ✓  93.2(+1.2) 28.55(+0.09) 17.4 

PA-PCB  ✓ 93(+1.0) 28.30(-0.16) 17.5(+0.1) 

ADPA-PCB ✓ ✓ 94.1(+2.1) 28.43(-0.03) 17.5(+0.1) 

Table 2. The performance evaluation of YOLOv5 and ADPA-PCB is conducted using the PCB-

Datasets. The abbreviations MH, MB, OC, SH, SP, SC, CN, BH, SCR, and RH correspond to the 

following defect types: missing_hole, mouse_bite, open_circuit, short, spur, spurious_ copper, 

clean_not, big_hole, scratch, and red_hole, respectively. 

Model yolov5 yolov5 yolov5 ADPA-PCB ADPA-PCB ADPA-PCB 

 P R mAP P R mAP 

MH 0.878 0.985 0.967 0.89 0.986 0.98 

MB 0.959 0.987 0.98 0.945 0.985 0.984 

OC 0.772 0.97 0.872 0.764 0.972 0.879 

SH 0.768 0.808 0.811 0.822 0.902 0.879 

SP 0.775 0.885 0.864 0.779 0.943 0.899 

SC 0.807 0.935 0.927 0.805 0.939 0.942 

CN 0.923 0.964 0.992 0.945 1 0.992 

BH 0.886 0.895 0.887 0.924 0.936 0.943 

SCR 0.875 0.879 0.898 0.936 0.939 0.955 

RH 1 0.983 0.996 1 0.966 0.996 

Table 3. Performance of YOLOv5 and ADPA-PCB on Big_PCBDatasets.The abbreviations 

MH, MB, OC, SH, SP,and SC correspond to the following defect types: missing_hole, 

mouse_bite, open_circuit, short, spur, spurious_ copper respectively. 

Model class MH MB OC SH SP SC 

Yolov5 P 0.977 0.974 0.973 0.986 0.977 0.982 

Yolov5 R 0.997 0.997 0.996 0.982 0.994 0.995 

Yolov5 mAP@0.5 0.99 0.991 0.99 0.984 0.99 0.992 

ADPA-PCB P 0.982 0.978 0.976 0.986 0.979 0.991 

ADPA-PCB R 0.997 0.996 0.996 0.982 0.99 0.999 

ADPA-PCB mAP@0.5 0.992 0.989 0.998 0.99 0.993 0.993 
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Fig. 8. Detection results on PCB datasets.Left:YOLOv5. Right:ADPA-PCB. 

This study analyzed the effectiveness of two modules, Adaptive Activate Conv and 

PCBSAdd, in the network and conducted ablation experiments to evaluate their impact. 

The results, shown in Table 1, indicate the performance and parameter changes caused 

by these modules. Three sets of ablation experiments were performed, applying the 

Adaptive Activate Conv to different components of the model. Experiment 1 applied it 

to both the Backbone and Neck, Experiment 2 to the Backbone only, and Experiment 

3 to the Neck only. Applying the Adaptive Activate Conv in the Backbone led to a 

small decrease of 0.3% in Map@0.5(%) performance and an increase of 0.15M param-

eters. To mitigate this, the PCBSAdd module was introduced in the Neck to reduce 

parameter count. The combined effect of these modules resulted in a net increase of 

0.04M parameters and a corresponding decrease of 1.3% in Map@0.5(%) performance. 

These findings provide valuable insights into the impact of the Adaptive Activate Conv 

and PCBSAdd modules on performance and parameter count. 

We  study findings indicate that applying the Adaptive Activate Conv in the Back-

bone component did not yield significant improvements. Consequently, we decided to 

implement it in the Neck instead. This adjustment resulted in a modest increase of 

0.09M parameters. However, it led to a notable improvement of 1.2% in Map@0.5(%) 

performance. Additionally, incorporating the PCBSAdd module in the Neck reduced 

the model's parameter count and contributed to an additional 1% increase in 

Map@0.5(%) performance. By simultaneously incorporating the Adaptive Activate 

Conv and PCBSAdd modules in the Neck, we achieved a reduction of 0.03M parame-

ters while significantly enhancing the Map@0.5(%) metric by 2.1%. These findings 

demonstrate the qualitative impact of these modules on both performance and parame-

ter count. 

To ascertain the superiority of the proposed ADPA-PCB, we conducted a thorough 

comparison with several state-of-the-art detection algorithms, including the classical t

wo-stage detection algorithm Faster R-CNN, as well as the single-stage detection algo

rithms RetinaNet, CenterNet, YOLOv5, YOLOv7, and YO-LOv8. Table 5 presents a 

comprehensive analysis of these algorithms, considering metrics such as mAP@0.5, m

AP@0.5:0.95, FPS, and Model Size (MB) under identical settings. While the single-st

age algorithm Faster R-CNN exhibits superior detection accuracy compared to the two

-stage detection algorithms, its model size is relatively large, rendering it less suitable 

for practical detection scenarios. 

The utilization of two-stage detection algorithms has proven effective in meeting th

e real-world demands for PCB defect detection, demonstrating a balance between spee

d and accuracy. Our proposed ADPA-PCB model surpasses the performance of the sin

gle-stage algorithms, namely RetinaNet, CenterNet,YOLOv5, YOLOv7, and YOLOv

8, with notable improvements of 5.2%,3.5%,2.1%, 3.5%, and 2%, respectively, in ter

ms of mAP@0.5. Furthermore, ADPA-PCB exhibits substantial enhancements in term

s of FPS, achieving improvements of 0.46, 23.33, and 15.76, respectively, when comp

ared to the YOLOv5, YOLOv7, and YOLOv8 algorithms. 
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Table 4. Comparative experimental results of PCB defect datasets in mAP(%), F1,FPS(Frames 

Per Second),P,R and model size. 

Algorithm mAP@0.5% mAP@0.5:0.95% FPS Model Size (MB) 

Faster R-CNN 95.32 64.5 21.5 629.27 

RetinaNet 88.8 52.9 19.6 145 

CenterNet 90.6 51.4 7.1 77.2 

Yolov5s 92 49.2 67.11 14.5 

Yolov7 90.6 45.4 44.24 71.43 

Yolov8 92.1 50.6 51.81 21.50 

ADPA-PCB 94.1 48.7 67.57 14.51 

From the results of the comparative experiments, it is evident that the two-stage obj

ect detection algorithm Faster-RCNN, while achieving higher detection accuracy com

pared to both single-stage methods and the proposed ADPA-PCB in this paper, is hind

ered by its significantly larger model size and parameter count. This limits its deploym

ent on devices in real-world production scenarios. In contrast, single-stage object dete

ction algorithms such as RetinaNet and CenterNet, although lagging behind in terms o

f detection accuracy and frames per second (FPS), offer a more practical option. Addit

ionally, the YOLOv5, YOLOv7, and YOLOv8 models employ a simple and flexible d

esign philosophy, making them easy to comprehend and modify. Comparing the propo

sed ADPA-PCB algorithm with YOLOv(5,7,8), our approach exhibits superior detecti

on accuracy and model compactness, enabling better deployment on real-world produ

ction devices. 

Based on the aforementioned comparisons, it can be deduced that ADPA-PCB sho

wcases superior performance in the realm of PCB defect detection. 

5 Conclusion and Future Work 

This article improves YOLOv5 for PCB defect detection. It introduces Adaptive Acti-

vate Conv, enhancing neuron activation for learning PCB defect characteristics. 

PCBSAdd enhances the addition method, expanding image information without in-

creasing channels. It reduces computational complexity and achieves 94.1% mAP. The 

method maintains a small model size and is deployable on production equipment. 

PCB defect detection is crucial in electronic manufacturing for quality control and 

fault identification. It also supports automation, robotics, IoT, and smart devices. Ac-

curate detection improves efficiency, quality, and reliability. However, challenges ex-

ist, such as complex defects, false positives/negatives, limited generalization, compu-

tational demands, cost, implementation, and evolving defect forms. Research and col-

laborations are essential to overcome these limitations. 

Future research in PCB defect detection includes exploring advanced machine learn-

ing techniques, multi-modal data fusion, optimizing deep learning models, real-time 

detection and automation, dataset establishment, and environmental adaptability. These 

efforts aim to improve accuracy, efficiency, and robustness. Research will focus on 

advanced algorithms and models integrating multiple data sources for real-time detec-

tion and automation. Establishing larger datasets with accurate annotations and industry 
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collaborations will facilitate algorithmic research and practical applications. These re-

search directions will drive breakthroughs in PCB defect detection technology. 
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