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Abstract. Recently, group link prediction has received increasing atten-
tion due to its important role in analyzing relationships between individ-
uals and groups. However, most existing group link prediction methods
emphasize static settings or only make cursory exploitation of historical
information, so they fail to obtain good performance in dynamic applica-
tions. To this end, we attempt to solve the group link prediction problem
in continuous-time dynamic scenes with fine-grained temporal informa-
tion. We propose a novel continuous-time group link prediction method
CTGLP to capture the patterns of future link formation between indi-
viduals and groups. A new graph neural network CTGNN is presented
to learn the latent representations of individuals by biasedly aggregat-
ing neighborhood information. Moreover, we design an importance-based
group modeling function to model the embedding of a group based on its
known members. CTGLP eventually learns a probability distribution and
predicts the link target. Experimental results on various datasets with
and without unseen nodes show that CTGLP outperforms the state-of-
the-art methods by 13.4% and 13.2% on average.

Keywords: Group Link Prediction · Continuous-Time Interaction Net-
work · Graph Neural Network (GNN).

1 Introduction

Link prediction, aiming to predict relationships between pairs of entities, has
received wide attention as the increasing importance of network data [11, 14,
17]. Since it helps us understand the inherent characteristics and evolutionary
mechanisms of real-world networks, link prediction has been widely applied in
many practical applications, such as knowledge graph completion [22], biochem-
ical reaction reconstruction [18] and content recommendation [13]. Almost all
existing link prediction methods focus only on relationships between pairs of en-
tities [27], but the analysis of relationships between individuals and groups (i.e.,
group link prediction) also deserves attention since the patterns of relationship
formation are not exclusively limited to a pair of entities [24, 23].

Nevertheless, in many real scenarios, our focus is on the prediction of fu-
ture relationships between individuals and groups, such as organizers of hobby
clubs expecting to invite target participants to their future events. The task
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of predicting future relationships between individuals and groups is known as
continuous-time group link prediction. Despite recent efforts, three deficiencies
remain in addressing continuous-time group link prediction problem with fine-
grained temporal information. First, previous methods rarely discuss future links
between individuals and groups, but tend to mine missing ones. The assumption
that all members are connected to the group at the same time makes the fine-
grained raw temporal information missing. Second, individuals are assumed to
be isolated from each other, which neglects the neighborhood information that
laterally depicts dynamic link preferences. Third, equal treatment of all group
members leads to ignoring the diversity of members’ importance in groups.

In this paper, we propose CTGLP, a novel continuous-time group link pre-
diction method, to infer future relationships between individuals and groups in
continuous-time dynamic networks with fine-grained temporal information. We
first present CTGNN, a new graph neural network (GNN) with a continuous-
time neighbor sampling strategy, to learn the embeddings of individuals, where a
novel aggregation function is designed to jointly capture neighborhood features
and fine-grained temporal information. Second, an importance-based group mod-
eling function is provided to model the latent representation of a group based
on the embeddings of existing members. Finally, CTGLP outputs conditional
probability distributions by using the embeddings of groups and finds out the
link targets.

The contributions of this paper are summarized as follows.
1.We propose a novel continuous-time group link prediction method CTGLP,

which learns the patterns of link formation between individuals and groups in
continuous-time dynamic networks with fine-grained temporal information and
predicts the future links between individuals and groups.

2.We propose a new graph neural network CTGNN to learn the representa-
tions of individuals. A continuous-time neighbor sampling strategy is designed
to control the computational consumption, and an aggregation function CTAgg
is presented to bias the aggregation weights of the features of sampled neighbors.

3.We propose an importance-based group modeling function that models the
groups into the latent space by measuring the importance of each member to
the group based on the time of link formation.

4.Extensive experiments on various datasets with and without unseen nodes
are conducted to validate CTGLP and the experimental results demonstrate
that CTGLP outperforms the baselines by a significant margin, with average
gains of 13.4% and 13.2%.

2 Related Work

2.1 Link prediction

Based on the network structural similarity, heuristic link prediction methods,
such as Common Neighbors (CN) [12] and Adamic-Adar (AA) [1], assume that
edges are more likely to exist between nodes with higher similarity scores. How-
ever, they only exploit shallow topological features of networks and lack general
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applicability. Besides, embedding techniques have also shown great potential in
link prediction. Some embedding algorithms, such as DeepWalk [19], node2vec
[6], HTNE [28], etc., calculate the possibility of generating links between nodes
using the embeddings. Nevertheless, some studies [16, 4] have demonstrated that
embedding models may be inferior to well-designed mechanistic methods. Re-
cently, some well-designed methods have shown their superiority in link pre-
diction. TDGNN [21] leverages temporal information in dynamic networks to
achieve continuous-time link prediction. GNMFCA [15] predicts future links us-
ing global and local information of temporal networks. GC-LSTM [3] applies an
embedded Long Short-Term Memory (LSTM) of Graph Convolutional Network
to perform dynamic link prediction. Dyngraph2vec [5] integrates longer-term
temporal information to learn node embeddings and predict future links. LP-
ROBIN [2] utilizes incremental embedding to capture temporal dynamics and
predict new connections. Despite the great success of link prediction, existing
link prediction methods cannot be directly applied to group link prediction fo-
cusing on the relationships between individuals and groups because they only
concentrate on the relationships between node pairs.

2.2 Group link prediction

Due to the inevitable limitations of link prediction methods applied to group
link prediction, recent attempts have been made to solve the group link predic-
tion problem. An LSTM-based model [24] is elaborately designed to address this
problem. Feeding the sum of random vectors of members in a series of groups
into LSTM, this model learns the embedding vectors of members and trains a
classifier to predict the target. Despite the input of a series of group vectors, it
ignores the neighborhood information that potentially expresses link preferences
and may introduce information noise. Subsequently, a CVAE-based model [23]
is proposed to estimate the probability of link existence by tuning the model pa-
rameters in a supervised manner. However, the absence of historical interaction
information between individuals and groups prevents the model from addressing
the problem of continuous-time group link prediction well. To further leverage
historical information, CVAEH [23] additionally introduces a vector that encodes
the previous groups. Nevertheless, the rough encoding of historical group infor-
mation is still not a good solution. Summarizing existing group link prediction
methods, they do not consider the fine-grained historical group information and
fail to generalize to unseen data. Therefore, how to infer the future relationships
between individuals and groups more effectively remains an open question.

3 Preliminaries

3.1 Definitions and Problem

Definition 1 (Continuous-time interaction network). A continuous-time
interaction network G = (V,ET , T ) consists of node set V , edge set ET and
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time set T , where vi ∈ V denotes the node in the network. etij ∈ ET denotes the
edge/interaction between node vi and node vj at time t ∈ T .

Definition 2 (Group). Individuals jointly participating in a certain event are
denoted as a group, i.e., si = {vt1i,1, v

t2
i,2, . . . , v

tk
i,k} ⊆ V , where i denotes the index

of a group. vtki,k denotes the k-th member node of group si, where tk denotes the
link time and k ≥ 2 indicates that the number of members in a group should not
be less than two. si ⊆ V indicates that the members of group si are from node
set V .

Problem 1 (Continuous-time group link prediction). Given a continuous-time in-
teraction network G = (V,ET , T ), there is a node set V = {v1, v2, . . . , vN} with
N nodes and a group set S = {s1, s2, . . . , sM} with M groups. For a group
si = {vt1i,1, v

t2
i,2, . . . , v

tk
i,k} ⊆ V , max(t1, t2, . . . , tk) ≤ t with k members observed

at current time t, the purpose of continuous-time group link prediction is to
predict the target vt

′

i,k+1 ∈ V \si that is most likely to be linked to group si at
the future time t′(t′ > t) based on the k known members in group si. Formally,
it is defined as:

vt
′

i,k+1 = F(vt1i,1, vt2i,2, . . . , vtki,k), (1)

where F is the continuous-time group link prediction function. {vt1i,1, v
t2
i,2, . . . , v

tk
i,k}

denotes the k known members of group si observed at current time t.

4 Methodology

Figure 1 shows the architecture of CTGLP. It consists of three main components:
1) Individual Representation Learning, 2) Importance-based Group Modeling
and 3) Prediction. The Individual Representation Learning component aims to
learn the latent embeddings of individuals using our proposed CTGNN. The
Importance-based Group Modeling component is to model the latent represen-
tations of groups. The Prediction component aims to predict the targets.

4.1 Individual Representation Learning

Given a continuous-time interaction network G = {V,ET , T} with the ini-
tial random embeddings of nodes X = {x1,x2, . . . ,xN},xi ∈ RD, individual
representation learning part obtains the final latent embeddings of members
Z = {z1, z2, . . . , zN}, zi ∈ Rd using our proposed CTGNN, where D and d are
dimensions.

Continuous-Time Neighbor Sampling Whereas previous GNNs simply
examine k-hop neighborhood or the sampling schemes are only applicable to
static networks [26], the sampling process in all convolutional layers of our CT-
GNN are continuous-time respected, i.e., the time of the sampled edge should be
less than that of the sampled edge of the previous layer. It can be ensured that
all sampled neighbors of the central node exist in the past with respect to the
central node, thus ensuring that all sampled neighborhood information exists



Dynamic Group Link Prediction in Continuous-Time Interaction Network 5

t8

t6

V2

t9

t4

V3

t10 t7t7

t8 t10

V4

V5V1

Continuous-Time Interaction Network

Initial Embeddings

CTGNN

V1

V2

V3

V4

V5

α5

α6

α7

α8

α9

α10

α4

α3

α2

α1

CTAgg

 

β1

β2

β3

β4

β5

Group Embedding

Individual Representation Learning Importance-based Group Modeling Prediction

Softmax

Fig. 1. The overall framework of CTGLP. CTGLP is composed of three main compo-
nents: individual representation learning, importance-based group modeling and pre-
diction.

prior to the current time during aggregation. We first define the time-limited
neighbor set ΓT (u) of node u at time T :

ΓT (u) = {(v, t) | e = (u, v, t) ∈ ET ∩ t < T }. (2)

Notably, node v may appear multiple times in ΓT (u) as multiple edges may exist
between the same pair of nodes.

Then, in one convolutional iteration, we sample a fixed number of neighbors
from ΓT (u) for node u:

Samp =

ΓT (u), |ΓT (u)| ≤ θ;

rθ(ΓT (u)), |ΓT (u)| > θ,
(3)

where rθ(·) is the random sampling operation. θ is the neighbor sampling size
and θ may be different for each layer.

Performing multiple sampling, CTGNN obtains higher-order neighbors and
reduces the number of neighbors involved in the computation. The l-order continuous-
time sampled neighbor set of node u at time T can be obtained by performing
neighbor sampling operations l times:

N̂ l
T (u) = Sampl

(
Γ l
Tl
(. . . Samp1(Γ

1
T1
(u)))

)
, (4)

where Sampl represents the sampling operation in the l-th convolutional layer.
Ti+1 < Ti for 1 ≤ i < l, and T1 = T .

Embedding Update By iteratively aggregating neighborhood features, GNNs
learn the embeddings of nodes. A simple but effective aggregation scheme is mean
operator [10, 8], which assumes that all neighbors of a central node contribute
equally to the update of its new representation. However, mean operator may
not be the optimal aggregation scheme for representation learning in continuous-
time group link prediction, since the impact of different neighbors on the central
node may vary dramatically depending on the time of link formation. Inspired



6 S. Luo et al.

by a study in event-based social networks [20], we argue that the groups users re-
cently linked to are typically more representative of their preferences than those
they linked to earlier. The manifestation of this insight in aggregation is that a
newly connected neighbor has a higher contribution to the embedding update of
the central node.

We provide an aggregation coefficient α calculated by our aggregation func-
tion CTAgg to bias the contribution of each neighbor. Given the edge time tij
between node ui and uj as well as the edge time tik between node ui and uk,
if tij > tik, the aggregation coefficient αt

ij of node uj should be greater than
the aggregation coefficient αt

ik of node uk. At the l-th layer of CTGNN, the
embedding update of node u at time t can be denoted as follows:

n(l)
u = AGG(l)({αt

uv · h(l−1)
v , v ∈ N̂ l

t (u)}), (5)

h(l)
u = σ(W(l) · COM(h(l−1)

u , n(l)
u ) +w(l)), (6)

where AGG(·) is a function that aggregates the information of sampled neighbors
and COM(·) is a function that combines information about sampled neighbor-
hoods and the pre-update information of the central node in the previous layer.
σ is a nonlinear activation. N̂ l

t (u) is the l-th hop sampled neighbor set of node
u at time t. W and w are learnable shared parameter matrices. αt

uv is the ag-
gregation coefficient of neighbor v at time t , and it can be interpreted as the
contribution of v to the embedding update of the central node u at time t. The
calculation of αt

uv is defined as:

αt
uv =

exp (tuv − t)∑
v∈N̂ l

t (u)∪u exp (tuv − t)
, (7)

where tuv is the time of the edge between nodes u and v.
After obtaining the embedding hu of node u output by the last convolu-

tion iteration, a Multiple-layer Perceptron (MLP) with activation functions is
employed to attain the final representation zu of node u:

e(1)u = σ(U(1) · hu + u(1)),

e(2)u = σ(U(2) · e(1)u + u(2)),

· · ·
zu = σ(U(j) · e(j−1)

u + u(j)),

(8)

where j is the index of neural layers. U and u are learnable parameter matrices.

4.2 Importance-based Group Modeling

The practice of previous work [24] is to sum up the vectors of all group members
as the vector of the group. While it is intuitively sound, it ignores the fact that
the influence of different members on the group may differ greatly. To this end,
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we present an importance-based group modeling strategy to represent groups
into the latent space.

We first define an importance factor β to measure the importance of each
group member. The value of the importance factor depends on the time when
members are linked to the group, i.e., more recent members have larger impor-
tance factor values as they are intuitively more in line with the group formation
trend. Formally, the importance factor of member k on group si is defined as:

βik =

1
log (T−tk)∑K

j=1
1

log (T−tj)

, (9)

where K is the number of members in group si and T is the prediction time for
group si.

Given a group si with K members (i.e., si = {vi,1, vi,2, . . . , vi,K}) and the em-
beddings of these K members (i.e., {zi,1, zi,2, . . . , zi,K}), the importance-based
group modeling part models the vectors of members as the vector mi ∈ Rs of
group si, where s is the size of the group vector. The importance-based group
modeling for group si is:

pi =

K∑
j=1

βij · zi,j , (10)

mi = C2 · σ(C1 · pi + c), (11)

where C1, C2 and c are learnable parameter matrices.

4.3 Prediction

The final outputs of the importance-based group modeling part are fed into
an MLP, and a Softmax activation function is employed to generate the link
probability distributions between candidate individuals and groups. Formally,
given the latent vector mi of group si, the prediction process is:

q
(1)
i = σ(G(1) ·mi + g(1)),

· · ·
q
(k)
i = σ(G(k) · q(k−1)

i + g(k)),

(12)

Pi = Softmax(Q · q(k)
i + q) (13)

where G, Q, g and q are learnable parameter matrices. k is the index of hidden
layers. Pi is a link probability distribution whose elements represent the con-
nection possibility between individuals and group si. The index corresponding
to the element with the largest value in Pi is the index of the target predicted
by CTGLP.
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Algorithm 1 Training of CTGLP
Input: Continuous-time interaction network G = (V,ET , T ); set of node initial
embeddings {xv,∀v ∈ V }; set of groups S = (s1, s2, . . . , sM ), si ⊂ V .
Parameter: Convolutional layer depth K; neighbor sampling size θk,
∀k ∈ {1, . . . ,K}; learnable parameters.
Output: Continuous-time group link prediction function F .
1: while model not converge do
2: for i = 1 : M do
3: for u ∈ si do
4: N̂K

T (u)← Sample-Neighbors(u,G,K, T , θ)
5: zu ← Update-Embedding(xu,xN̂K

T (u),K)
6: end for
7: mi ← Group-Modeling({βu · zu, u ∈ si})
8: Calculate link probabilities:

Pi ← Softmax(mi,G,g,Q,q)
9: Obtain the target: ui ← argmax(Pi)

10: end for
11: Update parameters by stochastic gradient descent
12: end while
13: return F

4.4 Training

Algorithm 1 shows the overall process of training. Let yi denote the one-hot
encoding of the target in the i-th training sample and Pi be the link probability
distribution output by CTGLP. Our objective function is formulated as:

L =
1

M

M∑
i=1

N∑
j=1

yij log (Pij) (14)

where M denotes the number of group samples. N denotes the number of nodes
in the node set V . yij and Pij are the j-th element of yi and Pi, respectively.

5 Experiments

5.1 Experimental Setup

Datasets. MovieLens-100K (ML100K for short) [9] and MovieLens-25M (ML25M
for short) [9] contains rating data from users on movies. CiaoDVD [7] consists
of DVD rating data. We select the rating data and regard the set of users who
rate the same item as a group and take out the last member of each group as
our prediction target. The number of members in a group are set to be 3 to 20.
To construct the datasets without unseen nodes, we remove nodes that appear
in validation and testing but not in training, and further clean the data. The
statistics of datasets are shown in Table 1.
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Datasets Nodes Edges Groups Unseen*

ML100K 755 59 118 590 42
CiaoDVD 8 714 165 598 4 040 1 195
ML25M 16 065 1 048 836 18 882 1 578

ML100Kw/o 650 22 683 510 0
CiaoDVDw/o 5 766 85 562 3 341 0
ML25Mw/o 9 998 491 704 16 494 0

* The value indicates the number of nodes that are
not presented during training.

Table 1. Statistics of two versions of the three datasets. Note that the subscript w/o
denotes the dataset without unseen nodes.

Metrics. To evaluate the performance of methods, we introduce three widely
used evaluation metrics: Hit Ratio@K, Normalized Discounted Cumulative Gain@K
and Mean Reciprocal Rank@K (denoted as HR@K, NDCG@K and MRR@K
respectively). HR@K measures the ability to find the target and emphasizes the
accuracy of prediction. NDCG@K and MRR@K measure the ability to rank
targets and emphasize the ranking of targets.

Baselines. We compare our CTGLP with the following baselines: (1) Three
group link prediction methods. LSTM-based model (LSTM for short) [24]
employs LSTM to combine the historical information of groups and outputs link
probabilities. CVAE-based model (CVAE for short) [23] uses CVAE to recon-
struct the membership of groups using a vector encoding an entire group and a
vector encoding known members. CVAEH [23] additionally introduces a vector
encoding historical information of previous groups for prediction. (2) Two neural
network-based methods. MLP [25] utilizes mini-batch gradient descent strategy
to update model parameters. GraphSAGE (GSAGE for short) [8] uses multi-
layer aggregation functions to learn representations of nodes and obtains group
vectors to make prediction. (3) Two heuristic link prediction methods. AA [1]
utilizes correlation coefficients of overlapping neighborhoods between nodes to
measure the similarity between nodes. CN [12] uses the number of common
neighbors between nodes to measure the similarity between nodes. Nodes with
higher similarity to members of a group are considered more likely to link to the
group. (4) Three network embedding methods. DeepWalk (DW for short) [19]
uses random walks to generate vectors of nodes. node2vec (n2v for short) [6]
learns node representations using biased random walks. HTNE [28] integrates
the Hawkes process and attention mechanism to learn the time-related represen-
tations of nodes. The individual-group link scores are obtained by aggregating
the similarities between individuals.



10 S. Luo et al.

Implementation details. For each dataset, we split it into 8:1:1 for train-
ing, validation and testing. We implement our CTGLP with PyTorch 1.6.0 and
adopt the SGD as the optimizer. We apply batch normalization and dropout
strategy with p = 0.5 for ML100K and CiaoDVD and p = 0.1 for ML25M. The
dimension D of initial embeddings, the dimension d of hidden states and the
dimension s of group vectors are all tested in {16, 32, 64, 128, 256, 512}. The
batch size and learning rate are searched in {32, 64, 128, 256} and {0.005, 0.01,
0.05, 0.1} respectively. Two convolutional layers are employed in CTGNN, and
the neighbor sampling sizes are empirically set to 25 and 10 respectively. For the
parameters of our method, we initialize it randomly using a uniform distribution
with values from 0 to 1. For baselines, we initialize the parameters according to
the corresponding paper.

5.2 Performance Comparison

Performance on datasets with unseen nodes. From the overall results in
Table 2, we observe that CTGLP outperforms most of the competing methods
by a comfortable margin. On ML100K, our method obtains better performance
than all baselines, especially in ranking targets. Specifically, CTGLP achieves
average gains of 7.3%, 31.9% and 43.9% in terms of HR, NDCG and MRR
scores. On CiaoDVD, CTGLP outperforms other baselines except for CVAE
when K = 10. On ML25M, our method shows its great superiority in finding and
ranking targets. In terms of three evaluation metrics, CTGLP obtains average
gains of 11.45%, 14.7% and 11.1%, respectively.

Performance on datasets without unseen nodes. From the overall re-
sults in Table 3, we can see that CTGLP always achieves the best performance or
the second-best one. On ML100Kw/o, our method is slightly worse than CVAE in
HR scores, but it brings average gains of 22.4% and 45.9% in NDCG and MRR
scores, which indicates that CTGLP can rank targets better. It is worth noting
that most methods, including CTGLP, perform worse on this dataset than on
ML100K. We argue that the removal of group members may affect the intrin-
sic nature of small dataset to a greater extent. On CiaoDVDw/o, our method
always outperforms all competing models. Specifically, in three different met-
rics, CTGLP outperforms the best comparative method by 10.1%, 26.6% and
36.8% on average. On ML25Mw/o, CTGLP is inferior to heuristic link prediction
methods AA and CN in the ability to rank targets, but it is still satisfactory
in finding targets (obtains average gain of 13.9%). Besides, task-independent
embedding-based methods perform quite poorly, indicating that they are not
suitable for continuous-time group link prediction. Compared to the perfor-
mance on ML25M, the gains obtained by the three well-designed group link
prediction methods (LSTM, CVAE and CVAEH) are much smaller than those
of our method, suggesting that the lack of fine-grained temporal information and
neighborhood features does limit the performance improvement of models.

Summaries.From the above analysis, several conclusions are drawn: (1)
Our proposed CTGLP outperforms most baselines in datasets with and without
unseen nodes, especially in finding targets. (2) Neighborhood information (the
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Method
HR@K(%) NDCG@K(%) MRR@K(%)

K=10 K=20 K=10 K=20 K=10 K=20
M

L1
00

K
LSTM 15.9 22.7 8.7 10.4 6.6 7.0
CVAE 28.8±1.5 39.0±1.7 16.1±1.4 18.6±1.4 12.3±2.2 13.0±2.3

CVAEH 23.7±1.9 32.2±1.0 12.3±1.1 14.5±0.8 8.9±1.3 9.5±1.3
MLP 14.4±1.1 26.1±1.2 6.3±1.4 9.3±1.2 4.1±1.2 4.7±1.4

GSAGE 27.1±0.7 35.6±0.4 16.2±0.4 18.3±0.4 12.9±0.6 13.5±0.5
CTGLP 30.5±0.942.4±0.521.5±0.924.4±0.818.6±0.719.4±0.7

C
ia

oD
V

D

LSTM 10.6 14.7 6.0 7.0 4.5 4.8
CVAE 21.6±0.7 27.1±0.8 11.9±0.5 13.4±0.3 9.0±0.4 9.4±0.3

CVAEH 16.1±0.8 23.5±1.9 10.0±1.1 11.9±1.3 8.2±1.1 8.7±1.2
MLP 15.2±1.5 20.5±2.6 7.2±0.6 8.6±0.8 4.8±0.5 5.2±0.4

GSAGE 17.6±0.8 24.8±0.8 8.8±0.7 10.6±0.5 6.1±0.5 6.5±0.6
CTGLP 20.8±0.6 28.7±0.7 11.7±0.4 13.7±0.2 8.8±0.7 9.4±0.8

M
L2

5M

LSTM 20.5 25.3 13.9 15.1 11.9 12.2
CVAE 22.6±2.1 26.9±2.1 16.6±1.6 17.7±1.7 14.7±1.5 15.0±1.5

CVAEH 19.4±0.8 23.4±0.6 14.3±1.1 15.3±0.8 12.7±1.0 12.9±0.8
MLP 19.6±1.4 23.4±3.1 14.4±1.5 15.4±2.0 12.8±1.6 13.1±1.8

GSAGE 27.1±0.4 31.9±0.6 17.1±0.3 18.3±0.4 14.0±0.2 14.3±0.3
CTGLP 30.0±0.735.8±0.819.6±0.421.0±0.516.3±0.616.7±0.6

Table 2. Performance of various methods on datasets with unseen nodes. Items with
the highest values are marked in bold.

features of neighbors) is helpful to enhance the model performance. (3) Task-
independent embedding-based methods are not suitable for group link prediction
directly.

6 Conclusion

In this paper, to address the dynamic group link prediction problem which con-
centrates on the future relationships between individuals and groups in continuous-
time dynamic settings, we propose a novel continuous-time group link prediction
method CTGLP. We first build continuous-time interaction networks based on
the historical interactions between individuals and groups and present a new
graph neural network CTGNN to learn the node embeddings, where a novel ag-
gregation function is designed to jointly capture network structural features and
temporal information. Then, we provide an importance-based group modeling
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Method HR@K(%) NDCG@K(%) MRR@K(%)
K=10 K=20 K=10 K=20 K=10 K=20

M
L1

00
K
w
/o

AA 8.8 18.7 4.3 6.8 3.1 3.8
CN 7.7 18.7 3.5 6.3 2.2 3.0
DW 0.0 2.0 0.0 0.5 0.0 0.1
n2v 0.0 4.0 0.0 1.0 0.0 0.3

HTNE 0.0 8.0 0.0 2.0 0.0 0.5
LSTM 4.7 7.0 2.0 2.6 1.2 1.3
CVAE 30.0±1.638.0±1.1 17.7±1.1 19.6±1.1 13.8±1.3 14.3±1.3

CVAEH 24.0±3.0 28.0±2.3 12.2±1.9 13.1±1.8 8.4±1.9 8.7±1.9
CTGLP 28.0±1.0 34.0±0.6 22.1±0.923.5±1.020.3±0.820.7±0.8

C
ia

oD
V

D
w
/o

AA 20.4 28.7 12.6 14.8 10.3 10.9
CN 19.3 30.1 12.1 14.8 9.9 10.6
DW 0.9 1.9 0.3 0.6 0.2 0.3
n2v 0.5 1.0 0.2 0.4 0.1 0.2

HTNE 0.5 2.0 0.2 0.5 0.1 0.2
LSTM 13.0 16.6 8.2 9.1 6.7 7.0
CVAE 22.1±1.7 26.8±1.0 12.6±1.1 13.8±0.9 9.7±0.9 10.0±0.9

CVAEH 22.5±0.9 27.7±1.0 13.1±0.7 14.4±0.6 10.2±0.6 10.5±0.6
CTGLP 25.5±0.930.7±1.017.0±0.518.3±0.414.3±0.914.7±1.0

M
L2

5M
w
/o

AA 42.5 45.1 31.8 32.4 28.5 28.7
CN 42.7 45 31.9 32.5 28.6 28.7
DW 2.1 5.4 0.7 1.5 0.3 0.5
n2v 1.3 3.5 0.5 1.0 0.2 0.4

HTNE 1.3 3.1 0.5 0.9 0.2 0.3
LSTM 27.3 32.6 19.8 21.1 17.5 17.8
CVAE 27.8±0.5 34.2±0.6 19.3±0.4 20.9±0.7 16.6±0.7 17.1±0.5

CVAEH 27.2±0.4 32.1±0.7 19.3±0.5 20.6±0.4 16.9±0.4 17.2±0.4
CTGLP 45.8±1.154.4±0.9 28.3±0.8 30.5±1.0 22.9±1.1 23.5±1.3

Table 3. Performance of various methods on datasets without unseen nodes. Items
with the highest values are marked in bold.

function to model latent representations of groups, which can differentiate the
contribution of members to group formation. Finally, the targets can be predicted
using CTGLP based on group vectors. We compare CTGLP with ten baselines
on various datasets and the experimental results show that CTGLP outper-
forms the state-of-the-art method. We also conduct a series of comprehensive
experiments to analyze the effects of model components and hyperparameters
on performance.
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