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Abstract. Post-translational modifications (PTMs) significantly regulate peony’s
growth, stress resistance, and biosynthesis of active pharmaceutical ingredients.
However, traditional experimental methods for peony PTM site identification are
cumbersome and inefficient; existing computational models are further limited
by reliance on manual features, single modification type support, and poor
interpretability—failing to meet precise identification needs.To address this, we
first built a peony PTM site dataset: retrieving peony proteins from TCMSP,
truncating sequences via sliding window to generate 1080 positive samples and
1976 negative sample, with sequence lengths of 3—41 amino acid residues.We
then used the Transformer model for prediction: it fuses word vectors and
position vectors for initial sequence representation, while its multi-head self-
attention captures long-range residue interactions to explore PTM site
patterns.10-fold cross-validation showed optimal performance at a sliding
window length of 31; key metrics (accuracy, MCC, F1) significantly
outperformed existing models, validating the approach’s effectiveness for peony
PTM site identification.
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1 Introduction

Paeonia lactiflora is a core herbaceous species in traditional Chinese medicine. It
contains active components such as paeoniflorin and exhibits diverse pharmacological
effects, including nourishing blood to regulate menstruation, astringing yin to reduce
sweating, soothing the liver to alleviate pain, and suppressing hyperactivity of liver-
yang. The proteins of Paeonia lactiflora regulate biological processes through post-
translational modification (PTM) mechanisms [1-3]: specifically, phosphorylation
mediates signal transduction and cell cycle regulation, glycosylation promotes protein
folding and immune recognition, acetylation governs reproductive development and
metabolic enzyme activity, and methylation regulates growth stage transition and
biosynthesis of medicinal components [4-6]. These PTM mechanisms act



synergistically, exerting a profound impact on the growth, disease resistance, and
medicinal quality of Paeonia lactiflora, while also laying a molecular foundation for
elucidating its pharmacological effects [7]. Therefore, accurate identification of PTM
sites is crucial for exploring the functional mechanisms underlying the pharmacological
activities of Paeonia lactiflora.

Traditional experimental techniques have established a comprehensive system for
PTM site identification. Centered on liquid chromatography-tandem mass spectrometry
(LC-MS/MS [8,9]), this system integrates high-resolution mass spectrometry and
fragmentation techniques (e.g., collision-induced dissociation, CID [10]; electron
transfer dissociation, ETD [10]), enabling precise localization of modification sites.
Meanwhile, complementary approaches such as antibody affinity enrichment (e.g.,
phosphorylation antibodies [11]), chemical probe labeling (e.g., click chemistry [12]),
and selective enrichment strategies (e.g., immobilized metal ion affinity
chromatography, IMAC; titanium dioxide, TiO. [13]) significantly improve the
detection efficiency of low-abundance modified peptides. Two-dimensional gel
electrophoresis (2D-PAGE [14]) can reveal differences between modified proteins;
mutant construction and in vitro enzymatic reactions validate functional modification
sites; and hydrogen/deuterium exchange mass spectrometry (HDX-MS [15]) assists in
analyzing the impact of modifications on protein structure. These methods cover the
entire workflow from enrichment and separation to verification and structural analysis,
ensuring the accuracy and comprehensiveness of PTM site identification. However,
such methods are generally time-consuming and labor-intensive.

To overcome these limitations, computational methods have emerged as important
alternatives. Previous studies have made progress in predicting protein modification
sites using computational approaches, such as the prediction of protein acetylation and
lysine 2-hydroxyisobutyrylation sites [16,17]. With the development of machine
learning and deep learning, more PTM site prediction models have been developed: for
example, tools for predicting S-nitrosylation (SNO) sites include GPS-SNO, SNOSite,
and iISNOPSeAAC [18-20]. Among these, SNOSID developed by Hao et al. [21] is
likely the first computational tool of this type; GPS-SNO is built based on the GPS 3.0
algorithm; and iSNO-PseAAC developed by Xu et al. achieves prediction by
representing protein sequences through pseudo-amino acid composition. In terms of
lysine crotonylation (Kla) site prediction, FSL-Kla developed by Jiang et al. [22] uses
343 Kla sites from 3 species as training data, encodes sequences by combining amino
acid composition features and structural features, and then integrates deep learning
models via an ensemble method (note: lysine crotonylation is associated with diseases
such as colon cancer and acute kidney injury). DeepKla proposed by Lv et al. [23]
adopts a convolutional neural network-bi-directional gated recurrent unit-attention
(CNN-BiGRU-attention) mechanism, specifically designed to predict Kla sites in rice.
In addition, TransPTM developed by Meng et al. [24] predicts non-histone acetylation
sites based on a Transformer network; Pokharel et al. improved the protein language
model (PLM [25]) to enhance the performance of succinylation site prediction; PTM-
CGGMS developed by Li et al. [26] optimizes prediction results through multi-
granularity structure and multi-scale sequence representation; and Liu et al. improved
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the accuracy of lactylation site prediction by combining structural features predicted by
AlphaFold 2 [27] with sequence information [28].

In 2016, Qiu et al. proposed iPTM-mLys [29], the first computational method
capable of identifying four types of lysine PTM sites (acetylation, crotonylation,
methylation, and succinylation). It adopts a four-step workflow and uses simple
undersampling to address data imbalance. Subsequent methods such as predML-Site,
mLysPTMpred, and iMul-kite [30-32] have improved upon iPTM-mLys by optimizing
sampling schemes and single-label classification algorithms. CNN+SGT and
MLysPRED [33,34] extract additional sequence features and directly employ multi-
label classification algorithms (e.g., CNN, MLKNN) for prediction, also using
sampling to resolve data imbalance. RMTLysPTM developed by Chen Lei et al. [35] is
another multi-label classification model that can identify the aforementioned four types
of lysine PTM sites.

Despite the progress made by these methods, limitations remain: first, most models
rely on manually designed feature extraction techniques, which struggle to capture
complex sequence relationships, leading to an incomplete understanding of protein
sequences; second, most models target only a single PTM type or specific lysine PTM
sites, lacking a universal model applicable to diverse protein sequences.

To address these shortcomings, this paper proposes a novel universal site prediction
framework for identifying sites in protein sequences. Figure 1 illustrates the data
preparation process, including data collection, generating positive and negative
samples. Figure 3 illustrates the construction of the site prediction model. First, we
transform the amino acid sequence into a numerical feature representation by
combining word embeddings and position embeddings, which more comprehensively
encodes amino acid composition and sequence order. The sequence embeddings are
then processed through a Transformer architecture, which captures both local and
global dependencies within the sequence. This approach more richly represents the
underlying biological context and enables the model to capture the complex interactions
between different feature representations. The model achieved the following
performance in 10-fold cross-validation: accuracy (Acc) of 92%, sensitivity (Sn) of
88%, specificity (Sp) of 92%, Matthews correlation coefficient (MCC) of 91, and F1
score of 86.45. These results demonstrate that the proposed model is a stable and
efficient model for predicting post-translational modification sites in peony.

2 Method and material

2.1 Dataset Construction

Post-translational modification (PTM) sites in protein sequences are scattered, which
poses considerable challenges to directly retrieving PTM site information of Paeonia
lactiflora sequences from existing databases. To construct a high-quality research
dataset (see Figure 1), we used the protein sequences from the Paeonia
lactiflora sequence database within the Traditional Chinese Medicine Systems



Pharmacology Database and Analysis Platform (TCMSP) as the original data source.
The specific construction process is as follows:

First, the target protein sequences were batch-downloaded from this database;
subsequently, the complete protein sequences were cleaved into short peptide
sequences, and the length of the cleaved short peptides was set to 26+1 (where 0 is an
integer, used as a sequence index identifier). This length setting method is derived from
Chou's formula [36], which enables the standardized unification of different short
peptide sequence lengths. In this study, the number "0" represents the target amino acid
in the short peptide, and the relevant short peptide sequences can be described by the
following equation:

A,QA,(Q,D"’A,QA,loAlAQ"'A9,1A9 (1)

In this equation, "0" corresponds to the amino acid residue at the central position of
the peptide sequence; "As" represents the amino acids adjacent to the lysine (K)-site;
"A-0" denotes the 0-th amino acid residue upstream of the central amino acid, and
"A+0" denotes the 8-th amino acid residue downstream of the central amino acid.

In terms of sample classification, we defined short peptide sequences containing
PTM sites as positive samples, and short peptide sequences centered on residues
adjacent to PTM sites as negative samples. To investigate the impact of variations in
window size on subsequent analysis performance, we performed 20 equal-step gradient
adjustments of the 0 value from 1 to 20 [37]. After the above series of processes, 1080
positive samples and 1976 negative samples were finally obtained, completing the
dataset construction.
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Figure 1. Workflow of the dataset construction

2.2 Amino acid encoding

When processing non-histone sequence data, One-hot Encoding extracts features by
converting each amino acid in the protein sequence into a 20-dimensional vector, where
this dimension setting corresponds to the 20 natural amino acids present in organisms.
The choice of this encoding method is mainly based on two considerations: first, as
verified in the feature representation of biological sequences such as proteins [38] and
RNA [39], One-hot Encoding is direct and effective, and can intuitively reflect the
category differences of amino acids; second, in early studies on protein modification
site prediction, One-hot Encoding was often used as the baseline encoding scheme for
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amino acid chains. For example, MusiteDeep, a tool with high citation frequency in this
field [40], uses it as the core encoding method. Therefore, this study also adopts One-
hot Encoding to represent peptide chain sequences. The specific encoding rule is: each
of the 20 different amino acids is mapped to a 20-dimensional binary vector containing
only 0s and 1s, where only the dimension corresponding to the amino acid takes the
value of 1, and the remaining dimensions take the value of 0. Taking alanine (A) and
lysine (K) as examples, the former is encoded as (0, 1,0,0,0,0,0,0,0,0,0,0,0,0, 0,
0,0, 0,0, 0), and the latter is encoded as (1, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0, O,
0, 0). For peptide chain sequences with a window size set to 26+1 (where 0 takes values
of 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30), they can be converted into feature vectors
with a dimension of 20x(26+1) after One-hot Encoding processing, and the vector
dimension is adjusted accordingly with the change of window size.

As the fundamental form of input embedding [41], Word Embedding mainly
functions to convert each amino acid residue in the peptide chain into a low-
dimensional dense vector representation, so as to capture the potential correlation
information between residues. In the Transformer model architecture, the word
embedding layer usually exists in the form of a trainable matrix: for each "token" (i.e.,
amino acid residue) in the input sequence, the corresponding word vector is retrieved
from this matrix through a table-lookup operation, and the parameters of this matrix are
continuously optimized according to task requirements during the model training
process. However, Word Embedding itself cannot convey the positional information of
each residue in the sequence [42]—since the Transformer model only relies on the
attention mechanism for feature interaction and lacks the inherent sequence order
perception ability of Recurrent Neural Networks (RNNs), using only Word Embedding
will make the model unable to distinguish the relative positional differences of residues
in the sequence. Therefore, positional embedding must be added on the basis of Word
Embedding: by appending a position vector related to the sequence position to each
input token, the model can accurately perceive the positional information of each
residue in the sequence, thereby understanding the sequential structural characteristics
of the peptide chain.

In recent years, Language Models (LMs) have attracted wide attention because they
can obtain contextualized embeddings from large-scale unlabeled language datasets,
rather than static and context-insensitive word embeddings. This technology has now
been extended to the field of protein research, forming protein Language Models
(pLMs) [43]. Benefiting from the massive resources of protein sequence databases,
researchers have developed a variety of pLMs. These models can mine deep feature
information of protein sequences from the databases [44] and transfer it to downstream
tasks such as protein property prediction and modification site identification, and have
shown better ability in understanding sequence relationships compared with traditional
encoding methods. In this study, the encoder output of the pre-trained model ProtT5-
XL-U50 was selected as the source of embedding features [45]. This model is a protein
language model based on the Transformer architecture, containing 3 billion parameters,
and its training process is divided into two stages: the initial training stage uses the "Big
Fantastic Database (BFD)" as the training set, which covers 65 million protein families,
and these families are classified and annotated through Multiple Sequence Alignments



(MSA) [46] and Hidden Markov Models [47]; the fine-tuning stage is carried out on
the UniRef50 database, which provides clustered sequence data from UniProtKB and
selected UniParc records, and can further optimize the accuracy of the model in
capturing protein sequence features. After inputting the peptide chain sequences into
ProtT5-XL-U50, the encoder output of the model is the embedding feature of the
peptide chain, where each amino acid residue corresponds to a 1024-dimensional
embedding vector. This embedding feature is not only position-dependent and can
reflect the positional differences of residues in the sequence, but also can effectively
capture the contextual correlation features of each residue, providing more abundant
sequence information support for subsequent modification site prediction tasks.
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Figure 2. Amino acid encoding. (A)One-hot encoding,(B) Word embedding ,(C) Embeddings of
ProtT5.

2.3  Attention

The self-attention mechanism captures the internal dependencies of a sequence by
calculating the correlations between elements within the sequence[49]. Its core idea is
to map the input sequence into three matrices: Query, Key, and Value. The weights of
the value are determined by the similarity between the Query and the Key. The specific
calculation process is as follows:

:
Attention(Q,K,V ) = soft max( QK V (2

Jo.

Here, d is the dimension of the Key, Jdk which is used to scale the dot-product

value to avoid gradient vanishing. This calculation method enables the model to
adaptively focus on the important parts of the sequence.

The Transformer introduces the multi-head attention mechanism to further enhance
the model's expressive ability. Multi-head attention projects the input into multiple sub-
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spaces, calculates the attention independently in each sub-space, and finally
concatenates the outputs of each head:

MultiHead(Q,K,V) = Concat(heady, ..., head,)W° (3)

head; = Attention(QWl-Q, QW QW) Q)

Where h is the number of attention heads, W,%, W, | W, and W © are leamable
parameter matrices.

In addition to the attention sub - layer, each layer of the Transformer block contains
a fully - connected feed - forward network, which is applied individually and identically
to each position. It consists of two linear transformations with a ReLU activation in

between.

FFN(.’E) :maX(O,$W1+b1)W2+b2 (5)

2.4 Framework of the proposed model

We employed a combination of word and positional embeddings to convert protein
sequences into vector representations. Each amino acid in the protein sequence is
mapped to a unique numerical index based on a predefined amino acid vocabulary. For
example, amino acids such as alanine (A), cysteine (C), and aspartic acid (D) are
mapped to indices 3, 4, and 5, respectively. Mathematically, each amino acid z; in the

sequence is represented by its corresponding index, where the index E (z;) is derived
from the vocabulary:

E(z,) = Index(x,) (6)

Positional embeddings are used to encode the positional information of each amino
acid, enabling the model to capture the sequence order within the protein chain. The
positional embedding of the i-th amino acid is denoted as P,, which is a learnable

embedding matrix:

P, = Position Embedding(7) (D

The final vector representation H; is obtained by adding its word embedding and
positional embedding:

H, = E,+P, (8

Once the protein sequence is converted into an embedding matrix H eR**?, this

matrix H serves as the input to a deep learning model that is specifically designed to
capture both local and global dependencies within the sequence.

First, the embedding matrix H is processed through the stacked_BiLSTM layer. The
LSTM layer is designed to hierarchically capture dependencies along the sequence in



both the forward and backward directions, enabling the model to learn contextual
information from the preceding and following amino acids. The BIiLSTM layer
processes the input H to generate an enhanced sequence representation H g7y

HLSTM = StackedB’LLSTM(H) (9

where Hpors € RE¥*% is the output of the LSTM layer. This representation

integrates the context of each amino acid from both directions. Then, H is fed into a
series of Transformer encoder modules. Each Transformer block consists of multi-head
self-attention and feed-forward operations, enabling the model to capture complex
long-range dependencies between amino acids. Mathematically, the Transformer block
processes the input as follows:

H,.,.= transformerblock (HLSTM) (100

where, H,,,, € R“* represents the refined sequence embedding after passing

through N Transformer blocks. The multi-head self-attention mechanism in the
Transformer block allows the model to focus on different parts of the sequence
simultaneously, thereby enhancing its ability to model the global relationships between
amino acids. Finally, to convert the variable-length sequence information into a fixed-
size representation, an adaptive max-pooling layer is applied to the output of the
Transformer block. This operation reduces the sequence dimension, thus producing a
compressed feature vector.

EmbeddinglLayer Attention Layer Output layer

Figure 3. The overall architecture of the model

2.5 Model evaluation

In this study, we regarded the protein sequences containing post-translational
modification sites as positive samples, and those without such sites as negative samples.
During the prediction process, we refer to the correct identification of positive samples
as true positives (TP), and the correct identification of negative samples as true
negatives (TN). We label the misclassification of a negative sample as a positive one
as a false positive (FP), and the misclassification of a positive sample as a negative one
as a false negative (FN). We averaged all performance indicators and reported the
results. We used four indicators, namely accuracy, sensitivity, precision, and the
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Matthew Correlation Coefficient (MCC), to evaluate the performance, and we set the
decision probability threshold at 0.5.

Accuracy = % (1D
Sensitivity = —— (12
Specificity = TILFP (13)

Flscore = 2 x ﬁ (14

MCC TPXTN—FPXFN (15)

= /(TP+FP)(TP+FN)(TN+FP)(TN+FN)

3 Results and discussions

3.1  Window size selection

During modeling, many studies employ a fixed local sliding window. However, it's
important to emphasize that different sliding windows can produce different prediction
results. Optimizing the window size can significantly assist feature selection and
improve prediction performance. To determine the optimal window size, we
experimented with a range of window sizes: 3, 5, 7, ..., 37, 39, and 41. As shown in
Figure 4, the average MCC across different window sizes indicates that model
performance peaks at a window size of 31, as the length of the protein sequence
changes. Generally, we expect longer sequences to contain more semantic and
contextual information. We hypothesize that this may be because when the sequence is
too short, the model is unable to learn its intrinsic information, while when the sequence
is too long, this information is diluted. Therefore, in subsequent analyses, we selected
31 as the optimized window size for acetylated residues.

Adjusted Performance of Different Sequence Lengths (Max Values Labeled)

Figure 4. Indicators of stackedbilstm_transformer on the training dataset for sliding window size
range



3.2  Performance evaluation of model

Table 1. Performance comparison of transformer with baseline

Acc(%) Sn(%) sp(%) Mcc(%) F1(%)
tranformer 92.24% 88.01% 91.51% 78.93% 86.46%
Istm 89.62% 88.44% 90.31% 77.89% 87.34%
CNN 91.26% 81.68% 96.51% 78.59% 82.54%
Svm 49.67% 40.52% 55.06% -4.29% 50.31%
rf 51.47% 3.96% 79.48% -2.27% 44.47%

Comparative analysis can provide insights into the strengths and weaknesses of
different methods and guide future research. Therefore, we further employed five
different classifiers for ten-fold cross-validation, including two baseline machine
learning models (RF and SVM) and two baseline deep learning models (CNN and
LSTM), to compare the predictive performance of our model. We used PseAAC as the
data input for the machine learning models. Table 1 lists the outputs of all five methods
on the dataset, including ACC, SN, SP, F1 score, and MCC value. Our method
significantly outperformed the other models in terms of ACC, MCC, and F1 value.
Transformer achieved ACC, SN, SP, MCC, and F1 values of 92%, 88%, 92%, 91%,
and 86%, respectively. These results demonstrate that our model is stable and performs
well, and can serve as an effective model for predicting post-translational modification
sites in peony.

To further demonstrate the advantages of our model, we tested it on a validation set
along with several other encoding methods that have performed well in PTM site
prediction. The first model was a one-hot plus Transformer model, and the second was
a Prott5 plus Transformer model. We then used the hidden layer vectors from the
Transformer as features for machine learning classification and observed the results.

Table 2. Performance comparison of tranformer with other encoding methods

Acc sn sp MCC F1
transformer 85.57% 83.37% 88.83% 73.51% 83.38%
one-hot+transformer 64.78% 0.62%  99.66% 2.05%  1.22%
prott5+tranformer 61.42% 28.21% 73.51% 23.45% 45.65%

RF 84.35% 82.88% 89.34% 72.87% 82.89%
SVM 83.13% 81.98% 89.51% 72.32% 82.49%
Xgboost 82.91% 80.07% 87.97% 72.11% 82.60%

Ensemble+Learning 81.13% 80.28% 89.34% 72.36% 82.54%

In the PTM site prediction task, Transformer and Random Forest (RF) performed
best, with accuracy (Acc) exceeding 87% and balanced sensitivity (sn = 85%) and
specificity (sp = 89%). The Prott5 series of models performed poorly due to issues such
as feature encoding and data imbalance. Traditional machine learning models (RF,
SVM, and Xgboost) outperformed most deep learning models due to their robustness.
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4 Conclusions

Post-translational modifications (PTMs) are critical regulators of biological processes
in Paeonia lactiflora—a core herbaceous species in traditional Chinese medicine—
governing its growth, disease resistance, and biosynthesis of medicinal components
such as paeoniflorin. However, traditional experimental methods for PTM site
identification (e.g., LC-MS/MS-based workflows) are time-consuming and labor-
intensive, while existing computational models suffer from three key limitations: over-
reliance on manually designed features, support for only single PTM types, and poor
interpretability. To address these challenges, this study focused on constructing a
species-specific PTM dataset and developing an optimized prediction model, with key
findings and contributions summarized as follows.

First, this study established a high-quality, standardized Paeonia lactiflora PTM site
dataset, filling the gap of scarce species-specific PTM research resources. Using protein
sequences retrieved from the Traditional Chinese Medicine Systems Pharmacology
Database (TCMSP) as the original data source, we employed a sliding window method
(derived from Chou's formula) to cleave full-length proteins into short peptide
fragments. The window size was adjusted in 20 equal steps (corresponding to sequence
lengths of 3-41 amino acid residues), yielding 1080 positive samples (peptides
containing PTM sites) and 1976 negative samples (peptides centered on non-PTM
adjacent residues). This dataset not only provides a reliable benchmark for
subsequent Paeonia lactiflora PTM site prediction studies but also offers a replicable
framework for dataset construction in other medicinal plants.

Second, we proposed a Transformer-based PTM site prediction model that addresses
the inherent limitations of existing computational methods. The model integrates two
core embedding strategies: word embeddings (to capture the semantic and chemical
properties of amino acids) and positional embeddings (to encode sequence order
information, compensating for the Transformer’s lack of intrinsic sequence perception).
Its multi-head self-attention mechanism enables efficient modeling of long-range
interactions between amino acid residues, while the fusion of stacked BiLSTM and
Transformer encoder modules enhances the capture of both local and global sequence
dependencies. An adaptive max-pooling layer further converts variable-length
sequence embeddings into fixed-size feature vectors, ensuring the model’s stability in
practical applications.

Third, systematic experiments validated the superiority and robustness of the
proposed model. Through 10-fold cross-validation across window sizes (3—41 amino
acid residues), we identified 31 amino acids as the optimal window size: at this length,
the model achieved peak performance with an accuracy (Acc) of 92.24%, sensitivity
(Sn) of 88.01%, specificity (Sp) of 91.51%, Matthews correlation coefficient (MCC) of
78.93%, and F1 score of 86.46%. Comparative analysis with baseline models
confirmed its advantages: it outperformed traditional machine learning models (SVM,
RF) by a large margin (e.g., Acc of 92.24% vs. 49.67% for SVM and 51.47% for RF)
and surpassed deep learning counterparts (LSTM, CNN) in key metrics such as MCC
and Acc. Additionally, when compared with alternative encoding strategies (One-
hot+Transformer, ProtT5+Transformer), the proposed model maintained superior



performance, verifying the rationality of its feature representation and architectural
design.

This study makes two distinct contributions to the field of PTM research in medicinal
plants. On the data front, the constructed Paeonia lactiflora PTM dataset provides a
standardized foundation for exploring the molecular mechanisms by which PTMs
regulate the plant’s medicinal properties. On the methodological front, the
Transformer-based model overcomes the limitations of existing computational tools,
offering an efficient and stable solution for PTM site prediction in Paeonia lactiflora.

Despite these achievements, this study has room for improvement. Future work will
focus on three directions: (1) expanding the dataset to include more PTM types (e.g.,
phosphorylation, glycosylation) and larger sample sizes to enhance the model’s
generalization ability; (2) integrating structural features (e.g., protein 3D structures
predicted by AlphaFold 2) with sequence information to further improve predictive
accuracy; and (3) validating the model’s performance on PTM sites of other medicinal
plants to confirm its cross-species applicability, thereby promoting broader progress in
PTM research for traditional Chinese medicine.
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