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Abstract. In the rapidly evolving field of drone technology and artificial intelli-

gence, detecting small, densely packed objects under challenging lighting condi-

tions from an unmanned aerial vehicle (UAV) perspective poses significant chal-

lenges. This paper introduces MPB-YOLO, an efficient small target detection 

algorithm built upon the YOLOv8s model, designed to address these issues. By 

refining the neck structure with a small target detection head and a multi-scale 

adaptive fusion neck, the model's ability to detect small targets is substantially 

improved. Deformable convolutions and a spatial coordinate attention mecha-

nism are integrated into the feature extraction module to enhance the network's 

perceptual capabilities, particularly for densely distributed and overlapping tar-

gets. Evaluated on the VisDrone2019 dataset, MPB-YOLO surpasses other state-

of-the-art algorithms, with a 26.3% and 28% increase in mAP50 metrics on the 

test and validation sets, respectively, while reducing parameters by 16.8% com-

pared to YOLOv8s. These results confirm the efficacy of MPB-YOLO in aerial 

object detection tasks. 

Keywords: tiny object detector; complex scenarios; multi-cross feature fusion; 

remote sensing. 

1 Introduction 

The integration of unmanned aerial vehicles (UAVs) with artificial intelligence (AI) 

has emerged as a prominent area of research[1-2]. UAVs offer a combination of ma-

neuverability and the capacity to surmount natural constraints, such as varied terrains 

and environmental conditions, leading to their advantage in providing expansive, effi-

cient, and cost-effective monitoring[3-5]. Consequently, applying UAVs with AI-

driven object detection algorithms denotes a field with considerable market rele-

vance[6]. 
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Nonetheless, the efficacy of prevalent object detection algorithms when applied to 

UAV-sourced data has been suboptimal. This shortfall primarily arises from the incom-

patibility of standard vision task datasets with aerial imagery, resulting in a lack of 

algorithmic focus on aerial detection tasks[7-9]. Conventional datasets used for bench-

marking, like MS-COCO and the VOC series[10-12], are typically curated from a 

ground-level perspective and possess common characteristics that do not challenge 

models in the same way aerial imagery does. These characteristics include pronounced 

object features, substantial target representation in the frame, minimal irrelevant con-

tent, favorable lighting, a primary horizontal viewing angle, and a lack of overlapping 

subjects. 

Such datasets reflect everyday visual experiences and are not tailored to train algo-

rithms for the complexities encountered in aerial views, such as intricate object arrange-

ments and vantage points from altitude. This discrepancy suggests a need for special-

ized datasets to enhance object detection algorithms for aerial applications. 

In the context of UAV integration with target detection algorithms, two distinct ap-

proaches emerged. The first approach involved the realization of UAV data acquisition 

via communication transmission, subsequently relaying the data to a local server for 

the execution of the detection algorithm. The second approach entailed the UAV car-

rying lightweight detection algorithms onboard. Consequently, there was a dual de-

mand for algorithms: those designed for local deployment, characterized by high pre-

cision and substantial computational resources, and lightweight airframe deployment 

algorithms, which, while less resource-intensive, still maintained a commendable level 

of accuracy. 

In this paper, we made improvements on the lightweight model S based on YOLOv8 

and achieved a considerable accuracy improvement with a 16.8% reduction in the num-

ber of parameters. Our method effectively improved the model's performance in aerial 

view and against complex target stacks. 

The main contributions of the article include: 

1. In order to improve the feature extraction ability when facing the complex occlu-

sion detection tasks, a spatial coordinate attention was proposed to strength the sensitive 

of deformable convolution, which intensify the offset mask behavior in the process of 

deformable convolution. The deformable convolution reinforced by the attention mech-

anism was designed to combine with the feature extraction block.  

2. A neck structure with multi-cross adaptive fusion mechanism was proposed to en-

hance the perception ability of the model to the ground target in the high-altitude per-

spective. The adaptive feature fusion mechanism not only reduces the number of pa-

rameters in the model, but also makes full use of the semantic information in each stage. 

Also, the multi-cross connection structure made full use of spatial features from the 

lower layers of the backbone network. 

Through the ablation experiments, we demonstrated the feasibility and effectiveness 

of our proposed network optimization designs. Experimental results on the Vis-

Drone2019 [33] dataset showed that our designs can intensify the performances of the 

benchmark model under considerable parameter decline. Additionally, comparative 

analyses with state-of-the-art detection models and current mainstream models with 

adjacent parameters demonstrated the superiority of our proposed method. 
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2 Related work 

In the burgeoning field of artificial intelligence, a plethora of neural network-based 

object detection methods has surfaced. These methods predominantly bifurcate into 

one-stage and two-stage detection paradigms. One-stage detection, exemplified by the 

YOLO (You Only Look Once) series [13-18], merges object localization and classifi-

cation into a singular process, acclaimed for its rapid processing and real-time applica-

bility. This approach, particularly with the advent of YOLOv5 [15], has spurred numer-

ous enhancements aimed at refining detection capabilities and broadening the under-

standing of algorithmic strategies for diverse tasks. 

Conversely, two-stage detection strategies segregate the process into region proposal 

followed by simultaneous localization and classification. Despite its slower pace com-

pared to one-stage methods, two-stage detection, with technologies like Faster R-CNN 

[19] and its extension, Mask R-CNN [20], demonstrates superior accuracy by integrat-

ing classification, localization, and segmentation tasks into a cohesive network, ena-

bling more precise object detection. 

Focusing on densely packed objects, identified by their proximity and quantity as 

outlined by Goldman et al. [21], presents unique challenges. Wang et al. [22] categorize 

occlusions encountered in such scenarios as either background-induced or due to 

crowding, proposing the Repulsion Loss to mitigate these issues by balancing attraction 

and repulsion among detection predictions and truths. Moreover, Goldman et al. em-

ployed the Jaccard Index for evaluating detection quality, introducing a Soft-IoU layer 

and an EM-Merger unit to refine detection accuracy in crowded scenes. 

Addressing the detection of small objects within high-resolution aerial imagery un-

derscores a significant challenge: the dilution of target information on shallow feature 

maps [23]. Strategies like increasing network input size offer more detail at the cost of 

computational efficiency. Alternative approaches, such as partitioning images into sub-

graphs for targeted feature extraction and classification [24], and employing two-level 

Faster R-CNN models [25] or CPNet for cluster-based region extraction [26], aim to 

enhance small object detection while mitigating false positives. Li et al. [27] proposed 

density estimation and image segmentation into subgraphs as another viable solution, 

illustrating the continuous evolution and adaptation of object detection methodologies 

to meet the demands of aerial image analysis. 

However, when applying these methods to aerial scenarios target detection, the big-

gest challenge was how to achieve accurate detection in densely distributed objects. 

The remote sensing images usually had large image size and complex background, and 

there were a large number of densely distributed small size detection objects. And im-

proving the accuracy of detecting small target objects. In order to achieve this goal, we 

not only proposed an attention mechanism to enhance the variable convolution and 

combine it into the feature extraction module; In addition, a neck structure with multi-

size adaptive feature fusion was designed to optimize the semantic features, so that the 

detection head could obtain the feature vector with accurate semantic information, 

thereby improving the overall detection performance. 
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3 Proposed designs 

As shown in Figure 1, the architecture of our designed MPB-YOLO network model. 

This network structure was an improvement on the YOLOv8-s model. In the backbone 

part and the neck part of the network, we designed the AD-C2f block to intensify the 

feature extraction ability. In the neck part of the network, we introduced a multi-cross 

adaptive fusion structure to enhance the performance of the benchmark model.  

 

Fig. 1. The proposed structure of MPB-YOLO is depicted in the diagram, where, from left to 

right, it includes the backbone, neck, and head structures. 

3.1 Feature Extraction Improvement 

3.1.1. Deformable ConvNets V2.  

DCN was first proposed by Dai et al [43]. in 2017. They addressed a critical issue 

where object distributions in images often deviate from geometric regularity. Tradi-

tional square convolutional kernels exhibit poor adaptability to objects with irregular 

shapes and sizes distributed throughout an image. To tackle this challenge, they intro-

duced a novel convolutional kernel that can dynamically adjust its shape based on the 

actual context, facilitating the model in extracting features more effectively from the 

target objects. 

Building upon DCN, Zhu [44] et al. discovered that excessive offsets often lead to 

the convolutional network's receptive field extending beyond the target region, result-

ing in features unaffected by the actual image content. To address this issue, they pro-

posed two methods: extending the deformable convolution to enhance its modeling ca-

pacity and introducing a feature mimicking scheme to guide network learning by con-

straining the offsets of the deformable convolution, allowing it to focus more precisely 

on object sizes. In our work, inspired by their contributions, we introduce a Spatial 

Coordinate Attention designed to reinforce offset adjustments. This attention module 

enabled the deformable convolution to concentrate more on the scale information of 

objects, thereby enhancing its capability to extract meaningful features from the target 

objects. 

3.1.2. Spatial Coordinate Attention 
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.  

Fig. 2. The constructure of the Spatial Coordinate Attention. (From left to right, the stages in-

clude the pooling stage, feature exchange stage, and weighted fusion stage.) 

To enhance the feature extraction capability of deformable convolution for small 

targets, we proposed an offset attention mechanism applied to deformable convolution. 

The attention mechanism comprehensively captured the scale features of images by 

integrating horizontal, vertical, and global directional information. As shown in the fig-

ure 2, our attention structure consisted of three parts, the pooling stage, feature ex-

change, and weight fusion.  

Pooling stage 

The pooling stage was designed with three pooling processes, extracting overall in-

formation through global average pooling, capturing feature information separately in 

horizontal and vertical directions through local pooling. 

The equation of the Average pooling on the height dimension:  

𝐻(𝑥) =
1

𝐻
∑ 𝑥𝑖,ℎ,𝑗,𝑐

𝐻

ℎ=1
 (1) 

The equation of the Average pooling on the width dimension:   

𝑊(𝑥) =
1

𝑊
∑ 𝑥𝑖,𝑗,𝑤,𝑐

𝑊

𝑤=1
 (2) 

The equation of the Global average pooling:  

𝐺(𝑥) =
1

ℎ′𝑤′
∑  ∑ 𝑥𝑖,𝑐,𝑤,𝑛

𝑤

𝑤=1

ℎ

ℎ=1
 (3) 

Feature exchange 

After pooling the tensor along the horizontal dimension, feature swapping was con-

ducted to seamlessly combine it with the pooled results along the vertical dimension. 

The pooled outcomes from both horizontal and vertical dimensions were then concate-

nated, and vertical features were meticulously captured through a 3×1 convolution op-

eration. Subsequently, a global pooling operation was applied along the channel dimen-

sion of the post-convolution tensor. This was followed by a precise calculation of 

weights through a 1×1 convolution operation. 

The concatenation of x1, x2, along a specified dimension c:  

𝐶(𝑥1, 𝑥2, 𝑐)  =  𝐶𝑜𝑛𝑐𝑎𝑡((𝑥1, 𝑥2 ), 𝑐) (4) 

The split operation on the x, along the specified width w and height h from the 

given channel index i: 
 

𝑆(𝑥, 𝑖, 𝑤, ℎ) = 𝑆𝑝𝑙𝑖𝑡(𝑥, [𝑤, ℎ], 𝑖) (5) 

The permute operation on the x, where the order of dimension is rearranged to 

[0,1,3,2]: 
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𝑃(𝑥)  =  𝑃𝑒𝑟𝑚𝑢𝑡𝑒(𝑥, [0,1,3,2]) +𝑏 (6) 

Concatenate the features in the height direction with the features in the width 

direction after permuting. Then, extract features along the height dimension using 

a 3x1 matrix, followed by obtaining the fused features after extraction: 

 

𝐴(𝑥) = 𝑤(3,1) (𝐶 (𝐻(𝑥), 𝑃(𝑊(𝑥)))) +𝑏 (7) 

The features obtained in the previous step (2-4) are globally pooled and split 

operation is performed along the width and dimension channels to obtain the 

pooled features in the width and height dimensions: 

 

𝐺𝑤(𝑥), 𝐺ℎ(𝑥) = 𝑆(𝐺(𝐴(𝑥), 𝑖, 𝑤, ℎ)) (8) 

Weights fusion 

Using weights, the features along the horizontal and vertical dimensions were 

weighted and reset. The weighted features from both horizontal and vertical dimen-

sions, along with the channel features from global pooling, were multiplied to obtain 

the final output.  

The equation of the Sigmoid function:  

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+ 𝑒−𝑥  (9) 

Computes the average of the tensor x along the specified dimension c:  

𝑀(𝑥, 𝑐) =
1

𝑁
∑ 𝑥𝑖,𝑐

𝑁

𝑖=1
 (10) 

Calculate the weights along the width and height direction:  

𝑞𝑤, 𝑞ℎ = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐺𝑤(𝑥), 𝐺ℎ(𝑥)) (11) 

Calculate the global weight:  

𝑞𝑐 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑀(𝐺(𝑥))) (12) 

The height and width features in the Pooling stage are fused with the corre-

sponding weights in the weights fusion stage to obtain the final scale fea-

tures: 

 

𝑃𝑤, 𝑃ℎ = 𝐺𝑤(𝑥) ∗ 𝑞𝑤, 𝐺ℎ(𝑥) ∗ 𝑞ℎ (13) 

The global Pooling features of the Pooling stage are fused with the global 

weights fusion stage to get the final global features: 
 

𝑃𝑐 = 𝐺(𝑥) ∗ 𝑞𝑐 (14) 

The three features after feature interaction are fused with input x through 

sigmoid function: 
 

𝑋 = 𝑥 ∗ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑘), 𝑘 = [𝑃(𝑃𝑤), 𝑃ℎ, 𝑃𝑐] (15) 

This process seamlessly incorporated both global and local information, effec-

tively capturing and integrating features from different dimensions through pooling, 

convolution, and weighting operations. The specific application of SPA (Spatial Pyra-

mid Attention) involved enhancing the convolutional offset during the computation of 

DCNv2 (Deformable Convolutional Networks v2) by embedding SPA attention. This 

reinforcement of convolutional offset was achieved by utilizing the computed offset 

information, allowing variable convolutions to focus more on targets’ scale infor-

mation. 

3.1.3. Replacement Experiment and Result. 
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Fig. 3. (a) Structural diagram of AD-C2f; (b) Structural diagram of Bottleneck; (c) Structural 

diagram of AD-Bottleneck, where ADCNv2 is formed by the fusion of SPA and DCNv2. 

To further enhance the feature extraction capability of the network, we integrated 

the attention mechanism with variable convolutions into the feature extraction module, 

as illustrated in the Figure 3. Specifically, on the foundation of the original bottleneck, 

we replaced the second CBS with a variable convolution incorporating attention, intro-

ducing a novel design called AD-Bottleneck. Additionally, in the C2f module, we re-

placed the original Bottleneck with AD-Bottleneck. In order to demonstrated the sen-

sitivity of our design to target scales in small object detection tasks compared to the 

original feature extraction modules, we conducted experiments to validate the capabil-

ities of our AD-Bottleneck. we performed replacement experiments on the feature ex-

traction modules of B2, B3, B4, B5 in the backbone network, as well as P3, P4, P5 in 

the neck part of the YOLOv8 network. The evaluation included mAP50 for the four 

classes with the smallest average size in the dataset and the overall results on the vali-

dation set. The experimental data were showed in Table 1: 

(All the hyper-parameters and environments are the same, training without using any 

officially pretrained weight. √: C2f, ◆: D-C2f, ●: AD-C2f) 

The results showed that after a large number of replacement comparison experi-

ments, we found that after replacing the feature extraction modules of B2, P3, P4 and 

P5 with AD-C2f, the accuracy of the three types of targets was improved when facing 

the four types of targets selected, and the mAP50 and mAP95 achieved 0.25% and 

0.43% higher than the benchmark model, respectively.  

3.2 Neck Structure Improvement 

 

Fig. 4. The structural diagram of MFPN (Multi-scale Feature Pyramid Network), where "Re-

Channel" denotes the channel integration stage, "Bi-Fusion" represents the first stage of feature 

fusion, and "Multi-Fusion" corresponds to the second stage of feature fusion. 
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3.2.1. Adaptive Feature Fusion.  

In the Neck architecture of the YOLOv8 benchmark model, feature fusion was exe-

cuted through a stacking methodology, where features were stacked along the channel 

dimension without consideration for spatial relationships. Particularly in the context of 

small object detection tasks, the egalitarian treatment of features across all scales in this 

stacking process might lead to inadequate focus on smaller objects, as the concatenated 

representation may be dominated by relatively larger background features. Drawing 

inspiration from BiFPN [39], we introduced an adaptive fusion approach to supersede 

the stacking method. Initially, each input feature undergoes convolutional processing, 

followed by the utilization of a SoftMax-activated convolutional layer to compute the 

weights assigned to each feature layer during the fusion process. This dynamic adjust-

ment of the importance of each feature layer aids in strengthening the contributions of 

different layers during fusion, rendering it more adept for the requirements of small 

object detection compared to the original concatenation fusion method.  

3.2.2. Multi-Cross Connections.  

To address the challenge of detecting small and obscured objects in drone-captured 

images, we developed a multiscale connectivity network that utilizes large-scale feature 

maps. This network, built on the foundations of PANet, introduces a multiscale con-

nectivity strategy that improves the detection of small targets. Our advanced architec-

ture features a multi-cross connection with three key components: channel integration 

from the backbone network's feature maps, a Bi-Fusion process, and a subsequent 

Multi-Fusion phase. The outcomes of this phase, ReF2 through ReF5, are processed by 

the AD-C2f feature extraction module and forwarded to the detection head. Further 

details on these mechanisms will be discussed in subsequent sections. 

1.Re-Channel 

. Due to the requirement of maintaining consistency in the channel dimension for 

our adaptive fusion method, the channel numbers of the extracted features (bi) from the 

backbone network were not uniform. To address this issue, we applied a 1x1xC convo-

lution operation to the features (bi). This step was taken to standardize the channel 

numbers, facilitating subsequent multiscale connectivity and adaptive fusion processes. 

2.Bi-Fusion 

In the part of Bi-Fusion, there were three fusion stages for different scales, producing 

F2, F3, and F4. F4 were formed by the fusion of B4 and B5 after up-sampling. F3 was 

formed by the fusion of F4 (up-sampled and feature-extracted) with B4. F2 was formed 

by the fusion of F3 (up-sampled and feature-extracted) with B3. The specific formulas 

were expressed as follows, where ⊕ represents adaptive fusion, U(x) denoted up-sam-

pling, and E(x) represented the feature extraction module of AD-C2f. 

 

The equation of the F4:  

𝐹𝑖 = 𝐵(𝑖)  ⊕ 𝑈(𝐵(𝑖 + 1)), 𝑖 = 4 (16) 

The expression of F2, F3.  
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𝐹𝑖 = 𝐵(𝑖)  ⊕ 𝑈 (𝐸(𝐹(𝑖 + 1))) , 𝑖 = 2, 3 (17) 

 

3.Multi-Fusion 

. In the Multi-Fusion section, there were four fusion stages for different scales, pro-

ducing ReF2, ReF3, ReF4, and ReF5. ReF2 was formed by the adaptive fusion of B2, 

F2, and F2 after feature extraction and down-sampling. ReF3 and ReF4 were formed 

by the adaptive fusion of Bi with the previous level's ReF(i) and ReF(i) after feature 

extraction and down-sampling. ReF5 was formed by the adaptive fusion of F4, ReF4, 

and ReF4 after feature extraction and down-sampling. The specific expressions were 

as follows, where D(x) represented down-sampling. 

 

The equation of ReF2:  

𝑅𝑒𝐹(𝑗) = 𝐵(𝑗)  ⊕ 𝐷 (𝐸(𝐹(𝑗))) ⊕ 𝐹(𝑗), 𝑗 = 2 (18) 

The equation of ReF3, ReF4:  

𝑅𝑒𝐹𝑖 = 𝐵(𝑖)  ⊕ 𝑈 (𝐸(𝐹(𝑖 + 1))) ⊕ 𝐹(𝑗), 𝑗 = 3, 4 (19) 

The expression of ReF5:  

𝑅𝑒𝐹(𝑗) = 𝑅𝑒𝐹(𝑗 − 1)  ⊕ 𝐷 (𝐸(𝑅𝑒𝐹(𝑗 − 1))) ⊕ 𝐹(𝑗 − 1), 𝑗 = 5 (20) 

 

4 Experiments and Results 

4.1 Datasets Analyses 

Seleceted for this paper, VisDrone [33], an authoritative dataset in the field of inter-

national drone vision, was used as an experimental verification object. At present, 

drones had been widely used in various fields, such as griculture, aerial photography, 

and personalized monitoring. Due to the comprehensive influence of shooting angle, 

light, background, and other factors, intelligent understanding of UAV visual data was 

more diffcult than conventional computer vision tasks. To improve the performance of 

drone viewer task, the AISKYEYE team at the Machine Learning and Data Mining 

Laboratory of Tianjin University, proposed the VisDrone2019 dataset. Which consists 

with 288 video clips, including 261908 frames and 10209 still images. The dataset used 

a variety of drones for multisence, multitask shooting, including locations (taken from 

14 different cities in China separated by thousands of kilometers), environments (urban 

and rural), objects (such as perstrian, truck, bicycles, etc.), density (sparse and crowded 

scenes), weather (sunny and cloudy), and lighting conditions (day and night). 

Unlike conventional detection datasets, each imageo might contain hundreds of ob-

jects to be detected, and the dataset contained a total of 2.6 million manual annotations 

of bouding boxes. In additioon, VisDrone provided some important attributes such as 

scene visbility, object class, and occlusion to improve the utilization of data in various 

tasks. Some data examples were shown in Figure 9. 
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Fig. 5. Some data examples of the VisDrone2019 dataset. 

4.2 Experiment Metrics 

The experiment used the mean value of average precession at an IOU of 

0.5(mAP50), the mean value of average precession crossed a range of IoU thresholds 

from 0.5 to 0.95(mAP95), frames per second (FPS), number of parameters, and model 

size as evaluation indices. 

In this paper, we choose the Ubuntu 22.04 as the operating system with Python 

3.8.18, PyTorch 1.13.1, Cuda 11.7 as the desktop computational software environment. 

The experiment utilized NVIDIA 3090 graphics cards as hardware. The implementa-

tion code of the neural network was modified based on the Ultralytics 8.0.114 version. 

The hyperparameters used during the training, testing, and validation of the experiment 

remained consistent. The detailed settings were displayed in the Table 3: 

Table 1. Hyper-Parameters Setting table. 

Hyper-Parameters Setting 

Epochs 300 

Batch Size 8 

Optimizer SGD 

NMS IoU 0.65 

Initial Learning Rate 0.01 

Final Learning Rate 0.0001 

Momentum 0.937 

Weight-Decay 0.0005 

Image Size 640 x 640 
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Mosaic 1.0 

Image Translation 0.1 

Close Mosaic  Last 10 epochs 

All the YOLOv8 and our designed MPB-YOLO algorithms had detection results 

from our experiments. In these experiments, none of these networks used any officially 

pre-training weight. The remaining data came from relevant cited papers. 

4.3 Ablation Study 

The small target detector designed in this paper mainly improved the neck and back-

bone parts of the benchmark model (YOLOv8-s). To systematically analyzed the im-

provement of model performance of each unit, the benchmark model A, the improved 

model A+B(Extra-head), the improved model A+B+C(Extra-head+AD-C2f), the im-

proved model A+B+C+D(Extra-head+AD-C2f+MFPN) were defined in turn, and the 

changes in the evolution indicators of the for models were quantitatively explored.  

 

4.4 Comparison Experiment 

Our experimental results were compared with the results of other models published 

on this dataset throughout the years, including MobileNetv2-SSD[34], YOLOv3[37], 

YOLOv4[18], YOLOv5[15], YOLOv6[13], YOLOv7[14], YOLOX[36], MS-

YOLOv7[35], Drone-YOLO[28] and Li et al.’s[29] These methods as well as 

YOLOv8s and YOLOv8l, were the baseline methods in this experiment. Our proposed 

MPB-YOLO performs best on mAP95, while performs the second after the MS-

YOLOv7[35] on mAP50. 
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Compared to the SOTA(state-of-the-art) model: Drone-YOLO, our designed model: 

MPB-YOLO, achieved 2.45% accuracy improvement while using only 11.06% of the 

Drone-YOLO(large)’s parameters. 

5 Visualization 

A comparative visual analysis was conducted on the VisDrone2019-Test dataset to 

ascertain the efficacy of our proposed MPB-YOLO model against a benchmark coun-

terpart. This comparison allowed for a more intuitive assessment of MPB-YOLO's su-

perior detection capabilities from an aerial vantage point. We selected three distinct 

scenarios to illustrate the enhancements achieved by our model, as well as to highlight 

certain limitations. 

In the first scenario, the image captured from an altitude of 100 meters above a city 

road exhibited objects appearing notably small, akin to the size of ponies. For both 

models, we designated three corresponding areas for comparison—regions from the 

benchmark model are labeled as 1, 2, and 3, while regions from MPB-YOLO detections 

are labeled as 4, 5, and 6. 

As depicted in Figure 6: 

(1) The first area comprised several vehicles on the road, where region 4 captured 

by our MPB-YOLO model demonstrated a higher detection count compared to region 

1 from the benchmark. 

(2) In the second area, a vehicle was situated within a complex environment. Our 

MPB-YOLO successfully identified the vehicle amid this intricate backdrop, a feat that 

the benchmark model failed to achieve. 

(3) The third area featured two vehicles on a reflective surface. Here, the objects 

were discerned by MPB-YOLO in region 6 but went undetected by the benchmark 

model in region 3. 

These scenarios underscore the enhanced detection performance of MPB-YOLO, 

particularly in challenging environments where the benchmark model falls short. 
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Fig. 6. A daytime urban street scene with normal lighting conditions. The image was captured 

from an elevated position exceeding 100 meters above the ground. The primary detection ob-

jects include cars, buses, and vans. 

The second perspective, the picture was taken from about 30 meters above the via-

duct at night, there was a parking lot in the middle of the picture, therefore the cars are 

stacking in a tiny zone of the picture, which bring a huge task for the detection model. 

In order to disscuss the detection results, we picked four regions of the same position 

for both results, the regions selected from the benchmark model detection results are 

denoted by 1,2,3,4 and the regions selected from the detection results of MPB-YOLO 

are denoted by 5,6,7,8.  

Analyze the visualization result in Figure 7: (1)Firstly, the regions where contains 

four cars in a situation that lack of light was choiced to compare the ability of two 

detection models, in 1 and 5, the benchmark model detected three targets, but one target 

mistake in the dark area; the MPB-YOLO detected only one target but without mistake. 

(2) Secondly, the results of the parking lot area was selected to compare because its 

high stacking proportion, comparing the result of 2 and 6, we can clearly see the detec-

tion results of the benchmark model in the face of stacking are not as accurate as the 

detection result of MPB-YOLO, there are no redundant detection boxes in MPB-

YOLO’s detection results, further demonstrate the sensitivity of our designed feature 

extraction model towards to the small size objects. (3) The next is a region containing 

two truchs and one car, compare 3 and 7, our MPB-YOLO detected accurately, while 

the benchmark model ignored all targets. (4) Compare the 4 and 8, when the benchmark 

model detected the truck’s shadow as a car, MPB-YOLO detected accurately. 
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Fig. 7. A nightly urban street scene with poor lighting conditions. The image was captured 

from an elevated position exceeding 30 meters above the ground. The primary detection objects 

include cars, buses, and vans. 

The third perspective, the picture was taken from about 40 meters above the school 

entrance area at noon, the pedestrian crowded together, people riding bicycle and mo-

tor, the size of these stacked objects is extremely small and difficult to distinguish, to 

further compare the detection performance of the models, we picked four regions of the 

same position for both results, the regions selected from the benchmark model detection 

results are denoted by 1,2,3,4 and the regions selected from the detection results of 

MPB-YOLO are denoted by 5,6,7,8. 

 

Fig. 8. A daytime school street scene with normal lighting conditions. The image was captured 

from an elevated position exceeding 20 meters above the ground. The primary detection objects 

include cars, buses, pedestrian, bicycle, motor, and crowded people. 

As shown in Figure 12: (1) Compare 1 and 5, MPB-YOLO did not detect the stone 

as pedestrian like the benchmark model did. (2) Compare 2 and 6, there were total 18 

subjects in this area, including 16 pedestrians and a person on a bicycle. The benchmark 

model detected about only 11 pedetrian at all, and did not recongnized the cyclist as a 

people and a bicycle; the MPB-YOLO not only detected all the subjects, but also dis-

tinguish the cyclist as a people and a bicycle. (3) Compare 3,4 and 7,8, they all have a 

commom characteristic: a motorcyclist in the center of the picture, in contrast to the 

benchmark model, MPB-YOLO detected the motorclist as a people and a motor, whicn 

can effectively reflect the feature sensitivity and the performace superiority of MPB-

YOLO compared with the benchmark model. 

6  Conclusion 

In this study, we introduced MPB-YOLO, a novel feature extraction architecture 

based on a multi-scale adaptive fusion approach, designed to effectively detect multi-

scale and small targets from aerial drone perspectives. MPB-YOLO integrates key in-

novations including an offset attention mechanism within variable convolutions, 
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enhancing object detection across various scales during feature extraction. This mech-

anism significantly improves the network's ability to identify features of differently 

scaled and closely situated targets, boosting overall detection performance. 

Additionally, the use of expansive feature maps increases detection precision for 

small-sized objects. This is complemented by a multi-scale adaptive feature fusion 

strategy that leverages global contextual object features to enhance detection accuracy. 

Extensive testing on the Vis-Drone2019 dataset shows that MPB-YOLO outperforms 

existing advanced detection models, particularly in environments with complex back-

grounds, tiny objects, and partially hidden targets, marking a significant advancement 

in aerial-target detection. 

Future developments will broaden the algorithm’s scope to include other detection 

paradigms such as infrared and hyperspectral imagery. A key goal moving forward is 

to create more comprehensive and diverse datasets that cover various complex real-

world scenarios. This will help to rigorously test and improve the algorithm’s general-

ization capabilities and resilience, enhancing its applicability and performance in di-

verse operational contexts. 
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