
 

 

 

2025 International Conference on Applied Intelligence 

November 6-9, Nanning, China 

http://www.icai.org.cn/2025/index.php 

 

 

Optimization and Validation of Transformer-Based PTM 

Site Prediction Model for Paeonia lactiflora 

Kai Xiao1, and Wenzheng Bao2.3  

1 School of Information Science, University of Jinan, Jinan, China, 250022 
2 Institute for Regenerative Medicine, Medical Innovation Center and State Key 

Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji 

University, Shanghai 200123, P. R. China 
3 Xuzhou University of Technology, Xuzhou, China, 221018 

Abstract. Post-translational modifications (PTMs) significantly regulate peony’s 

growth, stress resistance, and biosynthesis of active pharmaceutical ingredients. 

However, traditional experimental methods for peony PTM site identification are 

cumbersome and inefficient; existing computational models are further limited 

by reliance on manual features, single modification type support, and poor 

interpretability—failing to meet precise identification needs.To address this, we 

first built a peony PTM site dataset: retrieving peony proteins from TCMSP, 

truncating sequences via sliding window to generate 1080 positive samples and 

1976 negative sample, with sequence lengths of 3–41 amino acid residues.We 

then used the Transformer model for prediction: it fuses word vectors and 

position vectors  for initial sequence representation, while its multi-head self-

attention captures long-range residue interactions to explore PTM site 

patterns.10-fold cross-validation showed optimal performance at a sliding 

window length of 31; key metrics (accuracy, MCC, F1) significantly 

outperformed existing models, validating the approach’s effectiveness for peony 

PTM site identification.  
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1 Introduction 

Paeonia lactiflora is a core herbaceous species in traditional Chinese medicine. It 

contains active components such as paeoniflorin and exhibits diverse pharmacological 

effects, including nourishing blood to regulate menstruation, astringing yin to reduce 

sweating, soothing the liver to alleviate pain, and suppressing hyperactivity of liver-

yang. The proteins of Paeonia lactiflora regulate biological processes through post-

translational modification (PTM) mechanisms [1-3]: specifically, phosphorylation 

mediates signal transduction and cell cycle regulation, glycosylation promotes protein 

folding and immune recognition, acetylation governs reproductive development and 

metabolic enzyme activity, and methylation regulates growth stage transition and 

biosynthesis of medicinal components [4-6]. These PTM mechanisms act 



 

 

synergistically, exerting a profound impact on the growth, disease resistance, and 

medicinal quality of Paeonia lactiflora, while also laying a molecular foundation for 

elucidating its pharmacological effects [7]. Therefore, accurate identification of PTM 

sites is crucial for exploring the functional mechanisms underlying the pharmacological 

activities of Paeonia lactiflora. 

Traditional experimental techniques have established a comprehensive system for 

PTM site identification. Centered on liquid chromatography-tandem mass spectrometry 

(LC-MS/MS [8,9]), this system integrates high-resolution mass spectrometry and 

fragmentation techniques (e.g., collision-induced dissociation, CID [10]; electron 

transfer dissociation, ETD [10]), enabling precise localization of modification sites. 

Meanwhile, complementary approaches such as antibody affinity enrichment (e.g., 

phosphorylation antibodies [11]), chemical probe labeling (e.g., click chemistry [12]), 

and selective enrichment strategies (e.g., immobilized metal ion affinity 

chromatography, IMAC; titanium dioxide, TiO₂ [13]) significantly improve the 

detection efficiency of low-abundance modified peptides. Two-dimensional gel 

electrophoresis (2D-PAGE [14]) can reveal differences between modified proteins; 

mutant construction and in vitro enzymatic reactions validate functional modification 

sites; and hydrogen/deuterium exchange mass spectrometry (HDX-MS [15]) assists in 

analyzing the impact of modifications on protein structure. These methods cover the 

entire workflow from enrichment and separation to verification and structural analysis, 

ensuring the accuracy and comprehensiveness of PTM site identification. However, 

such methods are generally time-consuming and labor-intensive. 

To overcome these limitations, computational methods have emerged as important 

alternatives. Previous studies have made progress in predicting protein modification 

sites using computational approaches, such as the prediction of protein acetylation and 

lysine 2-hydroxyisobutyrylation sites [16,17]. With the development of machine 

learning and deep learning, more PTM site prediction models have been developed: for 

example, tools for predicting S-nitrosylation (SNO) sites include GPS-SNO, SNOSite, 

and iSNOPSeAAC [18-20]. Among these, SNOSID developed by Hao et al. [21] is 

likely the first computational tool of this type; GPS-SNO is built based on the GPS 3.0 

algorithm; and iSNO-PseAAC developed by Xu et al. achieves prediction by 

representing protein sequences through pseudo-amino acid composition. In terms of 

lysine crotonylation (Kla) site prediction, FSL-Kla developed by Jiang et al. [22] uses 

343 Kla sites from 3 species as training data, encodes sequences by combining amino 

acid composition features and structural features, and then integrates deep learning 

models via an ensemble method (note: lysine crotonylation is associated with diseases 

such as colon cancer and acute kidney injury). DeepKla proposed by Lv et al. [23] 

adopts a convolutional neural network-bi-directional gated recurrent unit-attention 

(CNN-BiGRU-attention) mechanism, specifically designed to predict Kla sites in rice. 

In addition, TransPTM developed by Meng et al. [24] predicts non-histone acetylation 

sites based on a Transformer network; Pokharel et al. improved the protein language 

model (PLM [25]) to enhance the performance of succinylation site prediction; PTM-

CGGMS developed by Li et al. [26] optimizes prediction results through multi-

granularity structure and multi-scale sequence representation; and Liu et al. improved 
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the accuracy of lactylation site prediction by combining structural features predicted by 

AlphaFold 2 [27] with sequence information [28]. 

In 2016, Qiu et al. proposed iPTM-mLys [29], the first computational method 

capable of identifying four types of lysine PTM sites (acetylation, crotonylation, 

methylation, and succinylation). It adopts a four-step workflow and uses simple 

undersampling to address data imbalance. Subsequent methods such as predML-Site, 

mLysPTMpred, and iMul-kite [30-32] have improved upon iPTM-mLys by optimizing 

sampling schemes and single-label classification algorithms. CNN+SGT and 

MLysPRED [33,34] extract additional sequence features and directly employ multi-

label classification algorithms (e.g., CNN, MLKNN) for prediction, also using 

sampling to resolve data imbalance. RMTLysPTM developed by Chen Lei et al. [35] is 

another multi-label classification model that can identify the aforementioned four types 

of lysine PTM sites. 

Despite the progress made by these methods, limitations remain: first, most models 

rely on manually designed feature extraction techniques, which struggle to capture 

complex sequence relationships, leading to an incomplete understanding of protein 

sequences; second, most models target only a single PTM type or specific lysine PTM 

sites, lacking a universal model applicable to diverse protein sequences. 

To address these shortcomings, this paper proposes a novel universal site prediction 

framework for identifying sites in protein sequences. Figure 1 illustrates the data 

preparation process, including data collection, generating positive and negative 

samples. Figure 3 illustrates the construction of the site prediction model. First, we 

transform the amino acid sequence into a numerical feature representation by 

combining word embeddings and position embeddings, which more comprehensively 

encodes amino acid composition and sequence order. The sequence embeddings are 

then processed through a Transformer architecture, which captures both local and 

global dependencies within the sequence. This approach more richly represents the 

underlying biological context and enables the model to capture the complex interactions 

between different feature representations. The model achieved the following 

performance in 10-fold cross-validation: accuracy (Acc) of 92%, sensitivity (Sn) of 

88%, specificity (Sp) of 92%, Matthews correlation coefficient (MCC) of 91, and F1 

score of 86.45. These results demonstrate that the proposed model is a stable and 

efficient model for predicting post-translational modification sites in peony. 

2 Method and material 

2.1 Dataset Construction 

Post-translational modification (PTM) sites in protein sequences are scattered, which 

poses considerable challenges to directly retrieving PTM site information of Paeonia 

lactiflora sequences from existing databases. To construct a high-quality research 

dataset (see Figure 1), we used the protein sequences from the Paeonia 

lactiflora sequence database within the Traditional Chinese Medicine Systems 



 

 

Pharmacology Database and Analysis Platform (TCMSP) as the original data source. 

The specific construction process is as follows: 

First, the target protein sequences were batch-downloaded from this database; 

subsequently, the complete protein sequences were cleaved into short peptide 

sequences, and the length of the cleaved short peptides was set to 2θ+1 (where θ is an 

integer, used as a sequence index identifier). This length setting method is derived from 

Chou's formula [36], which enables the standardized unification of different short 

peptide sequence lengths. In this study, the number "0" represents the target amino acid 

in the short peptide, and the relevant short peptide sequences can be described by the 

following equation: 

                       (1) 

In this equation, "0" corresponds to the amino acid residue at the central position of 

the peptide sequence; "As" represents the amino acids adjacent to the lysine (K)-site; 

"A-θ" denotes the θ-th amino acid residue upstream of the central amino acid, and 

"A+θ" denotes the θ-th amino acid residue downstream of the central amino acid. 

In terms of sample classification, we defined short peptide sequences containing 

PTM sites as positive samples, and short peptide sequences centered on residues 

adjacent to PTM sites as negative samples. To investigate the impact of variations in 

window size on subsequent analysis performance, we performed 20 equal-step gradient 

adjustments of the θ value from 1 to 20 [37]. After the above series of processes, 1080 

positive samples and 1976 negative samples were finally obtained, completing the 

dataset construction. 

 

 

Figure 1. Workflow of the dataset construction 

2.2 Amino acid encoding 

When processing non-histone sequence data, One-hot Encoding extracts features by 

converting each amino acid in the protein sequence into a 20-dimensional vector, where 

this dimension setting corresponds to the 20 natural amino acids present in organisms. 

The choice of this encoding method is mainly based on two considerations: first, as 

verified in the feature representation of biological sequences such as proteins [38] and 

RNA [39], One-hot Encoding is direct and effective, and can intuitively reflect the 

category differences of amino acids; second, in early studies on protein modification 

site prediction, One-hot Encoding was often used as the baseline encoding scheme for 
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amino acid chains. For example, MusiteDeep, a tool with high citation frequency in this 

field [40], uses it as the core encoding method. Therefore, this study also adopts One-

hot Encoding to represent peptide chain sequences. The specific encoding rule is: each 

of the 20 different amino acids is mapped to a 20-dimensional binary vector containing 

only 0s and 1s, where only the dimension corresponding to the amino acid takes the 

value of 1, and the remaining dimensions take the value of 0. Taking alanine (A) and 

lysine (K) as examples, the former is encoded as (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0), and the latter is encoded as (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0). For peptide chain sequences with a window size set to 2θ+1 (where θ takes values 

of 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30), they can be converted into feature vectors 

with a dimension of 20×(2θ+1) after One-hot Encoding processing, and the vector 

dimension is adjusted accordingly with the change of window size. 

As the fundamental form of input embedding [41], Word Embedding mainly 

functions to convert each amino acid residue in the peptide chain into a low-

dimensional dense vector representation, so as to capture the potential correlation 

information between residues. In the Transformer model architecture, the word 

embedding layer usually exists in the form of a trainable matrix: for each "token" (i.e., 

amino acid residue) in the input sequence, the corresponding word vector is retrieved 

from this matrix through a table-lookup operation, and the parameters of this matrix are 

continuously optimized according to task requirements during the model training 

process. However, Word Embedding itself cannot convey the positional information of 

each residue in the sequence [42]—since the Transformer model only relies on the 

attention mechanism for feature interaction and lacks the inherent sequence order 

perception ability of Recurrent Neural Networks (RNNs), using only Word Embedding 

will make the model unable to distinguish the relative positional differences of residues 

in the sequence. Therefore, positional embedding must be added on the basis of Word 

Embedding: by appending a position vector related to the sequence position to each 

input token, the model can accurately perceive the positional information of each 

residue in the sequence, thereby understanding the sequential structural characteristics 

of the peptide chain. 

In recent years, Language Models (LMs) have attracted wide attention because they 

can obtain contextualized embeddings from large-scale unlabeled language datasets, 

rather than static and context-insensitive word embeddings. This technology has now 

been extended to the field of protein research, forming protein Language Models 

(pLMs) [43]. Benefiting from the massive resources of protein sequence databases, 

researchers have developed a variety of pLMs. These models can mine deep feature 

information of protein sequences from the databases [44] and transfer it to downstream 

tasks such as protein property prediction and modification site identification, and have 

shown better ability in understanding sequence relationships compared with traditional 

encoding methods. In this study, the encoder output of the pre-trained model ProtT5-

XL-U50 was selected as the source of embedding features [45]. This model is a protein 

language model based on the Transformer architecture, containing 3 billion parameters, 

and its training process is divided into two stages: the initial training stage uses the "Big 

Fantastic Database (BFD)" as the training set, which covers 65 million protein families, 

and these families are classified and annotated through Multiple Sequence Alignments 



 

 

(MSA) [46] and Hidden Markov Models [47]; the fine-tuning stage is carried out on 

the UniRef50 database, which provides clustered sequence data from UniProtKB and 

selected UniParc records, and can further optimize the accuracy of the model in 

capturing protein sequence features. After inputting the peptide chain sequences into 

ProtT5-XL-U50, the encoder output of the model is the embedding feature of the 

peptide chain, where each amino acid residue corresponds to a 1024-dimensional 

embedding vector. This embedding feature is not only position-dependent and can 

reflect the positional differences of residues in the sequence, but also can effectively 

capture the contextual correlation features of each residue, providing more abundant 

sequence information support for subsequent modification site prediction tasks. 

 

Figure 2. Amino acid encoding. (A)One-hot encoding,(B) Word embedding ,(C) Embeddings of 

ProtT5. 

2.3 Attention 

The self-attention mechanism captures the internal dependencies of a sequence by 

calculating the correlations between elements within the sequence[49]. Its core idea is 

to map the input sequence into three matrices: Query, Key, and Value. The weights of 

the value are determined by the similarity between the Query and the Key. The specific 

calculation process is as follows: 

 
T

k

QK
Attention( Q,K ,V ) soft max( )V

d
=                (2) 

Here, d is the dimension of the Key, kd which is used to scale the dot-product 

value to avoid gradient vanishing. This calculation method enables the model to 

adaptively focus on the important parts of the sequence. 

The Transformer introduces the multi-head attention mechanism to further enhance 

the model's expressive ability. Multi-head attention projects the input into multiple sub-
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spaces, calculates the attention independently in each sub-space, and finally 

concatenates the outputs of each head: 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂             (3) 

 ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝑄𝑊𝑖

𝐾 , 𝑄𝑊𝑖
𝑉)                  (4) 

Where h is the number of attention heads, 
Q

iW , 
K

iW , 
V

iW  and 
OW  are learnable 

parameter matrices. 

In addition to the attention sub - layer, each layer of the Transformer block contains 

a fully - connected feed - forward network, which is applied individually and identically 

to each position. It consists of two linear transformations with a ReLU activation in 

between. 

                   (5) 

2.4 Framework of the proposed model 

We employed a combination of word and positional embeddings to convert protein 

sequences into vector representations. Each amino acid in the protein sequence is 

mapped to a unique numerical index based on a predefined amino acid vocabulary. For 

example, amino acids such as alanine (A), cysteine (C), and aspartic acid (D) are 

mapped to indices 3, 4, and 5, respectively. Mathematically, each amino acid  in the 

sequence is represented by its corresponding index, where the index  is derived 

from the vocabulary: 

                          (6) 

Positional embeddings are used to encode the positional information of each amino 

acid, enabling the model to capture the sequence order within the protein chain. The 

positional embedding of the i-th amino acid is denoted as , which is a learnable 

embedding matrix: 

                     （7） 

The final vector representation  is obtained by adding its word embedding and 

positional embedding: 

                           （8） 

Once the protein sequence is converted into an embedding matrix H ∈ , this 

matrix H serves as the input to a deep learning model that is specifically designed to 

capture both local and global dependencies within the sequence.  

First, the embedding matrix H is processed through the stacked_BiLSTM layer. The 

LSTM layer is designed to hierarchically capture dependencies along the sequence in 



 

 

both the forward and backward directions, enabling the model to learn contextual 

information from the preceding and following amino acids. The BiLSTM layer 

processes the input H to generate an enhanced sequence representation : 

                    （9） 

where ∈  is the output of the LSTM layer. This representation 

integrates the context of each amino acid from both directions. Then, H is fed into a 

series of Transformer encoder modules. Each Transformer block consists of multi-head 

self-attention and feed-forward operations, enabling the model to capture complex 

long-range dependencies between amino acids. Mathematically, the Transformer block 

processes the input as follows: 

                    （10） 

where, ∈  represents the refined sequence embedding after passing 

through N Transformer blocks. The multi-head self-attention mechanism in the 

Transformer block allows the model to focus on different parts of the sequence 

simultaneously, thereby enhancing its ability to model the global relationships between 

amino acids. Finally, to convert the variable-length sequence information into a fixed-

size representation, an adaptive max-pooling layer is applied to the output of the 

Transformer block. This operation reduces the sequence dimension, thus producing a 

compressed feature vector. 

 

 

Figure 3. The overall architecture of the model 

2.5 Model evaluation 

In this study, we regarded the protein sequences containing post-translational 

modification sites as positive samples, and those without such sites as negative samples. 

During the prediction process, we refer to the correct identification of positive samples 

as true positives (TP), and the correct identification of negative samples as true 

negatives (TN). We label the misclassification of a negative sample as a positive one 

as a false positive (FP), and the misclassification of a positive sample as a negative one 

as a false negative (FN). We averaged all performance indicators and reported the 

results. We used four indicators, namely accuracy, sensitivity, precision, and the 
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Matthew Correlation Coefficient (MCC), to evaluate the performance, and we set the 

decision probability threshold at 0.5. 

                                               Accuracy =
TP+TN

TP+TN+FP+FN
                                                   （11）

                                                     Sensitivity =
TP

TP+FN
                                                                （12）

                                                     Specificity =
TN

TN+FP
                                                                （13）

                                                 F1score = 2 ×
TP

2TP+FP+FN
                                                    （14）

                                    MCC =
TP×TN−FP×FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
                         （15）

. 

3 Results and discussions 

3.1 Window size selection 

During modeling, many studies employ a fixed local sliding window. However, it's 

important to emphasize that different sliding windows can produce different prediction 

results. Optimizing the window size can significantly assist feature selection and 

improve prediction performance. To determine the optimal window size, we 

experimented with a range of window sizes: 3, 5, 7, ..., 37, 39, and 41. As shown in 

Figure 4, the average MCC across different window sizes indicates that model 

performance peaks at a window size of 31, as the length of the protein sequence 

changes. Generally, we expect longer sequences to contain more semantic and 

contextual information. We hypothesize that this may be because when the sequence is 

too short, the model is unable to learn its intrinsic information, while when the sequence 

is too long, this information is diluted. Therefore, in subsequent analyses, we selected 

31 as the optimized window size for acetylated residues. 

 

Figure 4. Indicators of stackedbilstm_transformer on the training dataset for sliding window size 

range 



 

 

3.2 Performance evaluation of model 

Table 1. Performance comparison of transformer with baseline 

 Acc(%) Sn(%) sp(%) Mcc(%) F1(%) 

tranformer 92.24% 88.01% 91.51% 78.93% 86.46% 

lstm 89.62% 88.44% 90.31% 77.89% 87.34% 

CNN 91.26% 81.68% 96.51% 78.59% 82.54% 

Svm 49.67% 40.52% 55.06% -4.29% 50.31% 

rf 51.47% 3.96% 79.48% -2.27% 44.47% 

Comparative analysis can provide insights into the strengths and weaknesses of 

different methods and guide future research. Therefore, we further employed five 

different classifiers for ten-fold cross-validation, including two baseline machine 

learning models (RF and SVM) and two baseline deep learning models (CNN and 

LSTM), to compare the predictive performance of our model. We used PseAAC as the 

data input for the machine learning models. Table 1 lists the outputs of all five methods 

on the dataset, including ACC, SN, SP, F1 score, and MCC value. Our method 

significantly outperformed the other models in terms of ACC, MCC, and F1 value. 

Transformer achieved ACC, SN, SP, MCC, and F1 values of 92%, 88%, 92%, 91%, 

and 86%, respectively. These results demonstrate that our model is stable and performs 

well, and can serve as an effective model for predicting post-translational modification 

sites in peony. 

To further demonstrate the advantages of our model, we tested it on a validation set 

along with several other encoding methods that have performed well in PTM site 

prediction. The first model was a one-hot plus Transformer model, and the second was 

a Prott5 plus Transformer model. We then used the hidden layer vectors from the 

Transformer as features for machine learning classification and observed the results. 

Table 2. Performance comparison of tranformer with other encoding methods  

 Acc sn sp MCC F1 

transformer 85.57% 83.37% 88.83% 73.51% 83.38% 

one-hot+transformer 64.78% 0.62% 99.66% 2.05% 1.22% 

prott5+tranformer 61.42% 28.21% 73.51% 23.45% 45.65% 

RF 84.35% 82.88% 89.34% 72.87% 82.89% 

SVM 83.13% 81.98% 89.51% 72.32% 82.49% 

Xgboost 82.91% 80.07% 87.97% 72.11% 82.60% 

Ensemble+Learning 81.13% 80.28% 89.34% 72.36% 82.54% 

In the PTM site prediction task, Transformer and Random Forest (RF) performed 

best, with accuracy (Acc) exceeding 87% and balanced sensitivity (sn ≈ 85%) and 

specificity (sp ≈ 89%). The Prott5 series of models performed poorly due to issues such 

as feature encoding and data imbalance. Traditional machine learning models (RF, 

SVM, and Xgboost) outperformed most deep learning models due to their robustness. 
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4 Conclusions 

Post-translational modifications (PTMs) are critical regulators of biological processes 

in Paeonia lactiflora—a core herbaceous species in traditional Chinese medicine—

governing its growth, disease resistance, and biosynthesis of medicinal components 

such as paeoniflorin. However, traditional experimental methods for PTM site 

identification (e.g., LC-MS/MS-based workflows) are time-consuming and labor-

intensive, while existing computational models suffer from three key limitations: over-

reliance on manually designed features, support for only single PTM types, and poor 

interpretability. To address these challenges, this study focused on constructing a 

species-specific PTM dataset and developing an optimized prediction model, with key 

findings and contributions summarized as follows. 

First, this study established a high-quality, standardized Paeonia lactiflora PTM site 

dataset, filling the gap of scarce species-specific PTM research resources. Using protein 

sequences retrieved from the Traditional Chinese Medicine Systems Pharmacology 

Database (TCMSP) as the original data source, we employed a sliding window method 

(derived from Chou's formula) to cleave full-length proteins into short peptide 

fragments. The window size was adjusted in 20 equal steps (corresponding to sequence 

lengths of 3–41 amino acid residues), yielding 1080 positive samples (peptides 

containing PTM sites) and 1976 negative samples (peptides centered on non-PTM 

adjacent residues). This dataset not only provides a reliable benchmark for 

subsequent Paeonia lactiflora PTM site prediction studies but also offers a replicable 

framework for dataset construction in other medicinal plants. 

Second, we proposed a Transformer-based PTM site prediction model that addresses 

the inherent limitations of existing computational methods. The model integrates two 

core embedding strategies: word embeddings (to capture the semantic and chemical 

properties of amino acids) and positional embeddings (to encode sequence order 

information, compensating for the Transformer’s lack of intrinsic sequence perception). 

Its multi-head self-attention mechanism enables efficient modeling of long-range 

interactions between amino acid residues, while the fusion of stacked BiLSTM and 

Transformer encoder modules enhances the capture of both local and global sequence 

dependencies. An adaptive max-pooling layer further converts variable-length 

sequence embeddings into fixed-size feature vectors, ensuring the model’s stability in 

practical applications. 

Third, systematic experiments validated the superiority and robustness of the 

proposed model. Through 10-fold cross-validation across window sizes (3–41 amino 

acid residues), we identified 31 amino acids as the optimal window size: at this length, 

the model achieved peak performance with an accuracy (Acc) of 92.24%, sensitivity 

(Sn) of 88.01%, specificity (Sp) of 91.51%, Matthews correlation coefficient (MCC) of 

78.93%, and F1 score of 86.46%. Comparative analysis with baseline models 

confirmed its advantages: it outperformed traditional machine learning models (SVM, 

RF) by a large margin (e.g., Acc of 92.24% vs. 49.67% for SVM and 51.47% for RF) 

and surpassed deep learning counterparts (LSTM, CNN) in key metrics such as MCC 

and Acc. Additionally, when compared with alternative encoding strategies (One-

hot+Transformer, ProtT5+Transformer), the proposed model maintained superior 



 

 

performance, verifying the rationality of its feature representation and architectural 

design. 

This study makes two distinct contributions to the field of PTM research in medicinal 

plants. On the data front, the constructed Paeonia lactiflora PTM dataset provides a 

standardized foundation for exploring the molecular mechanisms by which PTMs 

regulate the plant’s medicinal properties. On the methodological front, the 

Transformer-based model overcomes the limitations of existing computational tools, 

offering an efficient and stable solution for PTM site prediction in Paeonia lactiflora. 

Despite these achievements, this study has room for improvement. Future work will 

focus on three directions: (1) expanding the dataset to include more PTM types (e.g., 

phosphorylation, glycosylation) and larger sample sizes to enhance the model’s 

generalization ability; (2) integrating structural features (e.g., protein 3D structures 

predicted by AlphaFold 2) with sequence information to further improve predictive 

accuracy; and (3) validating the model’s performance on PTM sites of other medicinal 

plants to confirm its cross-species applicability, thereby promoting broader progress in 

PTM research for traditional Chinese medicine. 
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