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Abstract. In industrial facilities or IT systems, there are lots of mul-
tivariate time series generated from various metrics. Anomaly detection
in multivariate time series is of great importance in applications such
as fault diagnosis and root cause discovery. Recently, some unsupervised
methods have made great progress in this task, especially the reconstruc-
tion architecture of autoencoders (AEs), learning normal distribution,
and producing a significant error for anomalies. Although AEs can re-
construct subtle abnormal patterns well with the powerful generalization
ability, it also leads to a high false negative. Moreover, these AE-based
models ignore the dependence among variables at different time scales.
In this paper, we propose an enhanced anomaly detection framework
that builds upon the Multiscale Wavelet Graph Autoencoder (MEGA)
by substituting the Graph Convolutional Network (GCN) with Simpli-
fied Graph Convolution (SGC) to augment the model’s performance.
The core idea is to leverage the spectral methods of SGC to process the
multivariate time series data obtained by integrating Discrete Wavelet
Transform (DWT) into the AE. Experiments have been conducted on
three public multivariate time-series anomaly detection datasets. The
results indicate that the improved model utilizing SGC performs compa-
rably to MEGA, yet in certain scenarios, it may provide slightly better
outcomes.

Keywords: Anomaly detection · discrete wavelet transform (DWT) ·
simple graph convolution(SGC) · multivariate time series.

1 Introduction

In time-series anomaly detection, identifying outliers from normal data distri-
butions has gained increasing attention from academia and industry. Multivari-
ate time series, which record multiple system indicators, are crucial for appli-
cations [24] like system monitoring and troubleshooting. In industrial environ-
ments [23], with numerous operational indicators generated continuously, manual
monitoring is impractical, making automatic anomaly detection essential.

Traditional machine learning methods like KNN [2] and One-class SVM [13]
have been proposed but struggle with high-dimensional and complex data. Re-
cently, deep learning approaches, particularly deep autoencoders (AEs) [16], have
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been explored for unsupervised anomaly detection, which model temporal de-
pendence and intervariable dependence to reconstruct time series for anomaly
detection [18]. Although these reconstruction-based deep models have achieved
good performance in detecting a distinct anomaly, that is, obviously deviated
from normal patterns, they fail to detect subtle contextual anomalies that behave
normally compared to their neighbors.

Moreover, system-level anomalies often involve inter-variable dependencies
[26], which are not adequately captured by directly modeling the original mul-
tivariate time series. These time series consist of oscillations at multiple scales,
leading to varying inter-variable dependencies.

This paper introduces an enhanced multivariate time-series anomaly detec-
tion framework using SGC [22]. SGC reduces training time, computational re-
sources, and model complexity while better capturing long-term dependencies
compared to traditional GCN [7]. Our contributions are:

1.Dynamic Graph Structures with SGC:After decomposing the time series
into multifrequency components, we construct dynamic graph structures at each
scale, using the frequency components as node features.We employ SGC to cap-
ture the complex inter-variable dependencies at different scales. SGC’s spectral
methods provide a more efficient and effective way to process these dependencies
compared to GCN.

2.Extensive experiments on three public multivariate time-series anomaly de-
tection datasets demonstrate that our model maintains good performance while
significantly reducing computational complexity and training time.

2 Related Work

2.1 Multivariate Time-Series Anomaly Detection

Recent research on anomaly detection in multivariate time series has focused
on modeling temporal and variable dependencies.Many approaches use AEs ar-
chitectures for anomaly detection. OmniAnomaly [18] uses VAE-based networks
to capture time dependencies and stochasticity in latent space. USAD [1] in-
troduces adversarial AEs to model time representations and combines gener-
ator and discriminator scores for anomaly detection. RAMED [17] addresses
temporal error accumulation using a multiresolution ensemble decoder, while
MemAE [4] adds a memory module to enhance AE’s generalization and de-
tection capability. In modeling variable dependencies, MTAD-GAT [26] applies
attention mechanisms for temporal and spatial anomaly detection, and GDN [3]
uses graph networks to represent variable relationships and uses a prediction-
based approach to accomplish anomaly detection. AddGraph [27] integrates dy-
namic graph structures with GRUs to capture both short-term and long-term
patterns, while MSCRED [25] models correlations through system signature ma-
trices. MTS-DCGAN [11] combines sliding windows and forgetting mechanisms
in the anomaly detection phase to focus on the contribution of samples at dif-
ferent distances and achieve good results. CCG-EDGAN [10] combines cross-
correlation graphs and encoder–decoder GAN to learn sequential correlation
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features among multiple time series and achieve good performance. MEGA [20]
combines DWT, AE, and GCN to better detect subtle anomalies and capture
multiscale dependencies.

2.2 DWT in Neural Networks

In signal processing, signals like temperature or KPIs are composed of different
frequency components.Researchers have recently combined DWT with neural
networks to capture multiscale frequency representations. For example, mWDN
[21] uses multilevel DWT within deep neural networks for improved frequency
learning in time-series analysis. DWT has also been applied successfully in com-
puter vision tasks due to its noise robustness and efficiency. WaveCNet [9] inte-
grates wavelets with CNNs for noise-resistant image classification, MW-GAN [19]
enhances video quality using wavelets and GANs, WaveletMonoDepth [15] ap-
plies wavelet decomposition for depth prediction, and STMFANet [6] combines
wavelets with spatial-temporal networks for video prediction.

2.3 GCNs

GCNs have become a powerful tool for learning on graph-structured data by
aggregating information from neighboring nodes through graph convolutions.
Traditional GCNs, introduced by Kipf and Welling [7], operate in the spec-
tral domain and excel in tasks like semi-supervised node classification. However,
issues like oversmoothing and high computational cost have led to various im-
provements. SGC [22] simplifies GCNs by removing nonlinearities and collaps-
ing weight matrices, improving efficiency and reducing oversmoothing. Graph-
SAGE [8] introduces inductive learning to handle dynamic graphs. GCNs are
now being applied to time-series anomaly detection. GDN [2] models variable
relationships using graph networks, while MTAD-GAT [13] integrates atten-
tion mechanisms to capture both temporal and variable dependencies. Our work
leverages SGC within an autoencoder framework to enhance detection of subtle
dependencies and anomalies in multivariate time series.

3 Methodology

3.1 Overview

Our proposed methodology enhances the MEGA framework by integrating SGC
to improve anomaly detection capabilities in multivariate time series. This ap-
proach capitalizes on the strengths of SGC to simplify the model architecture
while retaining effectiveness.The specific structure is shown in Figure 1.

3.2 Multiscale Discrete Wavelet Decomposition

In the DWT segment of our methodology, we employ a multilevel DWT to de-
compose the original multivariate time series into a set of frequency components
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Fig. 1. This is a schematic of one layer of the model in this paper, mainly consisting
of three parts, and the other two layers have the same structure as in the schematic.

that represent different scales within the data. This process is crucial for detect-
ing anomalies that may manifest at various frequency bands.

The DWT uses a pair of filters—a low-pass filter (σ) and a high-pass filter
(ν)—to decompose the time series into low-frequency components and high-
frequency components. The decomposition is performed iteratively, with each
iteration halving the length of the time series while doubling the number of
frequency components.

The mathematical representation of the DWT process is as follows:

f i+1
l = σif i

l (1)

f i+1
h = νif i

h (2)

where f i
l represents the low-frequency components at the i-th level, f i

h represents
the high-frequency components at the i-th level.

We then feed the multiscale frequency components into the encoder to extract
their latent representations. These representations are subsequently used by the
decoder to regenerate the frequency components. Finally, we reconstruct the
original time series using the IDWT.

3.3 Graph Structure Learning

After decomposing the multivariate time series into multiple frequency compo-
nents using DWT, we construct a dynamic graph structure at each scale. The
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relationships between variables are modeled as edges, and the characteristics of
each variable are represented as nodes. To efficiently capture these dependen-
cies, we employ the SGC, which simplifies the traditional GCN by removing the
nonlinearity and collapsing weight matrices.

The adjacency matrix A is defined as:

A = LeakyReLU
(
tanh

(
κ
(
E1E

T
2 − E2E

T
1

)))
(3)

where E1 and E2 are embeddings learned adaptively during training, and κ is a
scaling factor. This formulation ensures the asymmetry of the adjacency matrix,
reflecting the unidirectional impact of anomalies among variables.

Given the node features fi from the DWT, the SGC operation can be ex-
pressed as:

f ′
i = Ãfi (4)

where Ã = D̃−1/2AD̃−1/2 and D̃ii = 1 +
∑

j Aij is the degree matrix. Here, f ′
i

represents the updated node features after the SGC layer, capturing the aggre-
gated information from neighboring nodes.

We incorporate the frequency information of the time series into the process
of SGC to obtain the latent representation. When anomalies occur, the frequency
of the series changes, and the variable dependence of the graph convolution
output is affected, which are helpful for anomaly detection. The entire encoding
process can be formalized as follows:

z = E(fl, fh) (5)

where E is the encoder function that maps the low-frequency components fl and
high-frequency components fh to the latent representation z.

3.4 Frequency Generator and IDWT

Once we have the multiscale representation of the latent space, we utilize multi-
scale frequency generation and synthesis to reassemble the original time series.

Frequency Generator
The frequency generator uses the encoded latent representations z to generate

the multiscale frequency components. The generation process can be expressed
as:

f i+1
l = σiz (6)

f i+1
h = νiz (7)

where f i+1
l and f i+1

h are the low-frequency and high-frequency components at
scale, σi and νi are the learned low-pass and high-pass filters.

IDWT
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The IDWT is used to reconstruct the original time series from the generated
multiscale frequency components. The reconstruction process combines the low-
frequency and high-frequency components at each scale and can be expressed
as:

f i
l = IDWT(f i+1

l , f i+1
h ) (8)

where f i
l is the reconstructed low-frequency component at scale i , IDWT is the

inverse discrete wavelet transform operation that combines the low-frequency
and high-frequency components to reconstruct the time series at the previous
scale.

By integrating the frequency generator and IDWT, the MEGA framework ef-
fectively reconstructs the original time series, enabling the detection of anomalies
through the comparison of the reconstructed and original time series.

3.5 Anomaly Detection

In the test phase, the loss obtained by feeding samples into the trained model is
used as the score for anomaly determination. The loss function can be expressed
as:

L = α∥X−X ′∥22+β∥f1h−f ′
1h∥22+γ∥f2h−f ′

2h∥22+δ∥f3l−f ′
3l∥22+λ∥f3h−f ′

3h∥22 (9)

where α, β, γ, δ, and λ are the weighting coefficients that can be used to adjust
the attention for different scale frequencies. X and X ′ are the original and re-
constructed time series, respectively. f1h, f

′
1h, f2h, f

′
2h, f3l, f

′
3l, f3h, and f ′

3h are
the high-frequency and low-frequency components at different scales.

If we want to place more emphasis on the reconstruction of frequency compo-
nents at different scales in the anomaly scores, we can increase the corresponding
loss weights during the training phase. In the final step, an anomaly threshold
is set to classify samples with scores above the threshold as abnormal and those
below the threshold as normal, thereby completing the anomaly detection.

4 Experiment

4.1 Datasets and Evaluation Metrics

In this article, we use three public datasets of multivariate time-series anomaly
detection to test the effectiveness of our model, including two real-world datasets
Mars Science Laboratory rover (MSL), Soil Moisture Active Passive satellite
(SMAP) [5] collected from NASA, each of which has a training and testing
datasets. Anomalies in both testing subsets have been labeled. And a five-week-
long dataset was collected from a large Internet company, server machine dataset
(SMD) [18] which is divided into two subsets of equal size: a training set and
a testing set. MSL contains 27 entities, whose dimension is 55, while SMAP
contains 55 entities, whose dimension is 25. SMD has 28 entities with 38 metrics
of each. The detailed information on these datasets is shown in Table 1.
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Table 1. Details of the Datasets

Dataset Train Test Dimensions Anomalies (%)

MSL 58317 73729 27× 55 10.72

SMAP 135183 427617 55× 25 13.13

SMD 708405 708420 28× 38 4.16

In order to compare the performance between our model and other baselines,
we use the same data preprocessing method and evaluation metrics as in previous
works [18], [1] including

F1 =
2× P ×R

P +R
(10)

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

where TP is the number of true positives, FP is the number of false positives,
and FN is the number of false negatives.

We do not focus on the specific strategy for selecting the anomaly threshold.
If a model does not provide a method to select thresholds, we use a brute force
search to find the best F1 scores, ensuring a uniform threshold search strategy.
To maintain consistency in the experimental settings, we apply the point-adjust
strategy: for a segment anomaly, any subset that triggers an alert is considered
acceptable. Therefore, if the model detects any observation as an anomaly within
a ground-truth anomaly segment, we assume the entire segment is correctly
detected. For general point anomalies, no adjustment is made.

4.2 Baseline Methods

We compare our model with five unsupervised anomaly detection methods to
demonstrate the performance of our model including: IF [12] is a classical anomaly
detection algorithm in machine learning that exploits the assumption of low
data density at outlier points for data partitioning; AE is the most fundamental
reconstruction-based deep model in the field of anomaly detection; DAGMM [28]
combines AE and the Gaussian mixture model (GMM) to estimate the density
of the representations in the latent space; LSTM-VAE [14] replaces the feed-
forward neural network in VAE with an LSTM to capture the temporal depen-
dence; MEGA [3] have been introduced in the related work.

4.3 Experimental Results

Table 2 shows the overall performance of our model and the other baselines. As
shown in the table, MEGA and Ours, which use multiscale frequency modeling,
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achieve better results in accuracy, the metric evaluated for the anomaly detection
task.

Of these models, IF had the worst results.IF attempts to distinguish ab-
normal data from normal data in the raw feature space, but it struggles with
high-dimensional, complex data distributions. DAGMM also performs relatively
poorly compared to other benchmarks due to the lack of time-dependent mod-
eling. Since anomalies in time-series data are usually caused by temporal vari-
ations, multiscale frequency modeling can capture time dependence more effec-
tively from multiple perspectives.

AE and LSTM-VAE are trained to utilize temporal information in a recon-
structive manner. However, they have higher false negatives because their recon-
structions are performed only in the original space without proper constraints
in the latent space. These models do not specialize in subtle pattern anomalies
and do not take into account anomalous relationships between variables, hence
their limited performance.

In contrast, Our SGC-based models utilize both temporal and spatial rela-
tionships and are highly competitive in terms of performance; MEGA’s GCN
integrates multi-scale frequency information to capture spatial anomalies, while
SGC in Ours simplifies the graph learning process by reducing computational
overhead and removing non-critical operations. This allows Ours to improve its
efficiency while maintaining strong performance, especially on the MSL dataset,
where it even outperforms MEGA in terms of F1 score. although Ours is slightly
inferior to MEGA in terms of overall F1 score, the trade-off in computational
efficiency makes it a practical alternative.

The effective utilization of multi-scale frequency information and spatial
anomaly detection using graph networks is responsible for MEGA’s excellent per-
formance. However, our model provides a more computationally efficient model
that strikes a balance between performance and resource utilization, especially
in high-dimensional time series anomaly detection tasks.

Table 2. Performance of different models

Model
MSL SMAP SMD

P R F1 P R F1 P R F1

IF 0.5681 0.6740 0.5984 0.4423 0.5105 0.4671 0.5938 0.8532 0.5866

AE 0.8535 0.9748 0.8792 0.7216 0.9795 0.7776 0.8825 0.8037 0.8280

DAGMM 0.7562 0.9803 0.8112 0.6334 0.9984 0.7124 0.6730 0.8450 0.7231

LSTM-VAE 0.8599 0.9756 0.8537 0.7164 0.9875 0.7555 0.8698 0.7879 0.8083

MEGA 0.8561 0.8223 0.8388 0.9694 0.5564 0.7070 0.9835 0.9992 0.9913

Ours 0.8689 0.8118 0.8394 0.9300 0.5611 0.6999 0.8707 0.9974 0.9297
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5 Conclusion

In this paper, we introduce an unsupervised multivariate time-series anomaly
detection framework based on multiscale frequency decomposition and gener-
ation. We employ SGC instead of traditional Graph Convolutional Networks,
which significantly reduces training time and computational resource require-
ments. Experiments on three representative datasets (MSL, SMD, and SMAP)
demonstrate that our model can maintain or even improve accuracy while re-
ducing model complexity.
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