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Abstract. Event Causality Identification (ECI) aims to predict the causal relation 

for a pair of events in text. Previous work has often combined fine-tuning with 

specific classifiers, which contradicts the pre-trained task of the model and fails 

to utilize the knowledge within the pre-trained language model (PLM). Addition-

ally, event causality identification is a complex inference task, and relying solely 

on sample content makes it challenging to establish an effective inference pro-

cess. To tackle these two issues, we propose a new prompt-based approach for 

ECI, which includes a new task, causal connective prediction, and the use of ex-

planations generated by a large-scale language model (LLM) to enhance event 

causality identification. Initially, we direct the LLM to produce natural language 

explanations of target event pairs to aid prompt generation. These explanations 

assist the model in comprehending events and their correlation. Additionally, we 

develop a task for predicting causal connectives to guide the reasoning process. 

Furthermore, we introduce a tensor matching mechanism to capture the semantic 

interaction of events in context, supporting our two prompt tasks. Our experi-

mental results on two benchmark datasets demonstrate that our method outper-

forms state-of-the-art models in the sentence-level ECI task. 

Keywords: Event Causality Identification, Prompt-based Learning, Causal 

Connective Prediction. 

1 Introduction 

Event causality identification (ECI) is a crucial natural language processing (NLP) task 

that aims to identify causality between events in text. The event causality identification 

task supports various NLP applications, such as machine reading comprehension [1], 

future event prediction [2, 3] and question answering [4]. 

Identifying the event causality is inherently challenging, because it usually requires 

a complex reasoning process. Most causal samples have no explicit causal clues, so the 

model that solely utilizes the content of original text is difficult to identify the causal 

relation. As shown in Fig. 1. The sentence has no explicit causal clues to identify the 

event causality: 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 → 𝑑𝑖𝑒 . and when we consider the meanings of 

“recommendation” and “die” themselves, there is also no strong semantic correlation. 
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In this scenario, if we obtain information about these two events in context outside the 

annotated data, we will make it easier to determine their causal relation. Inspired by 

Chain of Thought (CoT) prompting [5], which guides the model to establish effective 

arithmetic reasoning. We can utilize the ability of the large-scale language model (e.g., 

GPT-3.5) to generate relevant natural language explanations to simplify the inference 

process. 

 

Fig. 1. Example of causality. There is causal relation between recommendation and die. The 

explanation generated by LLM contains information about two events. 

Most existing methods regard ECI as a classification task. However, the ECI dataset 

is relatively small. Therefore, it is difficult for the model to fully understand the text 

using traditional fine-tuning methods, which limits the predictive performance of the 

model. To address this problem, various methods have been proposed to leverage ex-

ternal knowledge [6, 7] or intrinsic knowledge of pre-trained models [8]. Specifically, 

Liu et al. [6], and Cao et al. [7] attempt to utilize external knowledge base to introduce 

commonsense knowledge to identify causality. Shen et al. [8] utilize potential causal 

knowledge to help causality identification. Although these methods have achieved sig-

nificant results, they have two limitations. First, introducing external structured 

knowledge inevitably brings noise, especially when there is relatively limited annotated 

data, which will bring a significant negative impact on the performance of the model. 

Second, the event causality identification task requires complex reasoning process. It is 

challenging for the model to understand semantics and to transform them into causal 

reasoning solely with original text. 

In this paper, we propose a new prompt-based method for the ECI task, which can 

leverage natural language explanations related to events to effectively improve the per-

formance of the model. First, we leverage GPT-3.5 to generate natural language expla-

nations according to the predefined prompts, including event trigger explanation and 

event correlation explanation. In order to avoid exceeding the maximum encoding 

length of the PLM, we set the maximum length for two types of explanations. As shown 

in Fig. 1, the explanations will provide more information about the target events and 
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assist model in determining causal relation. Secondly, it is crucial for our judgement 

that whether causal connectives are present (because, lead to, etc.) in the text. However, 

most of the samples do not contain causal connectives. Therefore, we can explicitly 

construct this condition via a prompt template without considering the presence of con-

nectives in the original sample. Based on the above idea, we introduce causal connec-

tive prediction as an auxiliary task to mine potential causal cues for the model. In addi-

tion, due to the performance of prompt-based method relies on the construction of ver-

balizer. Therefore, we select the less ambiguous connectives corresponding to each 

class based on the causal signals in the annotated data and external knowledge to im-

plement answer mapping. Finally, considering that two events with causal relation con-

tain more common semantic features. Therefore, we introduce tensor matching mech-

anism [9] to capture the semantic interaction of the events in context to optimize the 

final hidden state. 

2 Related Work 

2.1 Event Causality Identification 

Early work utilizes different feature-based methods to identify events causal relation 

[10-13]. With the development of deep learning, most of studies prefer to utilize neural-

based method for this task and achieve state-of-the-art performance [6, 14]. However, 

the amount of annotated data related to causality is relatively small in the existing da-

tasets, which inevitably affects the predictive performance of the model. To alleviate 

this problem, some studies attempt to introduce external commonsense knowledge to 

enrich labeled data and trigger semantics. Specifically, Zuo et al. [14] effectively ex-

pand data scale with distantly supervised labeled training data. Cao et al. [7] construct 

graph module to encode different external structural knowledge. Although structured 

external knowledge can enhance the semantic understanding of events, it inevitably 

introduces noise. Based on the above considerations, we introduce the natural language 

explanation to capture more information about events. 

2.2 Prompt-based Methods 

Prompt-based methods [16] transform classification tasks into a cloze-style MLM prob-

lem, which aligns the downstream task with pre-trained task. Han et al. [17] apply logic 

rules to construct prompts with multiple sub-prompts for text classification task. Xu et 

al. [9] achieve event coreference reasoning by constructing auxiliary tasks for event 

types and argument compatibility. For event causality identification, Shen et al. [8] lev-

erage two derivative prompts to model explicit causality and implicit causality sepa-

rately. Compared to [8], our method not only constructs rich actual label words, but 

also generates natural language explanations to help the model simplify causal infer-

ence. 
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3 Method 

Formally, given an instance 𝑥 = (𝑆, (𝑒𝑖 , 𝑒𝑗)), where 𝑆 is a sentence and (𝑒𝑖 , 𝑒𝑗) is a 

pair of events in 𝑆, we need to predict whether there is a causal relation. Following 

previous work [6, 14], we formulate the ECI as a binary classification, so our final 

prediction is one of {𝑒𝑥𝑖𝑠𝑡, 𝑛𝑜𝑡_𝑒𝑥𝑖𝑠𝑡}, representing there is or no causality respec-

tively. The overall framework of our model is shown in Fig. 2. 

 

Fig. 2. The overall framework of our prompt-based method for ECI, where KB is the external 

knowledge base. 

3.1 Overview 

In this paper, we transform ECI into a cloze-style MLM problem by using the template 

𝑇(·) and the verbalizer v. The 𝑣: 𝑌 → 𝑉𝑦 represents the mapping from the label space 

of the ECI task to the token space of the PLM. Specifically, we insert the [MASK] 

token into template 𝑇(·) and send it into PLM to learn the context representation of the 

mask position. Then, we utilize a mask language model (MLM) head to get confidence 

score of the tokens in the vocabulary, and calculate the normalization probability of 

special words as follows. 

𝑝(𝑦|𝑥) = 𝑝([𝑀𝐴𝑆𝐾] = 𝑣(𝑦)|𝑇(𝑥)) =
𝑒𝑥𝑝𝑃(𝑣(𝑦)|𝑇(𝑥))

∑ 𝑒𝑥𝑝𝑘
𝑖=1 𝑃(𝑣(𝑖)|𝑇(𝑥))

                   (1)  

where the 𝑣(𝑦) and the 𝑘 represent the token filling the mask position of the template 

𝑇(𝑥) and the length of the label word space, respectively. 𝑃(𝑡|𝑇(𝑥)) represents the 

confidence score of the token 𝑡 that predicted by the MLM head of PLM. 
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3.2 Explanation Generation 

Due to the poor performance of directly using LLMs to identify events causality [18], 

we only generate explanations that can assist the model in reasoning. For an instance 

𝑥 = (𝑆, (𝑒𝑖 , 𝑒𝑗)), we generate two types of explanations with GPT-3.5, including 1) 

event trigger explanation (ETE) and 2) event correlation explanation (ECE). Specifi-

cally, ETE includes the target trigger meaning and the description of the event ex-

pressed by the trigger. ECE refers to the correlation between two events in the context, 

which is a premise for identifying the causal relation. In order to prompt LLM to gen-

erate desired explanations, we design two types of prompts as follows. 

• 𝑃𝑟𝑜𝑚𝑝𝑡1: Explain the event triggered by ‘𝑡𝑖/𝑡𝑗’ in the following sentence: ‘𝑆’ re-

turn the explanation in the form of 𝑡𝑖/𝑡𝑗 means ... as a sentence. 

• 𝑃𝑟𝑜𝑚𝑝𝑡2: Explain whether exist correlation between event ‘𝑡𝑖’ and event ‘𝑡𝑗’ or 

not in the following sentence: ‘𝑆’. 

where 𝑡𝑖 and 𝑡𝑗 represent the triggers expressing for 𝑒𝑖 and 𝑒𝑗 respectively. 𝑆 represents 

the sentence where events 𝑒𝑖 and 𝑒𝑗 are located. We insert event markers <e1> / <e2> 

into the 𝑆 to represent the start / end of two target event triggers 𝑡𝑖 and 𝑡𝑗. In addition, 

we also limit the length of the explanation returned by GPT-3.5 by mentioning it in the 

prompt and setting argument ma𝑥_𝑡okens. After error analysis, we found that although 

concise explanations are required, LLM tends to over-explain and produce disruptive 

content. In some cases, this explanation can even lead to a drop in the performance of 

the model. Therefore, we truncate ETE to ensure that there is no intersection with other 

events in the obtained explanations as much as possible. For ECE, we remove fixed 

format correlation judgements and retain specific explanations. Finally, we concatenate 

both explanations for the construction of the input sequence. 

3.3 Auxiliary Task: Causal Connective Prediction 

Considering that ECI is a complex task requiring reasoning, we construct an auxiliary 

prompt task to build the association between the semantic understanding and identifi-

cation by mining potential causal clues. As shown below, we convert this task into a 

mask language prediction problem and set 𝑌𝑎𝑢𝑥 = {𝑛𝑎, 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦,
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦} as the auxiliary task label according to the direction of the 

causal expression. Note that their output is only for assistance rather than for the final 

prediction. The format of the auxiliary task template is as follows. 

• 𝑇𝑎𝑢𝑥: the occurrence of event [E1S]𝑒𝑖[E1E] [T1] [MASK] [T2] the occurrence of 

event [E2S]𝑒𝑗[E2E]. 

Similar to PTR [17], [T1] / [T2], [E1S] / [E1E], and [E2S] / [E2E] will then be added 

to the vocabulary as learnable tokens to make the template dynamically adapt to the 

task during the training process. 
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For verbalizer construction, the key issues are to select label words related to the 

direction of the causal expression and to establish an association between explicit and 

implicit causal relations. From these two perspectives, we first extract causal signals 

for each causal sample from the annotated data. If it is not present, we skip it. We then 

apply lemmatization and filtering to all the words or phrases obtained, so that each of 

them can be filled in the middle of the template. After that, we divide words into two 

categories based on their semantics. For the ‘𝑛𝑎’ class, we choose parallel connectives, 

such as 𝑎𝑛𝑑, 𝑜𝑟, etc. Finally, inspired by [19], we choose Related Words as our external 

knowledge base to further enrich the label words for each class. 

After obtaining all the label words, we establish a mapping from one label to multiple 

label words, and the sum of the normalized probabilities of all label words correspond-

ing to each label is used as the label probability. The advantage of this method is that it 

allows for higher coverage for label words. However, its disadvantage is that for label 

words with more than one token, we can only use the average score as an approximate 

result. In the training stage, we calculate the cross-entropy loss 𝐿𝑎 between the pre-

dicted probability distribution of label and golden causal direction label. During the 

prediction stage, we do not need the predicted result of this mask position. The connec-

tive prediction template will mine the potential causal associations based on the 

memory of the training stage. Benefiting from the attention mechanism, PLM can focus 

more on connective information when encoding the context to guide the final causal 

judgment. 

3.4 Joint Reasoning 

To better guide the model to infer the relation of the events and obtain the contextual 

representation, we insert special tokens [E1S] / [E1E] and [E2S] / [E2E] on both sides 

of the target events. Due to we treat the event causality identification as a binary clas-

sification problem, so we design the final causal judgement template 𝑇𝑗𝑢𝑑𝑔 as: 

• 𝑇𝑗𝑢𝑑𝑔(𝑥): So, the events expressed by [E1S]𝑒𝑖[E1E] and [E2S]𝑒𝑗[E2E] [T3] 

[MASK] [T4] causal relation. 

We set the label words 𝑉𝑦 = {𝑒𝑥𝑖𝑠𝑡, 𝑛𝑜_𝑒𝑥𝑖𝑠𝑡} to represent a causal relation and no 

causal relation, respectively. The 𝑛𝑜_𝑒𝑥𝑖𝑠𝑡 contains multiple tokens, and it is impossi-

ble to find this word from the vocabulary to satisfy a single mask, so we create a virtual 

label word for it using the semantic verbalizer [20, 21]. For label word 𝑛𝑜_𝑒𝑥𝑖𝑠𝑡, we 

take 'not exist' as the semantic description and get tokenized sequence {𝑡1, 𝑡2 … , 𝑡𝑚}. 

Then we initialize the embedding of the virtual label word 𝑣 as follows. 

𝐸(𝑣) =
1

𝑚
∑ 𝐸(𝑡𝑖)

𝑚
𝑖=1                                  (2) 

where 𝐸(⋅) is the token embedding table. Then, we expand the MLM head of PLM with 

the virtual label word ‘𝑛𝑜_𝑒𝑥𝑖𝑠𝑡’. After completing the above work, we concatenate the 

context, explanations, and two templates in order and then send them into the PLM for 

sequence encoding. 
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According to the previous work [9], the tensor matching mechanism can effectively 

capture semantic interactions between events, which can help optimize our prompt 

tasks. Therefore, we introduce these semantic matching operations to update the mask 

position representation by fusing interactive features. Suppose that the event trigger of 

𝑒𝑖 is tokenized into 𝑘 tokens. Specifically, we first apply the attention mechanism on 

top of the hidden vectors ℎ𝑗 of the 𝑗 − 𝑡ℎ tokens of the trigger in context to obtain the 

representation vector 𝑡𝑖 of event mention 𝑒𝑖 as follows. 

𝑡𝑖 = ∑ 𝑎𝑗
𝑘
𝑗=1 ℎ𝑗                         (3) 

𝑎𝑖 =
𝑒𝑥𝑝(𝑤𝑠

𝘛ℎ𝑖)

∑ 𝑒𝑥𝑝(𝑤𝑠
𝘛ℎ𝑗)𝑘

𝑗=1

                                  (4) 

where 𝑤𝑠 is model parameter that can be optimized during the training stage. Consid-

ering that two events with causal relations contain more common semantic features, 

their representation vectors will have greater similarity [22]. Therefore, we select the 

multi-perspective cosine similarity MultiCos(⋅) and the element-wise product as match-

ing operations to capture the semantic interactions between event mentions in context 

as follows. 

𝐼(𝑥𝑗 , 𝑥𝑗) = [𝑥𝑖 ⊙ 𝑥𝑗||𝑀𝑢𝑙𝑡𝑖𝐶𝑜𝑠(𝑥𝑖 , 𝑥𝑗)]                               (5) 

𝐼𝑡𝑟𝑖𝑔 = 𝐼(𝑡𝑖, 𝑡𝑗)                           (6) 

where 𝐼(⋅) represents the interaction vector, and the symbols ⋅ || ⋅  and ⊙  represent 

concatenation and element-wise production operations, respectively. After obtaining 

the trigger matching features 𝐼𝑡𝑟𝑖𝑔, we utilize it to update the final representation vectors 

of two mask tokens in the connective prediction template 𝑇𝑎𝑢𝑥 and the causal judge-

ment template 𝑇𝑗𝑢𝑑𝑔. The fusion formula is as follows. 

ℎ̃[𝑚𝑎𝑠𝑘]
𝐴𝑢𝑥 = [ℎ[𝑚𝑎𝑠𝑘]

𝐴𝑢𝑥 ||𝐼𝑡𝑟𝑖𝑔]𝑊𝑎                                       (7) 

ℎ̃[𝑚𝑎𝑠𝑘]
𝑗𝑢𝑑𝑔

= [ℎ[𝑚𝑎𝑠𝑘]
𝑗𝑢𝑑𝑔

||𝐼𝑡𝑟𝑖𝑔]𝑊𝑗                                        (8) 

where ℎ[𝑚𝑎𝑠𝑘]
𝐴𝑢𝑥  and ℎ[𝑚𝑎𝑠𝑘]

𝐽𝑢𝑑𝑔
 are representation vectors of the mask position correspond-

ing to the causal connective prediction and causality judgement tasks, respectively, and 

𝑊𝑎 ,𝑊𝑗 are parameter matrices responsible for transforming the tensor dimension into 

the hidden size of the PLM. Finally, we send the updated representation vectors of mask 

tokens to the MLM head of the PLM. During training, we use the cross-entropy function 

to calculate the losses of two mask tasks. Afterwards, we update the model parameters 

through the back-propagation algorithm. Conveniently, we denote the causality judge-

ment loss as 𝐿𝑗 and the causal connective prediction loss as 𝐿𝑎. We use a weighted ap-

proach to obtain the final loss 𝐿 as follows. 

𝐿 = 𝜆1𝐿𝑗 + 𝜆2𝐿𝑎                        (9) 

where λ1 and  λ2 represent the balance coefficient. 
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4 Experimentation 

4.1 Experimental Settings 

Datasets and Metrics. Following previous work [7, 8], we evaluate our methods on 

two benchmark datasets for ECI, i.e., EventStoryLine (ESL) v0.9 [23] and Causal-

TimeBank (CTB) [24]. EventStoryLine v0.9 involves 258 documents, 22 topics, 4,316 

sentences, 5,334 event mentions, and 1,770 of 7,805 event mention pairs that are caus-

ally related. Following [7, 8], we use the documents of the last two topics as the devel-

opment set, and we conduct 5-fold cross-validation on the remaining document. Causal-

TimeBank [24] contains 184 documents, 6,813 events, and 318 of 7,608 event mention 

pairs annotated with causal relations. We perform a 10-fold cross-validation evaluation 

for Causal-TimeBank. For evaluation metrics, we adopt Precision (P), Recall (R) and 

F1-score (F1). 

Parameter Settings. We choose the RoBERTa-base with open pre-trained parameters, 

which includes 12-layers, 768-hidden, and 12-heads, as our encoder. We add all learn-

able tokens to a vocabulary with 768-dimensional embedding. We choose the gpt-3.5-

turbo-instruct as our explanation generator. For the tensor matching operations, follow-

ing previous work [9], we set the matching dimension and perspective number to 64 

and 128, respectively, and set the tensor factorization parameter to 4. We set the epoch 

and batch size to 20 and 4, respectively, and apply a learning rate of 2e-5 to update the 

parameters. We set λ1 and λ2 to 0.5 and 0.5 respectively for balancing the two types of 

losses. To alleviate the imbalance in sample proportion, we adopt a negative sampling 

rate of 0.6 in the training. 

4.2 Baselines 

We compare the proposed method with two types of existing methods, namely, feature-

based methods, PLM-based methods. For the ESL dataset, we adopted following meth-

ods as baselines. 

• LR+ and ILP [25], which consider the causal structures at the document level. 

For Causal-TB, we choose the following baselines: 

• VR-C [26], a verb rule-based model based on lexical information and causal sig-

nals. 

Furthermore, we compare our method with the methods based on PLM as follows. 

• LSIN [7], a method that constructs two types of graphs using external knowledge 

to strengthen event semantics; 

• DPJL [8], a method that introduces two derivative prompt tasks to support causal 

reasoning; 
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• SemSIn [27], a method leveraging AMR to model explicit semantic structures and 

explore implicit associations; 

• Base Prompt, an MLM that only includes our final causal judgement task. 

4.3 Experimental Results 

Table 1 and Table 2 show the results of our method and other baselines on the datasets 

ESL and CTB, respectively. We can see that our method achieves the best F1 score on 

both datasets. This demonstrates the effectiveness of our proposed method in the sen-

tence-level event causality identification task.  

Table 1. Comparison of different methods on EventStoryLine v0.9. The best results are high-

lighted in bold, and the second-best results are underlined. 

model P R F1 

LR+ 37.0 45.2 40.7 

ILP 37.4 55.8 44.7 

LSIN 47.9 58.1 52.5 

DPJL 65.3 70.8 67.9 

SemSIn 64.2 65.7 64.9 

Base prompt 64.4 71.9 67.9 

Ours 69.1 70.2 69.6 

Table 2. Comparison of different methods on Causal-TimeBank. 

model P R F1 

VR-C 69.0 31.5 43.2 

LSIN 51.5 56.2 52.9 

DPJL 63.6 66.7 64.6 

SemSIn 52.3 65.8 58.3 

Base prompt 67.4 66.4 66.7 

Ours 70.5 68.3 68.4 

 

After further comparison, we find that the prompt-based method significantly out-

performs the traditional fine-tuning method, especially when there is relatively little 

training data, such as CTB. This is attributed to the fact that prompt-based learning 

aligns with the pre-trained task and fully utilizes the potential knowledge within the 

PLM. Benefiting from prompt-based learning and multiple derivative prompt tasks, the 

performance of DPJL [8] improves significantly. However, due to the limited content 

of original text, relying on this information alone makes it difficult to understand the 

relationship between two events. In contrast, we design two simpler prompt tasks to 

establish the causal reasoning process, incorporating intuitive natural language expla-

nations generated by GPT-3.5 to guide the model. Furthermore, we construct different 
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verbalizers to bridge the gap between reasoning and judgement. Compared to the soft 

verbalizer used in DPJL [8], the label words can more intuitively reflect the meaning 

expressed by the template. 

4.4 Ablation Study 

To investigate the contributions of different components of our method, we conducted 

ablation study. (1) -Exp: removing explanations; (2) -Aux: removing the auxiliary 

causal connective prediction template; (3) -TM: removing the tensor matching mecha-

nism. 

Table 3. Results of the ablation study on EventStoryLine. 

model P R F1 

-Exp 66.2 71.5 68.7 

-Aux 68.7 67.6 68.1 

-TM 66.3 70.8 68.2 

Full 69.1 70.2 69.6 

Table 4. Results of the ablation study on Causal-TimeBank. 

model P R F1 

-Exp 66.7 70.1 67.2 

-Aux 62.5 69.8 65.6 

-TM 71.1 66.9 68.2 

Full 70.5 68.3 68.4 

 

Table 3 and Table 4 show that removing any component will decrease the perfor-

mance of the model. The most significant decrease is when we remove the auxiliary 

causal connective prediction template, indicating that the auxiliary causal connective 

prediction template effectively improves causal inference. It is worth noting that com-

pared to the ESL dataset, the performance of the model in the CTB dataset shows a 

large drop. This may be due to the fact that when constructing label words for auxiliary 

prompt task, we rely on the causal signals in the annotated data. Almost half of causal 

samples in the CTB have explicit causal signals. Benefiting from these causal signals, 

the auxiliary prompt task can directly obtain causal cues to guide reasoning. 

5 Conclusion 

In this paper, we design a prompt to transform ECI into a mask language prediction 

task. In this way, the event modeling and causal judgement can be performed simulta-

neously based on a shared context. In addition, we introduce an auxiliary prompt task, 

namely, causal connective prediction, to explicitly show the reasoning process of ECI. 
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We also leverage the generative capability of LLM to generate explanations to assist in 

performing causal reasoning. The experimental results on the ESL and CTB datasets 

show that our method outperforms previous SOTA methods in sentence-level ECI. De-

spite the effectiveness of our approach, it still suffers from an obvious shortcoming. 

Due to the difficulty in determining the quality of each explanation, some simple sam-

ples may make incorrect predictions after adding explanations. In future work, how to 

utilize higher quality explanations is the focus of our future work. 
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